Integrability and the Conformal Field Theory of the Higgs branch

Bogdan Stefański, jr.
City University London

17 November 2015

Based on 1411.3676, JHEP 1506 (2014) 103 with O. Ohlsson Sax, A. Sfondrini

AdS_{3} with $8+8$ susys and integrability

- String theory on $A d S_{3} \times S^{3} \times M_{4}$ where $M_{4}=\left\{\begin{array}{l}T^{4} \\ S^{3} \times S^{1}\end{array}\right.$

AdS_{3} with $8+8$ susys and integrability

- String theory on $A d S_{3} \times S^{3} \times M_{4}$ where $M_{4}=\left\{\begin{array}{l}T^{4} \\ S^{3} \times S^{1}\end{array}\right.$ supported by $\mathrm{R}-\mathrm{R} \oplus$ NS-NS 3-form flux

AdS_{3} with $8+8$ susys and integrability

- String theory on $A d S_{3} \times S^{3} \times M_{4}$ where $M_{4}=\left\{\begin{array}{l}T^{4} \\ S^{3} \times S^{1}\end{array}\right.$ supported by $\mathrm{R}-\mathrm{R} \oplus$ NS-NS 3-form flux
- All-loop integrable wsheet 2-body S matrix known
[Borsato, Ohlsson Sax, Lloyd, Sfondrini, BS, Torrielli]

AdS_{3} with $8+8$ susys and integrability

- String theory on $A d S_{3} \times S^{3} \times M_{4}$ where $M_{4}=\left\{\begin{array}{l}T^{4} \\ S^{3} \times S^{1}\end{array}\right.$ supported by $\mathrm{R}-\mathrm{R} \oplus$ NS-NS 3-form flux
- All-loop integrable wsheet 2-body S matrix known
[Borsato, Ohlsson Sax, Lloyd, Sfondrini, BS, Torrielli]
- expectation: integrability solves spectral problem (from string side)
[Abbott, Aniceto, Babichenko, Bianchi, Beccaria, David, Dekel, Engelund, Hernandez, Hoare, Levkovich-Maslyuk, Macorini, McKeown, Nieto, Pittelli, Prinsloo, Regelskis, Roiban, Sahoo, Stepanchuk, Sundin, Tseytlin, Wolf, Wulff, Zarembo]

AdS_{3} with $8+8$ susys and integrability

- String theory on $A d S_{3} \times S^{3} \times M_{4}$ where $M_{4}=\left\{\begin{array}{l}T^{4} \\ S^{3} \times S^{1}\end{array}\right.$ supported by $\mathrm{R}-\mathrm{R} \oplus$ NS-NS 3-form flux
- All-loop integrable wsheet 2-body S matrix known [Borsato, Ohlsson Sax, Lloyd, Sfondrini, BS, Torrielli]
- expectation: integrability solves spectral problem (from string side)
[Abbott, Aniceto, Babichenko, Bianchi, Beccaria, David, Dekel, Engelund, Hernandez, Hoare, Levkovich-Maslyuk, Macorini, McKeown, Nieto, Pittelli, Prinsloo, Regelskis, Roiban, Sahoo, Stepanchuk, Sundin, Tseytlin, Wolf, Wulff, Zarembo]
- This talk focuses on pure R-R, $M_{4}=T^{4}$ case Global symmetry is $\operatorname{psu}(1,1 \mid 2)^{2}$

CFT_{2} integrability: expectations from AdS_{3}

- $\lambda \longrightarrow 0$ limit gives local spin-chain
[Ohlsson Sax, BS, Torrielli '11]

CFT_{2} integrability: expectations from AdS_{3}

- $\lambda \longrightarrow 0$ limit gives local spin-chain
[Ohlsson Sax, BS, Torrielli '11]
- Sites of spin-chain
$L \otimes R$

CFT_{2} integrability: expectations from AdS_{3}

- $\lambda \longrightarrow 0$ limit gives local spin-chain
- Sites of spin-chain

$$
\text { L sites : } \quad\left\{\begin{array}{l}
S_{b} \\
0^{\oplus 2} \oplus S_{f}
\end{array}\right.
$$

$S_{b} / S_{f} \frac{1}{2}$-BPS irrep of $p s u(1,1 \mid 2)$ with bos/ferm h.w. state

CFT_{2} integrability: expectations from AdS_{3}

- $\lambda \longrightarrow 0$ limit gives local spin-chain
- Sites of spin-chain

$$
\text { L sites : } \quad\left\{\begin{array}{l}
S_{b} \\
0^{\oplus 2} \oplus S_{f}
\end{array}\right.
$$

$S_{b} / S_{f} \frac{1}{2}$-BPS irrep of $p s u(1,1 \mid 2)$ with bos/ferm h.w. state

- R sites same as L sites

Outline

(1) UV gauge theory

- D1/D5 system, $\mathcal{L}_{\mathrm{UV}}$
- Coulomb and Higgs branches in UV and IR
(2) CFT_{H}
- $\mathcal{L}_{I R}$
- ADHM σ-model and small instantons
- origin of the Higgs branch, $\mathcal{L}_{\text {eff }}$
(3) Δ from $\mathcal{L}_{\text {eff }}$ and spin-chains
(4) Outlook and Conclusions

UV gauge theory: D1-D5 system

- D1-D5 branes

UV gauge theory: D1-D5 system

- D1-D5 branes

UV gauge theory: D1-D5 system

- D1-D5 branes

- D1: $(8,8)$ susy $U\left(N_{c}\right)$ vector mplet - dim. red. of $\mathcal{N}=4$ SYM

UV gauge theory: D1-D5 system

- D1-D5 branes

- D1: $(8,8)$ susy $U\left(N_{c}\right)$ vector mplet - dim. red. of $\mathcal{N}=4$ SYM
- D5: break susy to $(4,4)$

UV gauge theory: $(4,4)$ susy 2d QCD

Open-string low-energy dofs are gluons A_{μ}, quarks λ and $(4,4)$ susy

UV gauge theory: $(4,4)$ susy 2d QCD

Open-string low-energy dofs are gluons A_{μ}, quarks λ and $(4,4)$ susy

- D1-D1 strings $\longleftrightarrow(8,8) U\left(N_{c}\right)$ vector-multiplet:

$$
\begin{array}{ll}
(4,4) \text { vector } \Phi: & \phi^{i}, \psi, A_{\mu}, D \\
(4,4) \text { hyper } T: & t^{a}, \chi
\end{array}
$$

UV gauge theory: $(4,4)$ susy 2d QCD

Open-string low-energy dofs are gluons A_{μ}, quarks λ and $(4,4)$ susy

- D1-D1 strings $\longleftrightarrow(8,8) U\left(N_{c}\right)$ vector-multiplet:

$$
\begin{array}{ll}
(4,4) \text { vector } \Phi: & \phi^{i}, \psi, A_{\mu}, D \\
(4,4) \text { hyper } T: & t^{a}, \chi
\end{array}
$$

- D1-D5 strings $\longleftrightarrow(4,4) U\left(N_{c}\right) \times U\left(N_{f}\right)$ hyper-multiplets:
$(4,4)$ hyper $H: \quad h^{a}, \lambda$

UV gauge theory: $(4,4)$ susy 2d QCD

Open-string low-energy dofs are gluons A_{μ}, quarks λ and $(4,4)$ susy

- D1-D1 strings $\longleftrightarrow(8,8) U\left(N_{c}\right)$ vector-multiplet:

$$
\begin{array}{ll}
(4,4) \text { vector } \Phi: & \phi^{i}, \psi, A_{\mu}, D \\
(4,4) \text { hyper } T: & t^{a}, \chi
\end{array}
$$

- D1-D5 strings $\longleftrightarrow(4,4) U\left(N_{c}\right) \times U\left(N_{f}\right)$ hyper-multiplets:
$(4,4)$ hyper $H: \quad h^{a}, \lambda$
- D5-D5 strings decouple: suppressed by large V_{6789}

UV gauge theory: $\mathcal{L}_{U V}$ fixed by susy

$$
\mathcal{L}_{U V}=\frac{1}{g_{\mathrm{YM}}^{2}} \mathcal{L}_{\Phi}(\Phi)+\mathcal{L}_{T}(T, \Phi)+\mathcal{L}_{H}(H, \Phi)
$$

UV gauge theory: $\mathcal{L}_{U V}$ fixed by susy

$$
\mathcal{L}_{U V}=\underbrace{\frac{1}{g_{\mathrm{YM}}^{2}} \mathcal{L}_{\Phi}(\Phi)+\mathcal{L}_{T}(T, \Phi)}_{\text {dim. red. of } \mathcal{L}_{\mathcal{N}=4 \mathrm{SYM}}}+\mathcal{L}_{H}(H, \Phi)
$$

UV gauge theory: $\mathcal{L}_{U V}$ fixed by susy

$$
\mathcal{L}_{U V}=\frac{1}{g_{\mathrm{YM}}^{2}} \mathcal{L}_{\Phi}(\Phi)+\mathcal{L}_{T}(T, \Phi)+\mathcal{L}_{H}(H, \Phi)
$$

where

$$
\begin{aligned}
& \mathcal{L}_{\Phi}(\Phi)=\operatorname{tr}\left[F^{2}+(\nabla \phi)^{2}+i \bar{\psi} \nabla \psi+D^{2}+\ldots\right] \\
& \mathcal{L}_{T}(T, \Phi)=\operatorname{tr}\left[\nabla t^{2}+i \bar{\chi} \nabla \chi+\ldots\right] \\
& \mathcal{L}_{H}(H, \Phi)=\nabla h^{2}+i \bar{\lambda} \nabla \lambda+h^{a} \phi^{i} \phi^{i} h^{a}+\bar{\lambda} \Gamma^{i} \phi^{i} \lambda+\ldots,
\end{aligned}
$$

UV gauge theory: $\mathcal{L}_{U V}$ fixed by susy

$$
\mathcal{L}_{U V}=\frac{1}{g_{\mathrm{YM}}^{2}} \mathcal{L}_{\Phi}(\Phi)+\mathcal{L}_{T}(T, \Phi)+\mathcal{L}_{H}(H, \Phi)
$$

- No H $-T$ couplings

UV gauge theory: $\mathcal{L}_{U V}$ fixed by susy

$$
\mathcal{L}_{U V}=\frac{1}{g_{\mathrm{YM}}^{2}} \mathcal{L}_{\Phi}(\Phi)+\mathcal{L}_{T}(T, \Phi)+\mathcal{L}_{H}(H, \Phi)
$$

- No $H-T$ couplings
- $\mathcal{L}_{U V}$ has two branches of susy vacua:
- Coulomb branch: D1 move away from D5
- Higgs branch: D1 move/dissolve inside D5

UV gauge theory: $\mathcal{L}_{U V}$ fixed by susy

$$
\mathcal{L}_{U V}=\frac{1}{g_{\mathrm{YM}}^{2}} \mathcal{L}_{\Phi}(\Phi)+\mathcal{L}_{T}(T, \Phi)+\mathcal{L}_{H}(H, \Phi)
$$

- No $H-T$ couplings
- $\mathcal{L}_{U V}$ has two branches of susy vacua:
- Coulomb branch: D1 move away from D5
- Higgs branch: D1 move/dissolve inside D5
- g_{YM} dimensionful: theory flows to CFT in IR

UV gauge theory: $\mathcal{L}_{U V}$ fixed by susy

$$
\mathcal{L}_{\mathrm{UV}}=\frac{1}{g_{\mathrm{YM}}^{2}} \mathcal{L}_{\Phi}(\Phi)+\mathcal{L}_{T}(T, \Phi)+\mathcal{L}_{H}(H, \Phi)
$$

- No $H-T$ couplings
- $\mathcal{L}_{U V}$ has two branches of susy vacua:
- Coulomb branch: D1 move away from D5
- Higgs branch: D1 move/dissolve inside D5
- g_{YM} dimensionful: theory flows to CFT in IR
- IR CFT $=\mathrm{CFT}_{\mathrm{C}} \oplus \mathrm{CFT}_{\mathrm{H}}$
[Witten '95, '97]

UV gauge theory: $\mathcal{L}_{U V}$ fixed by susy

$$
\mathcal{L}_{\mathrm{UV}}=\frac{1}{g_{\mathrm{YM}}^{2}} \mathcal{L}_{\Phi}(\Phi)+\mathcal{L}_{T}(T, \Phi)+\mathcal{L}_{H}(H, \Phi)
$$

- No $H-T$ couplings
- $\mathcal{L}_{U V}$ has two branches of susy vacua:
- Coulomb branch: D1 move away from D5
- Higgs branch: D1 move/dissolve inside D5
- $g_{\text {Yм }}$ dimensionful: theory flows to CFT in IR
- $\mathrm{IR} \mathrm{CFT}=\mathrm{CFT}_{\mathrm{C}} \oplus \mathrm{CFT}_{\mathrm{H}}$
[Witten '95, '97]
- $\mathrm{CFT}_{\mathrm{H}}$ dual to AdS_{3}
[Maldacena '97]

$\mathrm{CFT}_{\mathrm{H}}: \mathcal{L}_{\mathrm{IR}}$

- In IR $g_{\mathrm{YM}} \rightarrow \infty$ so \mathcal{L}_{Φ} irrelevant and can be dropped [Witten '97]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H)=\mathcal{L}_{T}(\Phi, T)+\mathcal{L}_{H}(\Phi, H)
$$

- In IR $g_{\mathrm{YM}} \rightarrow \infty$ so \mathcal{L}_{Φ} irrelevant and can be dropped [Witten '97]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H)=\mathcal{L}_{T}(\Phi, T)+\mathcal{L}_{H}(\Phi, H)
$$

- $\mathcal{L}_{\text {IR }}$ marginal if Φ has geometric dimensions

$$
\left[A_{\mu}\right]=1, \quad\left[\phi^{i}\right]=1, \quad[\Psi]=3 / 2, \quad[D]=2
$$

while H and T have canonical scaling dimensions

$$
\left[h^{a}\right]=\left[t^{a}\right]=0, \quad[\chi]=[\lambda]=1 / 2
$$

- In IR $g_{\mathrm{Y} M} \rightarrow \infty$ so \mathcal{L}_{Φ} irrelevant and can be dropped [Witten '97]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H)=\mathcal{L}_{T}(\Phi, T)+\mathcal{L}_{H}(\Phi, H)
$$

- $\mathcal{L}_{\text {IR }}$ marginal if Φ has geometric dimensions

$$
\left[A_{\mu}\right]=1, \quad\left[\phi^{i}\right]=1, \quad[\Psi]=3 / 2, \quad[D]=2
$$

while H and T have canonical scaling dimensions

$$
\left[h^{a}\right]=\left[t^{a}\right]=0, \quad[\chi]=[\lambda]=1 / 2
$$

- Φ enter quadratically as auxiliary fields in $\mathcal{L}_{\mathrm{IR}}$

$\mathrm{CFT}_{\mathrm{H}}: \mathcal{L}_{\mathrm{ADHM}}$

- Φ auxiliary: eliminate using eoms
[Witten 97] [Berkooz, Verlinde '99] [Aharony, Berkooz '99]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H) \longrightarrow \mathcal{L}_{\mathrm{ADHM}}(H, T)
$$

CFT $_{H}: \mathcal{L}_{\text {ADHM }}$

- Φ auxiliary: eliminate using eoms
[Witten 97] [Berkooz, Verlinde '99] [Aharony, Berkooz '99]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H) \longrightarrow \mathcal{L}_{\text {ADHM }}(H, T)
$$

- $\mathcal{L}_{\text {ADHM }}$ is $(4,4) \sigma$-model with target space

$$
\mathcal{M}_{N_{c}, N_{f}}
$$

the moduli space of N_{c} instantons in $s u\left(N_{f}\right)$ gauge theory

CFT $_{H}: \mathcal{L}_{\text {ADHM }}$

- Φ auxiliary: eliminate using eoms
[Witten 97] [Berkooz, Verlinde '99] [Aharony, Berkooz '99]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H) \longrightarrow \mathcal{L}_{\mathrm{ADHM}}(H, T)
$$

- $\mathcal{L}_{\text {ADHM }}$ is $(4,4) \sigma$-model with target space

$$
\mathcal{M}_{N_{c}, N_{f}}
$$

the moduli space of N_{c} instantons in $s u\left(N_{f}\right)$ gauge theory

- $\mathcal{L}_{\text {ADHM }}$ gives conventional picture of Higgs branch:

D- and F-flatness conditions equivalent to ADHM construction

$\mathrm{CFT}_{\mathrm{H}}: \mathcal{L}_{\mathrm{ADHM}}$

- Φ auxiliary: eliminate using eoms
[Witten 97] [Berkooz, Verlinde '99] [Aharony, Berkooz '99]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H) \longrightarrow \mathcal{L}_{\text {ADHM }}(H, T)
$$

- $\mathcal{L}_{\text {ADHm }}$ is $(4,4) \sigma$-model with target space

$$
\mathcal{N}_{N_{c}, N_{f}}
$$

the moduli space of N_{c} instantons in $s u\left(N_{f}\right)$ gauge theory

- $\mathcal{L}_{\text {ADhm }}$ gives conventional picture of Higgs branch:

D- and F-flatness conditions equivalent to ADHM construction

- $\mathcal{L}_{\text {ADHM }}$ has small instanton singularity:

Metric on $\mathcal{M}_{N_{c}, N_{f}}$ singular when instanton size goes to zero

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- CFT $_{H}$ states localised near origin of Higgs branch (near small instanton singularity) not captured by $\mathcal{L}_{\text {ADHM }} \sigma$-model

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- CFT $_{\mathrm{H}}$ states localised near origin of Higgs branch (near small instanton singularity) not captured by $\mathcal{L}_{\text {ADHM }} \sigma$-model
- For such states integrate out H
[Witten 97] [Aharony, Berkooz 99]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H) \quad \longrightarrow \quad N_{f} \mathcal{L}_{\text {eff }}(\Phi)+\mathcal{L}_{T}(T, \Phi)
$$

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- CFT $_{H}$ states localised near origin of Higgs branch (near small instanton singularity) not captured by $\mathcal{L}_{\text {ADHM }} \sigma$-model
- For such states integrate out H
[Witten 97] [Aharony, Berkooz 99]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H) \longrightarrow N_{f} \mathcal{L}_{\text {eff }}(\Phi)+\mathcal{L}_{T}(T, \Phi)
$$

- This "re-animates" Φ

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- CFT $_{H}$ states localised near origin of Higgs branch (near small instanton singularity) not captured by $\mathcal{L}_{\text {ADHM }} \sigma$-model
- For such states integrate out H
[Witten 97] [Aharony, Berkooz 99]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H) \quad \longrightarrow \quad N_{f} \mathcal{L}_{\text {eff }}(\Phi)+\mathcal{L}_{T}(T, \Phi)
$$

- This "re-animates" Φ
- N_{f} factor comes from N_{f} copies of H

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- CFT $_{H}$ states localised near origin of Higgs branch (near small instanton singularity) not captured by $\mathcal{L}_{\text {ADHM }} \sigma$-model
- For such states integrate out H
[Witten 97] [Aharony, Berkooz 99]

$$
\mathcal{L}_{\mathrm{IR}}(\Phi, T, H) \longrightarrow N_{f} \mathcal{L}_{\text {eff }}(\Phi)+\mathcal{L}_{T}(T, \Phi)
$$

- This "re-animates" Φ
- N_{f} factor comes from N_{f} copies of H
- \mathcal{L}_{T} unaffected since no $T-H$ couplings
$\mathrm{CFT}_{\mathrm{H}}: \mathcal{L}_{\text {eff }}$

$$
\int \mathcal{D} \Phi \mathcal{D} T \mathcal{D} H e^{i \int \mathcal{L}_{\mathrm{IR}}}=\int \mathcal{D} \Phi \mathcal{D} T e^{i \int N_{f} \mathcal{L}_{\text {eff }}(\Phi)+\mathcal{L}_{T}(\Phi, T)}
$$

$\mathrm{CFT}_{\mathrm{H}}: \mathcal{L}_{\text {eff }}$

$$
\int \mathcal{D} \Phi \mathcal{D} T \mathcal{D} H e^{i \int \mathcal{L}_{\mathrm{IR}}}=\int \mathcal{D} \Phi \mathcal{D} T e^{i \int N_{f} \mathcal{L}_{\mathrm{eff}}(\Phi)+\mathcal{L}_{T}(\Phi, T)}
$$

- Φ becomes dynamical. 2pt fn fixed by conformal invariance

$$
\phi^{i}(x) \phi^{j}(0) \sim \frac{\delta^{i j}}{|x|^{2}}
$$

$\mathrm{CFT}_{\mathrm{H}}: \mathcal{L}_{\text {eff }}$

$$
\int \mathcal{D} \Phi \mathcal{D} T \mathcal{D} H e^{i \int \mathcal{L}_{\mathrm{IR}}}=\int \mathcal{D} \Phi \mathcal{D} T e^{i \int N_{f} \mathcal{L}_{\text {eff }}(\Phi)+\mathcal{L}_{T}(\Phi, T)}
$$

- Φ becomes dynamical. 2pt fn fixed by conformal invariance

$$
\phi^{i}(x) \phi^{j}(0) \sim \frac{\delta^{i j}}{|x|^{2}}
$$

- $\mathcal{L}_{\text {eff }}$ interactions follow from \mathcal{L}_{H} interactions and integrating out
$\mathrm{CFT}_{\mathrm{H}}: \mathcal{L}_{\text {eff }}$

$$
\int \mathcal{D} \Phi \mathcal{D} T \mathcal{D} H e^{i \int \mathcal{L}_{\mathbb{R}}}=\int \mathcal{D} \Phi \mathcal{D} T e^{i \int \mathcal{N}_{f} \mathcal{L}_{\mathrm{eff}}(\Phi)+\mathcal{L}_{T}(\Phi, T)}
$$

- Φ becomes dynamical. 2pt fn fixed by conformal invariance

$$
\phi^{i}(x) \phi^{j}(0) \sim \frac{\delta^{i j}}{|x|^{2}}
$$

- $\mathcal{L}_{\text {eff }}$ interactions follow from \mathcal{L}_{H} interactions and integrating out

On rhs all interactions come from \mathcal{L}_{H}

$$
\mathcal{L}_{H} \sim \nabla h^{2}+i \bar{\lambda} \nabla \lambda+h^{a} \phi^{i} \phi^{j} h^{a}+\bar{\lambda} \phi^{i} \Gamma^{i} \lambda+\ldots
$$

$\mathrm{CFT}_{\mathrm{H}}: \mathcal{L}_{\text {eff }}$

$$
\int \mathcal{D} \Phi \mathcal{D} T \mathcal{D} H e^{i \int \mathcal{L}_{\mathrm{IR}}}=\int \mathcal{D} \Phi \mathcal{D} T e^{i \int N_{f} \mathcal{L}_{\mathrm{eff}}(\Phi)+\mathcal{L}_{T}(\Phi, T)}
$$

- Φ becomes dynamical. 2pt fn fixed by conformal invariance

$$
\phi^{i}(x) \phi^{j}(0) \sim \frac{\delta^{i j}}{|x|^{2}}
$$

- $\mathcal{L}_{\text {eff }}$ interactions follow from \mathcal{L}_{H} interactions and integrating out
- Rescaling

$$
\Phi \longrightarrow \frac{1}{{\sqrt{N_{f}}}} \Phi
$$

get $\frac{1}{N_{f}}$ as coupling constant.

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- Gauge invariant states built from adjoint fields Φ and T

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- Gauge invariant states built from adjoint fields Φ and T
- $N_{c} \rightarrow \infty$: perturbation series becomes 't Hooft expansion in

$$
\lambda \equiv \frac{N_{c}}{N_{f}} \quad \text { and } \quad \frac{1}{N_{c}^{2}}
$$

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- Gauge invariant states built from adjoint fields Φ and T
- $N_{c} \rightarrow \infty$: perturbation series becomes 't Hooft expansion in

$$
\lambda \equiv \frac{N_{c}}{N_{f}} \quad \text { and } \quad \frac{1}{N_{c}^{2}}
$$

- In this limit single-trace ops dominate
$\operatorname{tr}\left(\phi^{i_{1}} \phi^{i_{2}} \ldots \phi^{i_{L}}\right), \quad \operatorname{tr}\left(\nabla_{+} \psi F \phi^{i_{1}} \ldots \phi^{i_{L-2}}\right), \quad \operatorname{tr}\left(\chi \nabla_{-} t \phi^{i_{1}} \ldots \phi^{i_{L-2}}\right)$

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- Gauge invariant states built from adjoint fields Φ and T
- $N_{c} \rightarrow \infty$: perturbation series becomes 't Hooft expansion in

$$
\lambda \equiv \frac{N_{c}}{N_{f}} \quad \text { and } \quad \frac{1}{N_{c}^{2}}
$$

- In this limit single-trace ops dominate $\operatorname{tr}\left(\phi^{i_{1}} \phi^{i_{2}} \ldots \phi^{i_{L}}\right), \quad \operatorname{tr}\left(\nabla_{+} \psi F \phi^{i_{1}} \ldots \phi^{i_{L-2}}\right), \quad \operatorname{tr}\left(\chi \nabla_{-} t \phi^{i_{1}} \ldots \phi^{i_{L-2}}\right)$
- Such operators correspond to spin-chains with sites
- Φ fields: $\left(S_{b}\right)_{L} \otimes\left(S_{b}\right)_{R}$
- T fields: $0^{\oplus 4} \oplus\left(0^{\oplus 2} \otimes\left(S_{f}\right)_{L}\right) \oplus\left(0^{\oplus 2} \otimes\left(S_{f}\right)_{R}\right)$

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- Gauge invariant states built from adjoint fields Φ and T
- $N_{c} \rightarrow \infty$: perturbation series becomes 't Hooft expansion in

$$
\lambda \equiv \frac{N_{c}}{N_{f}} \quad \text { and } \quad \frac{1}{N_{c}^{2}}
$$

- In this limit single-trace ops dominate $\operatorname{tr}\left(\phi^{i_{1}} \phi^{i_{2}} \ldots \phi^{i_{L}}\right), \quad \operatorname{tr}\left(\nabla_{+} \psi F \phi^{i_{1}} \ldots \phi^{i_{L-2}}\right), \quad \operatorname{tr}\left(\chi \nabla_{-} t \phi^{i_{1}} \ldots \phi^{i_{L-2}}\right)$
- Such operators correspond to spin-chains with sites
- Φ fields: $\left(S_{b}\right)_{L} \otimes\left(S_{b}\right)_{R}$
- T fields: $0^{\oplus 4} \oplus\left(0^{\oplus 2} \otimes\left(S_{f}\right)_{L}\right) \oplus\left(0^{\oplus 2} \otimes\left(S_{f}\right)_{R}\right)$
- Exact match to spin-chain from AdS_{3} [Ohlsson Sax, BS, Torrielli '11]

$\mathrm{CFT}_{\mathrm{H}}$: states near origin

- Gauge invariant states built from adjoint fields Φ and T
- $N_{c} \rightarrow \infty$: perturbation series becomes 't Hooft expansion in

$$
\lambda \equiv \frac{N_{c}}{N_{f}} \quad \text { and } \quad \frac{1}{N_{c}^{2}}
$$

- In this limit single-trace ops dominate $\operatorname{tr}\left(\phi^{i_{1}} \phi^{i_{2}} \ldots \phi^{i_{L}}\right), \quad \operatorname{tr}\left(\nabla_{+} \psi F \phi^{i_{1}} \ldots \phi^{i_{L-2}}\right), \quad \operatorname{tr}\left(\chi \nabla_{-} t \phi^{i_{1}} \ldots \phi^{i_{L-2}}\right)$
- Such operators correspond to spin-chains with sites
- Φ fields: $\left(S_{b}\right)_{L} \otimes\left(S_{b}\right)_{R}$
- T fields: $0^{\oplus 4} \oplus\left(0^{\oplus 2} \otimes\left(S_{f}\right)_{L}\right) \oplus\left(0^{\oplus 2} \otimes\left(S_{f}\right)_{R}\right)$
- Exact match to spin-chain from AdS_{3} [Ohlsson Sax, BS, Torrielli '11]
- Local spin-chain appears very naturally

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- We restrict to $\mathcal{O}(\lambda)$ in so(4) subsector $\operatorname{tr}\left(\phi^{i_{1}} \cdots \phi^{i_{L}}\right)$

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- We restrict to $\mathcal{O}(\lambda)$ in so(4) subsector

$$
\operatorname{tr}\left(\phi^{i_{1}} \cdots \phi^{i_{L}}\right)
$$

- Ground state is $1 / 2 \mathrm{BPS}: \Delta=J$
$\operatorname{tr}\left(\left(\phi^{1}+i \phi^{2}\right)^{J}\right)$ protected

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- We restrict to $\mathcal{O}(\lambda)$ in so(4) subsector
$\operatorname{tr}\left(\phi^{i_{1}} \cdots \phi^{i_{L}}\right)$
- Ground state is $1 / 2 \mathrm{BPS}: \Delta=J$
$\operatorname{tr}\left(\left(\phi^{1}+i \phi^{2}\right)^{J}\right)$ protected
- Planar gauge theory

$$
\delta \mathbf{D}=\sum_{n=1}^{L} \mathcal{H}_{n, n+1}
$$

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- We restrict to $\mathcal{O}(\lambda)$ in so(4) subsector

$$
\operatorname{tr}\left(\phi^{i_{1}} \cdots \phi^{i_{L}}\right)
$$

- Ground state is $1 / 2 \mathrm{BPS}: \Delta=J$
$\operatorname{tr}\left(\left(\phi^{1}+i \phi^{2}\right)^{J}\right)$ protected
- Planar gauge theory

$$
\delta \mathbf{D}=\sum_{n=1}^{L} \mathcal{H}_{n, n+1}
$$

- Ground state protected so

$$
\delta \mathbf{D}=c_{1} \sum_{n=1}^{L}\left(\mathbf{1}_{n, n+1}-\mathbf{P}_{n, n+1}+c_{2} \mathbf{K}_{n, n+1}\right)
$$

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- We restrict to $\mathcal{O}(\lambda)$ in so(4) subsector

$$
\operatorname{tr}\left(\phi^{i_{1}} \cdots \phi^{i_{L}}\right)
$$

- Ground state is $1 / 2 \mathrm{BPS}: \Delta=J$ $\operatorname{tr}\left(\left(\phi^{1}+i \phi^{2}\right)^{J}\right)$ protected
- Planar gauge theory

$$
\delta \mathbf{D}=\sum_{n=1}^{L} \mathcal{H}_{n, n+1}
$$

- Ground state protected so

$$
\delta \mathbf{D}=c_{1} \sum_{n=1}^{L}\left(\mathbf{1}_{n, n+1}-\mathbf{P}_{n, n+1}+c_{2} \mathbf{K}_{n, n+1}\right)
$$

- For so $(N) \delta \mathbf{D}$ is integrable if $c_{2}=\frac{2}{N-2}$

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Power-counting divergent leading order diagrams

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Power-counting divergent leading order diagrams

- Second and fourth diagrams give trivial so(4) structure.

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Power-counting divergent leading order diagrams

- Expanding interactions in diagrams with non-trivial so(4) structure

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Power-counting divergent leading order diagrams

- Expanding interactions in diagrams with non-trivial so(4) structure

- Diagrams involving a gluon exchange vanish due to symmetry

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Power-counting divergent leading order diagrams

- Expanding interactions in diagrams with non-trivial so(4) structure

- Diagrams involving a gluon exchange vanish due to symmetry
- Only " $\phi^{4 "}$ diagram is divergent and has non-trivial so(4) structure

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Expanding the " $\phi^{4 "}$ diagram

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Expanding the " $\phi^{4 "}$ diagram

- First diagram has trivial so(4) structure.

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Expanding the " $\phi^{4 "}$ diagram

- First diagram has trivial so(4) structure.
- Second diagram is UV finite

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Expanding the " $\phi^{4 "}$ diagram

- First diagram has trivial so(4) structure.
- Second diagram is UV finite
- Only third diagram UV divergent and so(4) non-trivial

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Compute diagram, find $c_{2}=1$ and hence so(4) dilatation operator

$$
\delta \mathbf{D} \propto \frac{N_{c}}{N_{f}} \sum_{n=1}^{L}\left(\mathbf{1}_{n, n+1}-\mathbf{P}_{n, n+1}+\mathbf{K}_{n, n+1}\right)
$$

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Compute diagram, find $c_{2}=1$ and hence so(4) dilatation operator

$$
\delta \mathbf{D} \propto \frac{N_{c}}{N_{f}} \sum_{n=1}^{L}\left(\mathbf{1}_{n, n+1}-\mathbf{P}_{n, n+1}+\mathbf{K}_{n, n+1}\right)
$$

Integrable so(4) spin-chain Hamiltonian

Δ in $\mathrm{CFT}_{\mathrm{H}}$

One-loop dilatation operator in so(4) sector

Hamiltonian of integrable so(4) spin-chain

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Perturbative calculation in larger sector?

Δ in $\mathrm{CFT}_{\mathrm{H}}$

- Perturbative calculation in larger sector?
- Dilatation operator from symmetries?

Conclusions and Outlook

Conclusions and Outlook

- $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ likely to be an example of holographic integrability. Evidence of integrability found on both sides of duality.

Conclusions and Outlook

- $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ likely to be an example of holographic integrability. Evidence of integrability found on both sides of duality.
- I focused on D1-D5 pure R-R flux.

What happens on CFT side with mixed R-R and NS-NS flux?

Conclusions and Outlook

- $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ likely to be an example of holographic integrability. Evidence of integrability found on both sides of duality.
- I focused on D1-D5 pure R-R flux.

What happens on CFT side with mixed R-R and NS-NS flux?

- What is the connection to other points in the moduli space, such as WZW point or $\operatorname{Sym}^{N}\left(\mathrm{~T}^{4}\right)$ point and to higher-spin limit?[Gopakumar, Gaberdiel,...]

Conclusions and Outlook

- $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ likely to be an example of holographic integrability. Evidence of integrability found on both sides of duality.
- I focused on D1-D5 pure R-R flux.

What happens on CFT side with mixed R-R and NS-NS flux?

- What is the connection to other points in the moduli space, such as WZW point or $\operatorname{Sym}^{N}\left(\mathrm{~T}^{4}\right)$ point and to higher-spin limit?[Gopakumar, Gaberdiel,...]
- What about D1-D5-D5' and its CFT $_{2}$ [Tong]

Conclusions and Outlook

- $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ likely to be an example of holographic integrability. Evidence of integrability found on both sides of duality.
- I focused on D1-D5 pure R-R flux.

What happens on CFT side with mixed R-R and NS-NS flux?

- What is the connection to other points in the moduli space, such as WZW point or $\operatorname{Sym}^{N}\left(\mathrm{~T}^{4}\right)$ point and to higher-spin limit?[Gopakumar, Gaberdiel,...]
- What about D1-D5-D5' and its CFT_{2} [Tong]
- Integrability in $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ has a rich structure that needs to be investigated more fully: large space of parameters, massless modes, TBA, Quantum Spectral Curve

Thank you!

