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AdS3 with 8+ 8 susys and integrability

� String theory on AdS3 × S3 ×M4 where M4 =

{
T4

S3 × S1

supported by R-R ⊕ NS-NS 3-form flux

� All-loop integrable wsheet 2-body S matrix known
[Borsato, Ohlsson Sax, Lloyd, Sfondrini, BS, Torrielli]

� expectation: integrability solves spectral problem
(from string side)

[Abbott, Aniceto, Babichenko, Bianchi, Beccaria, David, Dekel, Engelund, Hernandez,
Hoare, Levkovich-Maslyuk, Macorini, McKeown, Nieto, Pittelli, Prinsloo, Regelskis,
Roiban, Sahoo, Stepanchuk, Sundin, Tseytlin, Wolf, Wulff, Zarembo]

� This talk focuses on pure R-R, M4 = T 4 case
Global symmetry is psu(1, 1|2)2
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CFT2 integrability: expectations from AdS3
� λ −→ 0 limit gives local spin-chain [Ohlsson Sax, BS, Torrielli ’11]

� Sites of spin-chain L ⊗ R

L sites :

{
Sb
0⊕2 ⊕ Sf

Sb/Sf
1
2 -BPS irrep of psu(1, 1|2) with bos/ferm h.w. state

� R sites same as L sites
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Outline

1 UV gauge theory
• D1/D5 system, LUV
• Coulomb and Higgs branches in UV and IR

2 CFTH
• LIR
• ADHM σ-model and small instantons
• origin of the Higgs branch, Leff

3 ∆ from Leff and spin-chains

4 Outlook and Conclusions



UV gauge theory: D1-D5 system

� D1-D5 branes

0 1 2 3 4 5 6 7 8 9
Nc × D1 • •
Nf × D5 • • • • • •

︸ ︷︷ ︸
R-symmetry: su(2)L×su(2)R

� D1: (8, 8) susy U(Nc) vector mplet - dim. red. of N = 4 SYM

� D5: break susy to (4, 4)
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UV gauge theory: (4, 4) susy 2d QCD

Open-string low-energy dofs are gluons Aµ, quarks λ and (4,4) susy

• D1-D1 strings ←→ (8, 8) U(Nc) vector-multiplet:

(4, 4) vector Φ: φi , ψ , Aµ, D

(4, 4) hyper T : ta, χ

• D1-D5 strings ←→ (4, 4) U(Nc)× U(Nf ) hyper-multiplets:

(4, 4) hyper H: ha, λ

• D5-D5 strings decouple: suppressed by large V6789
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UV gauge theory: LUV fixed by susy

LUV =
1

g2
YM

LΦ(Φ) + LT (T ,Φ) + LH(H,Φ)

︸ ︷︷ ︸
dim. red. of LN=4 SYM

where

LΦ(Φ) = tr
[
F 2 + (∇φ)2 + iψ̄∇ψ+ D2 + . . .

]
,

LT (T ,Φ) = tr
[
∇t2 + i χ̄∇χ+ . . .

]
,

LH(H,Φ) = ∇h2 + i λ̄∇λ+ haφiφiha + λ̄Γ iφiλ+ . . . ,

� No H − T couplings

� LUV has two branches of susy vacua:

• Coulomb branch: D1 move away from D5
• Higgs branch: D1 move/dissolve inside D5

� gYM dimensionful: theory flows to CFT in IR

� IR CFT = CFTC ⊕ CFTH [Witten ’95, ’97]

� CFTH dual to AdS3 [Maldacena ’97]
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CFTH: LIR

� In IR gYM →∞ so LΦ irrelevant and can be dropped [Witten ’97]

LIR(Φ, T , H) = LT (Φ, T ) + LH(Φ, H)

� LIR marginal if Φ has geometric dimensions

[Aµ] = 1, [φi ] = 1, [Ψ] = 3/2, [D] = 2

while H and T have canonical scaling dimensions

[ha] = [ta] = 0, [χ] = [λ] = 1/2

� Φ enter quadratically as auxiliary fields in LIR
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CFTH: LADHM

� Φ auxiliary: eliminate using eoms
[Witten 97] [Berkooz, Verlinde ’99] [Aharony, Berkooz ’99]

LIR(Φ, T , H) −→ LADHM(H, T )

� LADHM is (4, 4) σ-model with target space

MNc ,Nf

the moduli space of Nc instantons in su(Nf ) gauge theory

� LADHM gives conventional picture of Higgs branch:
D- and F-flatness conditions equivalent to ADHM construction

� LADHM has small instanton singularity:
Metric on MNc ,Nf singular when instanton size goes to zero
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CFTH: states near origin

� CFTH states localised near origin of Higgs branch (near small
instanton singularity) not captured by LADHM σ-model

� For such states integrate out H [Witten 97] [Aharony, Berkooz 99]

LIR(Φ, T , H) −→ Nf Leff(Φ) + LT (T ,Φ)

� This "re-animates" Φ

� Nf factor comes from Nf copies of H

� LT unaffected since no T − H couplings
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CFTH: Leff∫
DΦDT DH ei

∫
LIR =

∫
DΦDT ei

∫
Nf Leff(Φ)+LT (Φ,T)

� Φ becomes dynamical. 2pt fn fixed by conformal invariance

φi(x)φj(0) ∼ δij

|x |2

� Leff interactions follow from LH interactions and integrating out

= +

= +

On rhs all interactions come from LH

LH ∼ ∇h2 + i λ̄∇λ+ haφiφjha + λ̄φiΓ iλ+ . . .

� Rescaling
Φ −→ 1√

Nf
Φ

get 1
Nf

as coupling constant.
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� Ground state is 1/2 BPS: ∆ = J tr

(
(φ1 + iφ2)J) protected

� Planar gauge theory

δD =
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n=1

Hn,n+1

� Ground state protected so

δD = c1
L∑

n=1

(
1n,n+1 − Pn,n+1 + c2 Kn,n+1

)
� For so(N) δD is integrable if c2 = 2

N−2
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� Expanding the "φ4" diagram

= + +

� First diagram has trivial so(4) structure.

� Second diagram is UV finite

� Only third diagram UV divergent and so(4) non-trivial
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One-loop dilatation operator
in so(4) sector

Hamiltonian of integrable
so(4) spin-chain

� Perturbative calculation in larger sector?

� Dilatation operator from symmetries?
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Thank you!


