Higher derivative SYM lagrangian in open superstring theory

L. A. Barreiro ${ }^{1}$, R. Medina ${ }^{2}$
${ }^{1}$ UNESP, Rio Claro, São Paulo state; ${ }^{2}$ UNIFEI, Itajubá, Minas Gerais state; Brazil.
rmedina50@gmail.com

Amplitudes 2015, ETH Zurich, Switzerland, July 6-10, 2015.

Introduction
In a nonabelian theory, tree level open string amplitudes of N
gauge bosons are computed according to the formula
$\mathcal{A}_{N}=i(2 \pi)^{D} \delta^{D}\left(k_{1}+\ldots+k_{N}\right) \times$ $\quad \times\left[\operatorname{tr}\left(\lambda^{a_{1}} \lambda^{a_{2}} \ldots \lambda^{a_{N}}\right) A(1,2, \ldots, N)+\binom{\right.$ non-cyclic }{ permutations }$]$,

where D is the spacetime dimension and $A(1, \ldots, N)$ is the color ordered amplitude that string theory makes available using vertex operators.
For the BOSONIC open string

$$
A(1, \ldots, N)=C_{N}\left(\alpha^{\prime}\right) g^{N-2} \times
$$

$$
\begin{align*}
& \times \int_{0}^{1} d x_{N-2} \int_{0}^{x_{N-2}} d x_{N-3} \cdots \int_{0}^{x_{3}} d x_{2} \prod_{i<j}^{N}\left(x_{j}-x_{i}\right)^{2 \alpha^{\prime} k_{i} \cdot k_{j}} \times \\
& \quad \times\left.\exp \left(\sum_{i<j}^{N} \frac{2 \alpha^{\prime} \zeta_{i} \cdot \zeta_{j}}{\left(x_{j}-x_{i}\right)^{2}}-\sum_{i \neq j}^{N} \frac{2 \alpha^{\prime} k_{j} \cdot \zeta_{i}}{\left(x_{j}-x_{i}\right)}\right)\right|_{\text {linear }} \tag{2}
\end{align*}
$$

where

$$
x_{1}=0, \quad x_{N-1}=1, \quad x_{N}=+\infty
$$

While for the SUPERSYMMETRIC open string (in the RNS formalism):

$$
\begin{gathered}
A(1,2, \ldots, N)=2 \frac{g^{N-2}}{\left(2 \alpha^{\prime}\right)^{2}}\left(x_{N-1}-x_{1}\right)\left(x_{N}-x_{1}\right) \times \\
\int_{0}^{x_{N-1}} d x_{N-2} \int_{0}^{x_{N-2}} d x_{N-3} \ldots \int_{0}^{x_{3}} d x_{2} \times \\
\times \int d \theta_{1} \ldots d \theta_{N-2} \prod_{i<j}^{N}\left(x_{j}-x_{i}-\theta_{j} \theta_{i}\right)^{2 \alpha^{\prime} k_{i} \cdot k_{j}} \times \\
\int d \phi_{1} \ldots d \phi_{N} \times \\
\exp \left(\sum_{i \neq j}^{N} \frac{\left(2 \alpha^{\prime}\right)^{1}\left(\theta_{j}-\theta_{i}\right) \phi_{j}\left(\zeta_{j} \cdot k_{i}\right)-1 / 2\left(2 \alpha^{\prime}\right)^{1} \phi_{j} \phi_{i}\left(\zeta_{j} \cdot \zeta_{i}\right)}{x_{j}-x_{i}-\theta_{j} \theta_{i}}\right)
\end{gathered}
$$

Review of the low energy effective lagrangian in open superstring theory: the S-matrix method

1. Structure of the low energy effective lagrangian

In eqs. (5) and (6) we briefly review the structure of the low energy effective lagrangian (LEEL) up to $\alpha^{\prime 3}$ terms i) Low energy effective lagrangian up to $\alpha^{\prime 2}$ terms:

$$
\begin{align*}
\mathcal{L}_{\text {eff }}= & \frac{1}{g^{2}} \operatorname{tr}\left[-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\left(2 \alpha^{\prime}\right)^{1} a_{1} F_{\mu}{ }^{\lambda} F_{\lambda}^{\nu} F_{\nu}^{\mu}+\right. \\
& +\left(2 \alpha^{\prime}\right)^{2}\left(a_{3} F^{\mu \lambda} F_{\lambda}^{\nu} F_{\mu}^{\rho} F_{\nu \rho}+a_{4} F_{\lambda}^{\mu} F_{\nu}{ }^{\lambda} F^{\nu \rho} F_{\mu \rho}+\right. \\
& \left.+a_{5} F^{\mu \nu} F_{\mu \nu} F^{\lambda \rho} F_{\lambda \rho}+a_{6} F^{\mu \nu} F^{\lambda \rho} F_{\mu \nu} F_{\lambda \rho}\right)+ \\
& \left.+O\left(\left(2 \alpha^{\prime}\right)^{3}\right)\right] . \tag{5}
\end{align*}
$$

ii) Low energy effective lagrangian at $\alpha^{\prime 3}$ order:
$\mathcal{L}_{\text {eff }}{ }^{(3)}=\frac{\left(2 \alpha^{\prime}\right)^{3}}{g^{2}} \operatorname{tr}\left[a_{10} F_{\mu}{ }^{\nu} F_{\nu}{ }^{\lambda} F_{\lambda}{ }^{\rho} F_{\rho}{ }^{\sigma} F_{\sigma}{ }^{\mu}+a_{11} F_{\mu}{ }^{\nu} F_{\nu}{ }^{\lambda} F_{\lambda}{ }^{\rho} F_{\sigma}{ }^{\mu} F_{\rho}{ }^{\sigma}+\right.$ $+a_{12} F_{\mu}{ }^{\nu} F_{\nu}{ }^{\lambda} F_{\sigma}{ }^{\mu} F_{\lambda}{ }^{\rho} F_{\rho}{ }^{\sigma}+a_{13} F_{\mu}{ }^{\nu} F_{\rho}{ }^{\sigma} F_{\nu}{ }^{\lambda} F_{\sigma}{ }^{\mu} F_{\lambda}{ }^{\rho}+$
$+a_{14} F_{\mu}{ }^{\nu} F_{\nu}{ }^{\lambda} F_{\lambda}{ }^{\mu} F_{\rho}{ }^{\sigma} F_{\sigma}{ }^{\rho}+a_{15} F_{\mu}{ }^{\nu} F_{\nu}{ }^{\lambda} F_{\rho}{ }^{\sigma} F_{\lambda}{ }^{\mu} F_{\sigma}{ }^{\rho}+$ $+a_{16}\left(D_{\mu} F_{\nu}{ }^{\lambda}\right)\left(D^{\mu} F_{\lambda}{ }^{\rho}\right) F_{\sigma}{ }^{\nu} F_{\rho}{ }^{\sigma}+a_{17}\left(D_{\mu} F_{\nu}{ }^{\lambda}\right) F_{\sigma}{ }^{\nu}\left(D^{\mu} F_{\lambda}{ }^{\rho}\right) F_{\rho}{ }^{\sigma}+$ $+a_{18}\left(D_{\mu} F_{\nu}{ }^{\lambda}\right)\left(D^{\mu} F_{\lambda}{ }^{\nu}\right) F_{\rho}{ }^{\sigma} F_{\sigma}{ }^{\rho}+a_{19}\left(D_{\mu} F_{\nu}{ }^{\lambda}\right) F_{\rho}{ }^{\sigma}\left(D^{\mu} F_{\lambda}{ }^{\nu}\right) F_{\sigma}{ }^{\rho}+$ $+a_{20}\left(D_{\sigma} F_{\mu}{ }^{\nu}\right) F_{\lambda}{ }^{\rho}\left(D^{\mu} F_{\nu}{ }^{\lambda}\right) F_{\rho}{ }^{\sigma}+a_{21} F_{\mu}{ }^{\nu}\left(D^{\mu} F_{\nu}{ }^{\lambda}\right) F_{\rho}{ }^{\sigma}\left(D_{\sigma} F_{\lambda}{ }^{\rho}\right)+$ $\left.+a_{22} F_{\mu}{ }^{\nu}\left(D^{\mu} F_{\lambda}{ }^{\rho}\right)\left(D_{\sigma} F_{\nu}{ }^{\lambda}\right) F_{\rho}{ }^{\sigma}\right]$
(6)

2. Matching with string S-matrix calculations

Using the explicit expression of 3 - and 4 -point open string am plitudes that come from eqs. (2) and (4) it can be found that:

$$
\text { Coefficient } \mid \text { Bosonic } \mid \text { Supersymmetric }
$$

	open string theory	open string theory
a_{1}	$-i / 3$	0
a_{3}	$\pi^{2} / 12$	$\pi^{2} / 12$
a_{4}	$\pi^{2} / 24$	$\pi^{2} / 24$
a_{5}	$-\pi^{2} / 48-1 / 8$	$-\pi^{2} / 48$
a_{6}	$-\pi^{2} / 96+1 / 8$	$-\pi^{2} / 96$

The revisited S-matrix method

In ref. [1] we found that, in the case of open superstring theory, $A(1, \ldots, N)$ does not contain $(\zeta \cdot k)^{N}$ terms
(7)
3. Implications for the determination of the LEEL
i) Absence of $(\zeta \cdot k)^{N}$ terms in $A(1, \ldots, N)$ at $\alpha^{\prime N-2}$ order:

$$
\begin{align*}
& \left.N=3 \Rightarrow \quad \begin{array}{c}
a_{1}=0 . \\
N=4 \Rightarrow
\end{array}\right] \tag{0}\\
& N=5 \Rightarrow\left\{\begin{array}{c}
a_{3}=-8 \mathbf{a}_{\mathbf{6}},-2 a_{4}=-4 \mathbf{a}_{\mathbf{6}}, a_{5}=2 \mathbf{a}_{\mathbf{6}} . \\
a_{17}=8 a_{21}=-a_{20}=\mathbf{a}_{\mathbf{2 2}}
\end{array}\right. \tag{9}\\
& \begin{array}{r}
-2 a_{16}=- \\
a_{11}=a_{13}=-2 a_{15}=-i \mathbf{a}_{22}, \\
a_{10}=a_{12}=a_{14}=\mathbf{0} .
\end{array} \tag{10}
\end{align*}
$$

ii) α^{4} calculation $(N=6)$:

$$
\mathcal{L}_{\text {eff }}{ }^{(4)}=\frac{\left(2 \alpha^{\prime}\right)^{4} \pi^{4}}{g^{2}}\left(\mathcal{L}_{F^{6}}+\mathcal{L}_{D^{2} F^{5}}+\mathcal{L}_{D^{4} F^{4}}\right)
$$

$\mathcal{L}_{F^{6}}=\frac{1}{46080} t_{(12)}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3} \mu_{4} \nu_{4} \mu_{5} \nu_{5} \mu_{5} \nu_{6}} \times$ $\times \operatorname{tr}\left(F_{\mu_{1} \nu_{1}} F_{\mu_{2} \nu_{2}} F_{\mu_{3} \nu_{3}} F_{\mu_{4} \nu_{4}} F_{\mu_{5} \nu_{5}} F_{\mu_{6} \nu_{6}}\right)$
$\mathcal{L}_{D^{2} F^{5}}=\frac{56 i}{46080} t_{(10)}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3} \nu_{4} \nu_{4} \nu_{4} \mu_{5} \nu_{5}} \times$
$\times \operatorname{tr}\left(F_{\mu_{1} \nu_{1}} F_{\mu_{2} \nu_{2}} F_{\mu_{3} \nu_{3}} D^{\alpha} F_{\mu_{4} \nu_{4}} D_{\alpha} F_{\mu_{5} \nu_{5}}\right)+$
$+\frac{i}{46080}\left(\eta \cdot t_{(8)}\right)^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3} \mu_{4} \nu_{4} \mu_{5} \nu_{5}} \times$
$\times \operatorname{tr}\left(-169 D^{\alpha} F_{\mu_{1} \nu_{1}} F_{\mu_{2} \nu_{2}} F_{\mu_{3} \nu_{3}} F_{\mu_{4} \nu_{4}} D_{\alpha} F_{\mu_{5} \nu_{5}}+\right.$
$+68 D^{\alpha} F_{\mu_{1} \nu_{1}} D_{\alpha} F_{\mu_{2} \nu_{2}} F_{\mu_{3} \nu_{3}} F_{\mu_{4} \nu_{4}} F_{\mu_{5} \nu_{5}}+$
$+237 F_{\mu_{1} \nu_{1}} D^{\alpha} F_{\mu_{2} \nu_{2}} D_{\alpha} F_{\mu_{3} \nu_{3}} F_{\mu_{4} \nu_{4}} F_{\mu_{5} \nu_{5}}+$
$+237 F_{\mu_{1} \nu_{1}} D^{\alpha} F_{\mu_{2} \nu_{2}} F_{\mu_{3} \nu_{3}} D_{\alpha} F_{\mu_{4} \nu_{4}} F_{\mu_{5} \nu_{5}}+$
$+267 F_{\mu_{1} \nu_{1}} F_{\mu_{2} \nu_{2}} D^{\alpha} F_{\mu_{3} \nu_{3}} D_{\alpha} F_{\mu_{4} \nu_{4}} F_{\mu_{5} \nu_{5}}+$
$\left.+16 F_{\mu_{1} \nu_{1}} F_{\mu_{2} \nu_{2}} F_{\mu_{3} \nu_{3}} D^{\alpha} F_{\mu_{4} \nu_{4}} D_{\alpha} F_{\mu_{5} \nu_{5}}\right)-$
$\frac{i}{5760} t_{(8)}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3} \mu_{4} \nu_{4}} \times$
$\times\left\{17 \operatorname{tr}\left(D^{\mu_{5}} F_{\mu_{1} \nu_{1}} F_{\mu_{2} \nu_{2}} F_{\mu_{3} \nu_{3}} D^{\nu_{5}} F_{\mu_{4} \nu_{4}} F_{\mu_{5} \nu_{5}}\right)+\right.$
$\left.+2 \operatorname{tr}\left(F_{\mu_{1} \nu_{1}} D^{\mu_{5}} F_{\mu_{2} \nu_{2}} D^{\nu_{5}} F_{\mu_{3} \nu_{3}} F_{\mu_{4} \nu_{4}} F_{\mu_{5} \nu_{5}}\right)\right\}$,

$$
\begin{align*}
\mathcal{L}_{D^{4} F^{4}}=-\frac{1}{11520} & t_{(8)}^{\mu_{1} \nu_{1} \mu_{2} \nu_{2} \mu_{3} \nu_{3} \mu_{4} \nu_{4}} \times \\
& \times \operatorname{tr}\left(D^{\alpha} F_{\mu_{1} \nu_{1}} D_{(\alpha} D_{\beta)} F_{\mu_{2} \nu_{2} D_{2}} D^{\beta} F_{\mu_{3} \nu_{3}} F_{\mu_{4} \nu_{4}}+\right. \tag{14}\\
& \left.+8 D^{\alpha} F_{\mu_{1} \nu_{1}} D_{\alpha} F_{\mu_{2} \nu_{2}} D^{\beta} F_{\mu_{3} \nu_{3}} D_{\beta} F_{\mu_{4} \nu_{4}}\right) .
\end{align*}
$$

4. Implications for the determination of a closed formula for (tree level) open superstring amplitudes

In refs. $[2,3]$ it was found a closed expression for the open superstring tree level N-point amplitude, using the Pure Spinor formalism.
In ref. [4] we found that using the RNS formalism, based on the main observation of the Revisited S-matrix method, eq. (7), we can also arrive the same formula found in refs.[2,3] (at least for $N=4,5,6$ and 7). For example, in the case of $N=5$ we found that [4]:

$$
\begin{align*}
A(1,2,3,4,5)= & F^{\{23\}}\left(\alpha^{\prime}\right) A_{S Y M}(1,2,3,4,5)+ \\
& +F^{\{32\}}\left(\alpha^{\prime}\right) A_{S Y M}(1,3,2,4,5), \tag{15}
\end{align*}
$$

where $F^{\{23\}}\left(\alpha^{\prime}\right)$ and $F^{\{32\}}\left(\alpha^{\prime}\right)$ are known momentum factors whose expressions can be found in refs. [2,3,4].

Towards a generalization: the higher derivative SYM lagrangian

In ref. [5] we found that the main observation of the Revisited S-matrix method, eq.(7), is not something peculiar to open superstring theory: it is a common result to ANY high energy theory whose low energy limit is $D=10$ SYM theory.

So the sort of constraints that we have found in eqs.(8), (9) and (10) are valid for $A N Y$ higher derivative SYM lagrangian.

In ref. [5] we have found the generalization of the constraint in eq.(7), but for interactions involving gauge bosons and gauginos as well.

So in ref. [5] we have found (at least for the first α^{\prime} orders) the general structure that $A N Y$ higher derivative SYM lagrangian should obey

Main references

[1] L. A. Barreiro, R. Medina, Revisiting the S-matrix approach to the open superstring low energy effective lagrangian, JHEP 1210 (2012) 108, [arXiv:1208.6066].
[2] C. Mafra, O. Schlotterer, S. Stieberger, Complete N-point superstring disk amplitude I. Pure spinor computation Nucl. Phys. B873 (2013) 419, [arXiv:1106.2645].
[3] C. Mafra, O. Schlotterer, S. Stieberger, Complete N-point superstring disk amplitude II. Amplitude and hypergeome tric function structure, Nucl. Phys. B873 (2013) 461, [arXiv:1106.2646]
[4] L. A. Barreiro, R. Medina, RNS derivation of N-point disk amplitudes from the revisited S-matrix approach, Nucl. Phys. B886 (2014) 870, [arXiv:1310.5942].
[5] L. A. Barreiro, R. Medina, work in progress.

