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Introduction

� In the last few years there has been an increasing interest in confor-
mal field theories in space time dimensions higher than two. Much
of this interest is due to the effectiveness of the conformal bootstrap
program

[Rattazzi, Rychkov, Tonni, Vichi, 2008]

� This approach consists in constraining the CFT data by requiring
consistency of higher point correlation functions, as crossing-symmetry,
together with basic properties of well behaved CFT’s, such as uni-
tarity and the structure of the OPE.

� In this talk I will discuss how to study analytically the structure of
the dimension and OPE coefficients of operators with spin, in the
large spin limit.
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Motivations

Why such operators are interesting?

� The cusp anomalous dimension controls IR singularities of scattering
amplitudes as well as UV singularities of Wilson loops with cusps

� They appear in deep inelastic scattering processes in QCD

� They play an important role in the AdS/CFT correspondence, ex-
pecially in integrability (see Amit’s talk)
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Operators

� If we consider operators made of scalar fields and derivatives as

tr (ϕ∂µ1 . . . ∂µ`ϕ) + . . .

their scaling dimension shows a logarithmic behavior

∆` − ` = Γ(g) log `+ ...

for large `, Γ(g) is the cusp anomalous dimension. Note that this
expression is valid at any loop order.

[Alday and Maldacena, 2008, Alday and Zhiboedov, 2015]

� What about the other terms in the large ` expansion?
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Reciprocity

� Consider operators of twist two, namely ∆` − ` = γ` + 2

� Introduce a function f in such a way

γ` = f(`+
1

2
γ`)

and then reciprocity is the statement that

f(`) =
∑
n

an(log Jb)

J2n
b

where J2
b = `(`+ 1)

� Firstly it has been observed in QCD and then checked for other
theories (also supersymmetric).

[Moch, Vermaseren, Mogt, Gribov, Lipatov, Drell, Levy, Yan, Dokshitzer, Marchesini, Salam, Basso, Korchemski,
Beccaria, Forini, Tirziu, Tseytlin...]
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Aim of the talk

The aim of this talk is to prove the reciprocity principle, using an
approach based on the structure of the conformal partial wave decom-
position, analyticity, unitarity and crossing symmetry.

We will see that this approach is valid perturbatively (at any loop order)
and non perturbatively and it will provide constraints for the large spin
expansion of the anomalous dimension and of the OPE coefficients of
high spin operators.
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Conformal algebra

The conformal group contains

� Translations: Pµ
� Lorentz transformations: Mµν

� Scale transformations: D

� Special conformal transformations: Kµ

Part of the conformal algebra is

[D,Kµ] = −Kµ

[D,Pµ] = Pµ

[Pµ,Kν ] = ηµνD − iMµν
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Primary and descendants

The behaviour of a field φ(0) under dilatations and special conformal
transformations is

[Mµν , φ(0)] = Σµνφ(0)→ SPIN

[D,φ(0)] = ∆φ(0)→ DIMENSION

[Kµ, φ(0)] = 0→ PRIMARY FIELD

� By acting with Pµ on a primary → DESCENDANTS

� Operators form an algebra (OPE)

φi(x)φj(0) =
∑
k

cijk|x|∆k−∆i−∆jφk(0)

on the rhs there are primaries and all the descendants.
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2 and 3 pt functions

� All the information of a CFT is encoded in the set of dimensions
and structure constants of local operators

� Conformal symmerty fixes the space-time dependence of 2 and 3
point functions. If we consider primary scalar operators:

〈φ1(x1)φ2(x2)〉 =
δ12

x2∆
12

〈φ1(x1)φ2(x2)φ3(x3)〉 =
c123

|x12|∆123 |x23|∆231 |x13|∆132

where ∆ijk = ∆i + ∆j −∆k
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Four point function

� For the case of four point function, conformal symmetry does not
fix the full coordinate dependence.
The four point function of identical scalar primaries with dimension
∆φ takes this form

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
G(u, v)

|x12|2∆φ |x34|2∆φ

where G(u, v) is a function of the conformal invariant cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

� Note: the LHS is invariant under the exchange of pairs of points

(G(u, v) =
(
u
v

)∆φ G(v, u)) )
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Conformal block decomposition

� Use the OPE

φ(x1)φ(x2) = |x12|−2∆φ

(
1 +

∑
k

Cφφk|x12|∆kOk(x1)

)

in 〈φ(x1)φ(x2)φ(x3)φ(x4)〉

C12,` C34,`

1 4

2 3

O∆`
∑
∆`

= G(u, v)

G(u, v) = 1 +
∑
`,∆

c2
∆,`g∆,`(u, v)
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Conformal blocks I

Considering the OPE φ(x1)× φ(x2) we can write

G(u, v) = 1 +
∑
`,∆

a∆,`g∆,`(u, v)

� the first term is the contribution of the identity operator, which is
always present in the OPE of two identical operators

� the sum runs over the the tower of primaries present in the OPE

� ` and ∆ denote the spin and the dimension of the intermediate
primary

� a∆,` = c2
∆,` is the square of the structure constants and is non-

negative due to unitarity

� g∆,`(u, v) are the conformal blocks...

12 of 39



Conformal blocks II

...conformal blocks

� repack the contributions of all descendants of a given primary

� transform under the conformal group in the same way as the four
point function

� depend on the spin and the dimension of the intermediate state and
on the dimension of the external operator

� are known in a closed form
[Dolan and Osborn, 2005 ]

G∆,`(u, v) = u
1
2 (∆−`)g∆,`(z, z̄) u = zz̄ v = (1− z)(1− z̄)

g∆,`(z, z̄) = (−1)`
1

z − z̄
(k∆+`(z)k∆−`−2(z̄)− k∆+`(z̄)k∆−`−2(z))

kβ(z) = zβ/2+1Fβ/2(z), Fβ/2(z) = 2F1

(
β

2
,
β

2
, β, z

)
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Conformal blocks III

� In order to single out the contribution of leading twist operators →
small u limit ∑

∆,`

a∆,`G∆,`(u, v) = G(u, v)

small u limit∑
`=0,2,...

a`u
∆−`

2 (1− v)`F∆+`
2

(1− v)

� The power of u is controlled by the twist ∆− `.
� In perturbation theory ∆`−` = 2+γ` and G(u, v) = 1+uh(log u.v)∑

`=0,2,...

a`u
1+γ`/2(1− v)`F`+1+γ`/2(1− v) = uh(log u, v)
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Casimir operator

� The structure of conformal blocks is fully fixed by conformal sym-
metry and they are eigenfunctions of Casimir operators

� For small u we can define a Casimir operator

D = (1−v)2∂v−u(1−v)∂u+v(1−v)2∂2
v +vu2∂2

u−2uv(1−v)∂u∂v

that satisifes

D
(
u

∆−`
2 (1− v)`F∆+`

2
(1− v)

)
= J2

(
u

∆−`
2 (1− v)`F∆+`

2
(1− v)

)
with

J2 =
1

4
(∆ + `) (∆ + `− 2)

� The idea will be to think about the reciprocity principle as an ex-
pansion on the eigenvalue of the full Casimir J2 vs J2

b .
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Perturbative CFT: systematics I

At tree level:

� γ` = 0 and a` = a
(0)
` and∑

`=0,2,...

a
(0)
` (1− v)`F`+1(1− v) =

1

v
+ 1

� we can solve for a
(0)
` and obtain

a
(0)
` =

2Γ (`+ 1)2

Γ (2`+ 1)

� Each term in the sum diverges (logarithmically) as v → 0

� The large ` behavior of a
(0)
` is fixed by the divergence 1

v
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Perturbative CFT: systematics II

� In perturbation theory, the four point function G(u, v) admits an
expansion

G(u, v) = G(0)(u, v) + g G(1)(u, v) + ...→ 1 + uh(log u, v)

where g is the coupling constant

� Leading twist intermediate primary operators have dimension

∆` = `+ 2 + γ`

with ` = 0, 2, 4, . . .

17 of 39



Perturbative CFT: systematics III

� For small v we expect

h(log u, v) ∼ 1

v
h0(log u, log v) + h1(log u, log v) + ...

� h(log u, v) contains a divergence as v becomes small→ sum an infinite
number of terms!

� The divergence will come solely from the region ` � 1 →
∑∞
`=0 and∑∞

`=`0
produces the same singularity

� This structure is implied at any order in perturbation theory by analiti-
city of the tree-level result.

� The rhs contains ONLY integer powers of v!
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Perturbative CFT: systematics IV

In perturbation theory:

� we want to understand how to evaluate the divergence in v of the
sum at small v

� the divergence will come from the region of large `

1. Introduce v = ε → expand in powers of ε and

` =
x

ε1/2
,

∑
`

→ 1

2

∫ ∞
0

dx

2. Use the integral representation for the hypergeometric function

F`+1+
γ`
2

(1− v) =
Γ(2`+ γ` + 2)

Γ(`+ γ`/2 + 1)2

∫ 1

0

(t(1− t))`+γ`/2

(1− t(1− v))`+γ`/2+1
dt

with t→ 1− tε1/2.
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Perturbative CFT: systematics V

3. Rescale the OPE coefficient in this way

a` =
2Γ (`+ 1)2

Γ (2`+ 1)
â`

4. Introduce the rescaled eigenvalue of the Casimir operator

j2

ε
= (

x

ε1/2
+ γ`/2)(

x

ε1/2
+ 1 + γ`/2)

5. Interpret the anomalous dimension and rescaled structure constants
as a functions of j
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Perturbative CFT: systematics VI

6. Integrate in t order by order in ε → this expansion reproduces all
the divergent terms!

h(log u, v)|v=ε = 1
ε4
∫∞

0 â(j)uγ(j)/2jK0(2j)dj −
− 1√

ε
2
∫∞

0 â(j)uγ(j)/2jK0(2j)γ′(j)dj + ...

7. The large j expansion of the anomalous dimension and of the resca-
led OPE coefficients is

γ(j) = p0(log j2/ε) +
p1(log j2/ε)

j
ε1/2 +

p2(log j2/ε)

j2
ε+ · · ·

â(j) = q0(log j2/ε) +
q1(log j2/ε)

j
ε1/2 +

q2(log j2/ε)

j2
ε+ · · ·
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Perturbative CFT: systematics VII

8. Plug these expansions in the expansion of h(log u, v) and impose
half integer powers of v to vanish

1√
ε

∫ ∞
0

ju
1
2
p0
(
2q1 − q0p

′
0 + q0p1 log u

)
K0(2j)dj = 0

9. At any loop order, P (log j2/ε) is a polynomial of any degree and
then ∫ ∞

0
P (log j2/ε)K0(2j)dj = 0 → P (log j2/ε) = 0

giving

p1 = 0, q1 =
1

2
q0p
′
0

This can be trusted provided that the power of ε is negative!

Is there a way out?
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Perturbative CFT: systematics VIII

Yes!

9. Apply the Casimir operator on both sides of the CPWA equation!

10. This will bring down a power of j2

ε and will allow to explore mo-
re orders in the expansion of the anomalous dimension and of the
rescaled structure constant.

11. Notice that the action of the Casimir operator will not influence the
fact that only integer power of v appear.
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Perturbative CFT: results

The large J expansion of

γ(J) and â(J)
(

1−
√

1+4J2

4J γ′(J)
)

contains only even powers of J !

Comments:

� These results are valid at any loop order in perturbation theory.

� The expansion for γ is equivalent to the reciprocity principle.
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Non-perturbative CFT: systematics I

� Consider the four-point function of four identical real scalar opera-
tors O of dimension ∆O

� τmin is the twist of the minimal twist operator appearing in the OPE
of O ×O

� Crossing symmetry implies the existence of a tower of double trace
operators of twist

∆` − ` = 2∆O + γ`, γ` = − c

`τmin
+ ...
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Non-perturbative CFT: systematics II

� Now the rescaled Casimir is

J2 = (`+ ∆O + γ`/2)(`+ ∆O + γ`/2− 1)

� the leading behavior at large J is fixed by the divergence v
τmin

2
−∆O

to be

γ` =
c1

Jτmin
+ ... â` = 1 +

d1

Jτmin
+ ...

[Alday and Maldacena, 2008][Komargodski and Zhiboedov, 2012][Fitzpatrick, Kaplan, Poland and
Simmons-Duffin,2012 ]
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Non-perturbative CFT: systematics III

� In order to analyze the other orders in J we need to specify τmin.
For τmin = 2 we expect

γ` =
c1

J2
+
c2

J3
+
c3

J4
+
c4

J5
+ ...

â` = 1 +
d1

J2
+
d2

J3
+
d3

J4
+
d4

J5
+ ...

� We can go through the same steps as for the perturbative case and
we obtain again that
� The expansion of γ(J) for large J contains only even powers of 1/J .

� The expansion of â(J)
(

1−
√

1+4J2

4J γ′(J)
)

for large J contains only

even powers of 1/J .
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Checks

We have checked several examples

γ a`

N = 4 SYM 3 loops 3 loops
N = 0, 1, 2 SYM 2 loops
quark transversity distribution QCD 2 loops
N = 4 SYM large N 1/N
critical O(N) models 1/N2
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Conclusions

� Infinite number of constraints on the large spin expansions on the
large spin limit of
� anomalous dimensions → proof of reciprocity for leading twist
� OPE coefficients → new reciprocity priciple for OPE coeff.

� This approach is only based on generic properties of CFT such as
analyticity, unitarity, crossing symmetry and the structure of the
conformal partial wave expansion

� All the results are valid for leading twist operators, they do not rely
on planar limit and they are valid at any loop order in perturbation
theory

� Can we use these results to compute/constrain three point functions
in CFTs?

� Can we check our prediction for OPE coefficient in the case of QCD?
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EXAMPLES
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Example: N = 4 SYM

� In the case of N = 4 SYM there is a SU(4)R R-symmetry group
and then the fields in the theory transform as
� scalars transform in the 6 representation
� fermions transform in the 4 and 4̄ representation
� gauge bosons transform in the 1

� We can start with the four point function of superconformal prima-
ry scalar operators O of protected dimension ∆O = 2 and which
transforms in the 20′

� Hence this four point function will decompose into the various re-
presentations contained in 20′ × 20′.
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Example: N = 4 SYM

� Twist-two operators will contribute to the following representations

Trϕ∂µ1 · · · ∂µ`ϕ → 1 + 15 + 20′

Trψ̄γ(µ1
∂µ2 · · · ∂µ`)ψ → 1 + 15

TrFν(µ1
∂µ2 · · · ∂µ`−1

Fµ`)ν → 1

� If we project in the 20′, only non-degenerate twist-two operators of
the form Trϕ(i∂`ϕj) contribute

� The anomalous dimensions and the OPE coefficients have been
computed, up to three loops, and their expansions in J satisfy our
conditions.
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Example: non-conformal theories

� Reciprocity principle has been extended also to non-conformal theo-
ries in [Basso and Korchemsky, 2007]

� In this case there is a non vanishing beta function which will enter
in the function f

� The way to do that is by using the dimensional regularization scheme
in d = 4− 2ε, the beta function of the coupling is simply

βε(g) = −2ε+ β(g)

where β(g) is the beta function of the four dimensional theory.

� Then we note that βε(g) vanishes at εcr = β(g)/2 and hence the
gauge theory is conformal in dcr = 4− 2εcr dimensions
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Example: non-conformal theories

In our approach
� We need to study the conformal blocks in generic dimensions. The

small u limit, independently on the number of space time dimension,
is

G∆,`(u, v) ∼ u
1
2

(∆−`)(1−v)` 2F1(
1

2
(∆+ `),

1

2
(∆+ `),∆+ `; 1−v)

� The fact that we are working in a different dimension is reflected in
a shift in the Casimir operator

J2
β = (`+ γ`/2− β/2)(`+ 1 + γ`/2− β/2)

� Hence the expansion in 1
Jβ

contains only even powers.

� We checked this up to 2 loops for anomalous dimensions of two-
loop quark transversity distribution in QCD and for the analogues in
N = 0, 1, 2 SYM theories.
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Example: theories with gravity dual

� The most well studied conformal field theory with gravity is N = 4
SYM in the large N limit

� Consider the four-point function of 2-2 dilaton scattering
� In this case, there is a tower of double trace operators of the form
O∂`O

� Ois the operator dual to the dilaton and has dimension four
� The dimension of these double-trace operators was shown to be

∆` − ` = 8− 96

N2

1

(`+ 1)(`+ 6)

� Setting ∆O = 4 in the Casimir we can obtain

1

(`+ 1)(`+ 6)
=

1

J2
0 − 6

which contains only even powers of 1/J0 as expected from our
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Example: critical O(N) models

� In the O(N) we consider the four point function of spin field ope-
rators σ

� Among the intermediate states we have higher-spin states
� transforming in the singlet representation of O(N) , of the form σi∂

`σi
� transforming in the symmetric traceless representation of O(N), of the

form σ(i∂
`σj)

� We will study critical O(N) models in two regimes:
� In dimensions d = 4− ε
� At large N in d dimensions
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Example: critical O(N) models- ε expansion

� The anomalous dimension of singlet and symmetric traceless opera-
tors have been computed in an ε expansion and it is given by

γσi∂`σi = 2γσ − ε2
3(N + 2)

(N + 8)2

1

`(`+ 1)

γσ(i∂
`σj)

= 2γσ − ε2
3(N + 6)

(N + 8)2

1

`(`+ 1)

� Consider that ∆O = 1 + γσ ≈ 1 in four dimensions

� Expanding the anomalous dimensions in terms of the Casimir, we
see that they behave as 1/J2

0
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Example: critical O(N) models- large N expansion

� The dimension of symmetric traceless operator is

γσ(i∂
`σj)
− 2γσ ∼ γσ

1

(d+ 2`− 4)(d+ 2`− 2)

where γσ ∼ 1
N

� The intermediate operator with the lowest twist is σ2, it has twist
two

� The large ` expansion is in perfect agreement with our relation,
where ∆O = 1

2(d − 2) is the dimension of the spin field in d
dimensions
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Example: critical O(N) models- large N expansion

� The anomalous dimension of operators in the singlet is

γσi∂`σi =
8γσ

(d+ 2`− 4)(d+ 2`− 2)

(
(d+ `− 2)(`− 1) − Γ(d+ 1)Γ(`+ 1)

4(d− 1)Γ(d+ `− 3)

)
For large spin γσi∂sσi − 2γσ is given by

γσ
d(2−d)

2

(
1
`2

+ 3−d
`3

+ 7+3/4d(d−6)

`4
+ (d−3)(d2−6d+10)

`5
+ ...

)
+γσ

Γ(d+1)
2−2d

(
1

`d−2 − 1
2

(d−3)(d−2)

`d−1 + ...
)

� It corresponds to the presence of σ2, which has twist two. In terms
of the Casimir it is proportional to 1/J2

0
� It corresponds to the presence of conserved currents with twist d−2.

In terms of the Casimir it takes the form:

Γ
(

1
2

(√
1 + 4J2

0 + 5 − d
))

J2
0 Γ
(

1
2

(√
1 + 4J2

0 − 3 + d
))
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