

On-shell Diagrams, Graßmannians and Integrability for Form Factors

Rouven Frassek^{*a*}, David Meidinger^{*b*}, Dhritiman Nandan^{*b*}, Matthias Wilhelm^{*b*}

We show that tree level form factors in planar $\mathcal{N} = 4$ SYM exhibit many of the interesting structures discovered during the last years for amplitudes.

Form factors of the chiral stress tensor multiplet: $T(x,\theta^+) = \operatorname{tr}(\phi^{++}\phi^{++}) + \dots + \frac{1}{3}(\theta^+)^4 \mathscr{L}$

Building blocks:

Minimal form factor [1] $\mathscr{F}_{2,2} = \frac{1}{\langle 12 \rangle \langle 21 \rangle} \delta^4 (\lambda_1 \tilde{\lambda}_1 + \lambda_2 \tilde{\lambda}_2 - q) \delta^4 (\lambda_1 \tilde{\eta}_1^+ + \lambda_2 \tilde{\eta}_2^+) \delta^4 (\lambda_1 \tilde{\eta}_1^- + \lambda_2 \tilde{\eta}_2^- - \gamma^-)$

BCFW recursion relations [1]:

From amplitude to form factor diagrams by replacing box with minimal form factor

Kinematics: off-shell (super) momentum encoded in two on-shell momenta: $\lambda_{n+1}\tilde{\lambda}_{n+1} + \lambda_{n+2}\tilde{\lambda}_{n+2} = -q$ $\lambda_{n+1}\tilde{\eta}_{n+1} + \lambda_{n+2}\tilde{\eta}_{n+2} = -\gamma$

Graßmannian G(k, n+2) [2]

 $\int \frac{\mathrm{d}^{k \times (n+2)}C}{\mathrm{Vol}[GL(k)]} \,\Omega_{n,k} \,\,\delta^{2 \times k}(C \cdot \tilde{\lambda}) \,\delta^{4 \times k}(C \cdot \tilde{\eta}) \,\delta^{2 \times (n+2-k)}(C^{\perp} \cdot \lambda)$

Form:

On-shell diagrams

– works for BCFW terms

– all examples we studied: works for the top-cell [2] We need to sum over cyclic permutations

 $Y = \frac{(n-k+2\cdots n\ n+1)(n+2\ 1\cdots k-1)}{(n-k+2\cdots n\ n+2)(n+1\ 1\cdots k-1)}$

Graßmannian integrals

Residues of the Graßmannian integral form give BCFW terms

> – all MHV form factors Checks: – NMHV: 3, 4 and 5 points – NNMHV: 4 points

Graßmannian integral can be transformed to momentum twistor space [3]

Graßmannian G(k-2, n+2)

Instead of summing over shifted forms, shift kinematics along periodic configuration:

Selected references

- Brandhuber, Gurdogan, Mooney, [1] Travaglini, Yang, 1107.5067
- Arkani-Hamed, Bourjaily, Cachazo, [2]

 \checkmark

R operators & deformations

Transfer matrix identities

= 0

Construction via R operators [4] allows to introduce deformations

 $R_{ij}(u) = \left(\mathscr{W}_j \cdot \frac{\partial}{\partial \mathscr{W}_i} \right)^u \sim \text{deformed BCFW bridge}$

Minimal form factor acts as a vacuum state

Example: MHV three-point

 $R_{23}(u_{32})R_{12}(u_{31})\,\delta_1^+\mathscr{F}_{2,2}(2,3) = \frac{\delta^4(P)\,\delta^4(Q^+)\,\delta^4(Q^-)}{\langle 12 \rangle^{1-u_{23}}\langle 23 \rangle^{1-u_{31}}\langle 31 \rangle^{1-u_{12}}}$

Amplitudes are Yangian invariant [5]:

 $\mathcal{M}(u) \ \mathcal{A} = \mathcal{A}$

All form factors of the chiral stress tensor multiplet are annihilated by the transfer matrix $\mathcal{T} = \operatorname{str} \mathcal{M}$:

 $\mathscr{T}(u) \mathscr{F} = 0$

All planar on-shell diagrams glued together with the minimal form factor of an arbitrary operator \mathcal{O} $(\rightarrow \text{ leading singularities})$ are eigenstates of the transfer matrix, if the operator is an eigenstate of the integrable model:

 $\mathscr{T}(u) \mathscr{F}_{\mathscr{O}} = \mathscr{F}_{\mathscr{T}(u) \mathscr{O}} = \tau(u) \mathscr{F}_{\mathscr{O}}$

Goncharov, Postnikov, Trnka, 1212.5605

Mason, Skinner, 0909.0250 [3]

- Chicherin, Derkachov, Kirschner, 1309.5748 [4] Kanning, Lukowski, Staudacher, 1403.3382 Broedel, de Leeuw, Rosso, 1403.3670
- Drummond, Henn, Plefka, 0902.2987 [5] Frassek, Kanning, Ko, Staudacher, 1312.1693

^{*a*} Department of Mathematical Sciences Durham University

- ^{*b*} Institut für Mathematik und Institut für Physik Humboldt-Universität zu Berlin
 - rouven.frassek@durham.ac.uk david.meidinger@physik.hu-berlin.de dhritiman@physik.hu-berlin.de mwilhelm@physik.hu-berlin.de

