On-shell recursion for off-shell amplitudes

Mirko Serino ${ }^{a}$ and Andreas van Hameren ${ }^{b}$
 Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
 ${ }^{a}$ mirko.serino@ifj.edu.pl, ${ }^{\text {b }}$ hameren@ifj.edu.pl

Motivation

BCFW with off-shell legs in a nutshell

Particle momentum in k_{T}-factorisation approach:

$$
k_{i}^{\mu}=x_{i} p_{i}^{\mu}+k_{T i}^{\mu}
$$

The off-shell component of the momentum requires gauge-invariant scattering amplitudes with off-shell legs.
Relevant for:

- Saturation (i.e. small-x) physics
- Hybrid factorisation (1 off-shell leg) for forward jets production
- Jet physics

The problem

Gauge invariance with off-shell particles is a highly non-trivial problem. One tricky methods were already devised and successfully tested [1, 2]. The idea: off-shell particles are emebedded in a gauge-invariant way through auxiliay pairs

The analytic expressions are strikingly similar to the on-shell case \Rightarrow is must be possible to reproduce these results by using some sort of BCFW recursion.

The on-shell BCFW construction

Recursive construction of on-shell tree-level amplitudes in Yang-Mills theory without and with fermion fully accomplished by 2005 and beautifully simple $[3,4]$.
From the residue theorem,

$$
\begin{aligned}
& \lim _{z \rightarrow \infty} f(z)=0 \Rightarrow f(0)=-\left.\sum_{i} \operatorname{Res}\left[\frac{f(z)}{z}\right]\right|_{z=z_{i}} \\
& \lim _{z \rightarrow \infty} \mathcal{A}\left(p_{1}+z e^{\mu}, \ldots, p_{n}-z e^{\mu}\right)=0 \Rightarrow
\end{aligned}
$$

$$
\mathcal{A}=\sum_{s=g, f}\left(\sum_{p} \sum_{h=+,-} \mathrm{A}_{p, h}^{s}+\sum_{i} \mathrm{~B}_{\mathbf{i}}^{\mathrm{s}}+\mathrm{C}^{\mathbf{s}}+\mathrm{D}^{s}\right)
$$

Off-shell particles \simeq auxiliary eikonal particles pairs \Leftrightarrow new poles $[5,6]$

$\mathrm{C}^{g}\left(\mathrm{D}^{g}\right)=$

Example: the recursion for MHV amplitudes with 1 off-shell gluon

- Conditions for BCFW recursion with off-shell legs fully determined
- All 4 and 5 points scattering amplitudes with 1-off-shell leg computed
- A notebook with all the analytical results is available with the arXiv release of [6]

Perspectives

- A first phenomenological study of 4 jet production in hybrid factorisation is under way
- Computing 4 and 5 legs amplitudes with

2-off-shell legs will be the next analytical step

- A package performing analytical results for up to 2 off-shell legs and any number of particles is on the agenda
- Loop corrections will come next...

Acknowledgements

We wish to thank P. Kotko and K. Kutak for useful discussions and comments.
The work of M. S. is partially supported by NCN
[1] A. van Hameren, P. Kotko, K. Kutak, 'Helicity amplitudes for high energy scattering' JHEP 1301 (2013) 078
[2] A. van Hameren, K. Kutak, T. Salwa, 'Scattering amplitudes with off-shell quarks' Phys.Lett. B727 (2013) 226-233
[3] R. Britto, F. Cachazo, B. Feng, E. Witten, 'Direct proof of tree-level recursion relation in Yang-Mills theory', Phys.Rev.Lett. 94 (2005) 181602
[4] M.-x. Luo and C.-k. Wen,
'Recursion relations for tree amplitudes in super gauge theories'
JHEP 0503 (2005) 004
[5] A. van Hameren,
'BCFW recursion for off-shell gluons' JHEP 1407 (2014) 138
[6] A. van Hameren, M. Serino, 'BCFW recursion for TMD parton scattering' arXiv:1504.00315, to appear on JHEP grant DEC-2013/10/E/ST2/00656 and by the
"Angelo Della Riccia" foundation.

The motivation for a new tool

- The computation of Green functions of n energy-momentum tensors (EMTs) via Feynman diagrams is very demanding already for $n=3$ [1] - Traced correlators of the EMT are directly related to the low-energy effective action of CFTs, featuring a dilaton.
- Dilatons recently gathered a lot of interest because of the a-theorem in 4 dimensions [2].

The hierarchy
Every CFT on a curved background is affected by a trace anomaly. In $d=4$ this is

$$
\mathcal{A}[g]=\beta_{a}\left(F-\frac{2}{3} \square R\right)+\beta_{b} G
$$

The correlators are

$$
\begin{aligned}
& \left\langle T^{\mu_{1} \nu_{1}}\left(x_{1}\right) \ldots T^{\mu_{n} \nu_{n}}\left(x_{n}\right)\right\rangle \equiv \\
& \left.2^{n} \frac{\delta^{n} \mathcal{W}[g]}{\delta g_{\mu_{1} \nu_{1}} \ldots . \delta g_{\mu_{n} \nu_{n}}}\right|_{g_{\mu \nu}=\eta_{\mu \nu}}
\end{aligned}
$$

The entire hierarchy of traced n-point functions is described by the Ward identities
$\left\langle T\left(k_{1}\right) \ldots T\left(k_{n+1}\right)\right\rangle=\left.2^{n} \frac{\delta^{n} \mathcal{A}[g]}{\delta g_{\mu_{1} \nu_{1}} \ldots . \delta g_{\mu_{n} \nu_{n}}}\right|_{g_{\mu \nu}=\eta_{\mu \nu}}$
$-2 \sum_{i=1}^{n}\left\langle T\left(k_{1}\right) \ldots T\left(k_{i-1}\right) T\left(k_{i+1}\right) \ldots T\left(k_{n+1}+k_{i}\right)\right\rangle$
Anomalies and counterterms in CFTs
Trace anomalies on curved backgrounds have a beautifully simple relation to the counterterms of the theory in dimensional regularization

$$
\begin{aligned}
& \frac{2}{\sqrt{g}} g_{\mu \nu} \frac{\delta}{\delta g_{\mu \nu}} \int d^{4-\epsilon} \times \sqrt{g} F=-\epsilon\left(F-\frac{2}{3} \square R\right) \\
& \frac{2}{\sqrt{g}} g_{\mu \nu} \frac{\delta}{\delta g_{\mu \nu}} \int d^{4-\epsilon} \times \sqrt{g} G=-\epsilon G
\end{aligned}
$$

The dilaton effective action from Weyl-gauging

The relations above recommend a deeper investigation.
Application of the Weyl-gauging technique [3] to the counterterms via a conformal compensator field (dilaton) yields the Wess-Zumino action for the conformal anomaly:

$$
\begin{aligned}
& g_{\mu \nu}(x) \rightarrow e^{\tau / \Lambda} g_{\mu \nu}(x) \Rightarrow \\
& \mathcal{W}_{W Z}[\tau]=\int d^{4} x\left[\beta_{a} \frac{2}{\Lambda^{2}}(\square \tau)^{2}\right. \\
& \left.+\left(\beta_{a}+\beta_{b}\right)\left(-\frac{4}{\Lambda^{3}}(\partial \tau)^{2} \square \tau+\frac{\mathbf{2}}{\Lambda^{4}}(\partial \tau)^{4}\right)\right]
\end{aligned}
$$

- There are no n-dilaton interactions for $n>4$ - For general CFTs in d dimensions n-dilaton interactions are 0 for $n>d$

How to make the hierarchy completely trivial
A very simple idea:
(1) Expand formally the Wess-Zumino action in $1 / \Lambda$ setting the metric to $\hat{g}_{\mu \nu}=\eta_{\mu \nu} e^{-\tau / \Lambda}$
(2) Require the anomaly-induced effective action to match the perturbative expansion term by term

(3) Solve recursively the resulting simple linear system

$$
\begin{aligned}
& k_{1}=\frac{1}{\Lambda^{2}}\left\langle T\left(k_{1}\right) T\left(-k_{1}\right)\right\rangle \\
& \left.0=\frac{1}{\Lambda^{3}}\left\langle T\left(k_{1}\right) T\left(k_{2}\right) T\left(k_{3}\right)\right\rangle+2 \sum_{i=1}^{3}\left\langle T\left(k_{i}\right) T\left(-k_{i}\right)\right\rangle\right] \\
& k_{1} \\
& k_{2}
\end{aligned}
$$

The n-th correlator is found by trivially inverting the system up to the n-th equation...just a very small amount of algebra!

Conclusions

- A very efficient, recursive algorithm for the computation of traced correlators of EMTs tensor in CFTs has been developed and thoroughly tested
- Consistency between the anomaly-induced dilaton effective action and the perturbative expansion fixes the full hierarchy of correlators.
- Explicit results for CFTs are available in 2,4 and 6 dimensions for the most general renormalisation scheme $[4,5]$

Acknowledgements

I wish to thank Claudio Corianò for his teachings and his support, my former colleagues Carlo Marzo and Luigi delle Rose for our long collaboration and Emil Mottola for several discussions on the topic. This work is partially supported by the "Angelo Della Riccia" foundation.
[1] C. Corianò, L. Delle Rose, E. Mottola, M. Serino

Graviton vertices and the mapping of anomalous correlators to momentum space for a general conformal field theory JHEP 1208147 (2012)
[2] Z. Komargodski, A. Schwimmer On renormalisation group flows in 4 dimensions JHEP 1112099 (2011)
[3] A. Iorio, L. O' Raifertaigh, I. Sachs, C. Wiesendager

Weyl gauging and conformal invariance Nucl.Phys. B495 (1997) 433-450
[4] C. Corianò, L. Delle Rose, C. Marzo, M. Serino

Conformal trace relations from the dilaton
Wess-Zumino action
Phys.Lett. B726 (2013) 896-905
[5] C. Corianò, C. Marzo, L. Delle Rose, M. Serino

The dilaton Wess-Zumino action in 6 dimensions from Weyl-gauging: local anomalies and trace relations Class. Quantum Grav. 31 (2014) 105009

