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We compute the massive sunrise integral

S(D, t) =

∫
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in D = 2− 2ϵ and D = 4− 2ϵ dimensions:

S(2− 2ϵ, t) = S(0)(2, t) + S(1)(2, t)ϵ+O
(
ϵ2
)
,

S(4− 2ϵ, t) = S(−2)(4, t)ϵ−2 + S(−1)(4, t)ϵ−1 + S(0)(4, t) +O(ϵ)

where

t = p2 ≤ 0,

0 < m1 ≤ m2 ≤ m3 < m1 +m2.



Motivation:

Multiple polylogarithms

Li(s1, ..., sk )
(z1, ..., zk) =

∑
n1>n2>...>nk≥1

z
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sk
k n1

, si ≥ 1, |zi | < 1

are very useful in the computation of Feynman integrals due to their double nature as

nested sums and iterated integrals. (see Panzer's talk)

Many Feynman integrals can be expressed in terms of these functions, but apparently

not all of them. (Bauberger, Böhm, Weiglein, Berends, Buza 1994, Caron-Huot, Larsen 2012,

Nandan, Paulos, Spradlin, Volovich 2013)

The massive sunrise may be the simples example, where multiple polylogarithms are

not su�cient.

Which functions can we use instead?



Perspective 1: Generalized hypergeometric functions

Berends, Buza, Böhm and Scharf (1994) expressed S(D, t) as a linear combination of
type C Lauricella functions

FC
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with all αi , βi ∈ N and Ai , Bi half-integers. They are de�ned by

FC (a1, a2; b1, b2, b3; x1, x2, x3) =
∞∑
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∞∑
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Remark: Techniques for the expansion of generalized hypergeometric functions today

extend to certain Lauricella functions (e.g. Bytev, Kalmykov and Moch 2014), but the

expansion of FC remains a problem.
No multiple polylogarithms?



Perspective 2: Feynman parameters
In D = 2 dimensions, the Feynman parametric version of the sunrise integral

S(2, t) =

∫
σ

ω

F
,

ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2,

σ =
{
[x1 : x2 : x3] ∈ P2|xi ≥ 0, i = 1, 2, 3

}
involves the second Symanzik polynomial

F = −x1x2x3t +
(
x1m

2
1 + x2m

2
2 + x3m

2
3

)
(x1x2 + x2x3 + x1x3) .

Remark: F fails the criterion of linear reducibility. (Brown 2008)

⇒ Direct iterated integration is not possible in the variables x1, x2, x3



Perspective 3: Di�erential equations (see talks by Tancredi, Henn, von Manteu�el)

The sunrise integral S(D, t) satis�es an inhomogeneous fourth-order di�erential
equation (Ca�o, Czyz, Laporta, Remiddi 1998) in t:(

P4
d4

dt4
+ P3

d3

dt3
+ P2

d2

dt2
+ P1

d1

dt1
+ P0

)
S (D, t) = c12T12 + c13T13 + c23T23

where Tij are products of two tadpole integrals of propagators with masses mi and mj

and where all Pk and cij are polynomials in m2
1, m

2
2, m

2
3, t, D.

Each of the ϵ-coe�cients S(0)(2, t), S(1)(2, t), S(0)(4, t) satis�es an inhomogeneous

di�erential equation of second or higher order.

Remark: None of these di�erential operators factorizes completely into �rst order
operators. If this would be the case, we could solve simply by iterated integration.



In D = 2 dimensions:

Equal mass case: Second order di�erential equation (Broadhurst, Fleischer, Tarasov 1993);

Solutions Groote, Pivovarov 2000, Laporta, Remiddi 2004, Bloch, Vanhove 2013 ...

Arbitrary masses:
Ca�o, Czyz, Laporta, Remiddi (1998): Coupled system of four equations of �rst order
Müller-Stach, Weinzierl, Zayadeh (2012): One di�erential equation of second order(

p2(t)
d2

dt2
+ p1(t)

d

dt
+ p0(t)

)
S(0)(2, t) = p3(t)

p0(t), p1(t), p2(t): polynomials in t and the m2
i
; p3(t) : also involving

ln(m2
i
), i = 1, 2, 3.

Standard Ansatz:

S(0)(2, t) = C1ψ1(t) +C2ψ2(t) +

∫ t

0

dt1
p3(t1)

p0(t1)W (t1)
(−ψ1(t)ψ2(t1) + ψ2(t)ψ1(t1))

ψ1, ψ2 : solutions of the homogeneous equation; C1, C2 : constants;W (t): Wronski
determinant.



Underlying geometry:
Second Symanzik polynomial:

F = −x1x2x3t +
(
x1m

2
1 + x2m

2
2 + x3m

2
3

)
(x1x2 + x2x3 + x1x3) .

The variety F = 0 intersects the integration domain at three points

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1].

Coosing one of these as origin de�nes an elliptic curve.

Transform to Weierstrass normal form y2z − x3 − g2(t)xz2 − g3(t)z3 = 0.

For z = 1 de�ne e1, e2, e3 by y2 = 4(x − e1)(x − e2)(x − e3) with e1 + e2 + e3 = 0.

⇒ Two period integrals of the elliptic curve are

ψ1 = 2

∫ e3

e2

dx

y
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K(k), ψ2 = 2
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with the complete elliptic integral of the �rst kind K(x) =
∫ 1
0 dt 1√

(1−t2)(1−x2t2)
,

and modulus k =
√

e3−e2
e1−e2

, k′ =
√
1− k2 =

√
e1−e3
e1−e3

.



The period integrals ψ1, ψ2 are solutions of the homogeneous di�erential equation.

The constants C1, C2 are determined from a simple property of ψ1, ψ2 and the limit

of S(0)(2, t) at t = 0 (Davydychev, Tausk 1996).

⇒ We obtain S(0)(2, t) as an integral over a combination of complete elliptic

integrals of the �rst and second type (Adams, C.B., Weinzierl 2013).

Disadvantage: Elliptic integrals are well known in mathematics, but integrals over

elliptic integrals are not. ⇐⇒ No framework for iterated integrals.

Is there an alternative, �closer to� multiple polylogarithms?

Important step by Bloch and Vanhove (2013) for the equal mass case:

New result in terms of an elliptic dilogarithm.
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Consider the lattice L = Z+ τZ, τ ∈ C with Im(τ) > 0.

Elliptic functions f with respect to L: f (x) = f (x + λ) for λ ∈ L.
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Re (x)

Im (x)

1

τ

Consider the lattice L = Z+ τZ, τ ∈ C with Im(τ) > 0.

Elliptic functions f with respect to L: f (x) = f (x + λ) for λ ∈ L.

Let τ = ψ1
ψ2

with ψ1, ψ2 the periods of an elliptic curve E .

⇒ E is isomorphic to a cell of L. ⇒Consider f as a function de�ned on E .



Change variables to z = e2πix ∈ C⋆

⇒Ellipticity f (x) = f (x + λ) means f̃ (z) = f̃ (z · qλ) , qλ ∈ e2πiλ for λ ∈ L.

Particularly: q = e2πiτ .

Basic concept: For some function g construct an elliptic function of the type

f (z, q) =
∑

n∈Z g (z · qn)

E.g. Brown, Levin 2011 consider elliptic polylogarithms
∑

n∈Z u
nLim (z · qn),

elliptic multiple polylogarithms and a framework of iterated integrals

(Also see previous de�nitions in Bloch 1977, Beilinson, Levin 1994, Levin 1997, Levin,
Racinet 2007, ...)



Adams, C.B., Weinzierl 2014: Generalizing Lin(x) =
∑∞

j=1
x j

jn
we de�ne

ELin;m(x ; y ; q) =
∞∑
j=1

∞∑
k=1

x j

jn
yk

km
qjk =

∞∑
k=1

ykLin(q
kx),

En;m(x ; y ; q) =

{
1
i

(
1
2
Li2(x)− 1

2
Li2(x−1) + ELi2; 0(x ; y ; q)− ELi2; 0(x−1; y−1; q)

)
, n +m even,

1
2
Li2(x) +

1
2
Li2(x−1) + ELi2; 0(x ; y ; q) + ELi2; 0(x−1; y−1; q) , n +m odd.

With these de�nitions we have for example

E2; 0(x ; y ; q) =
∑
n∈Z

unLi2 (z · qn) + sum over squared logarithms and ζ(2).

With this function, we obtain

S(0) (2, t) =
ψ1(q)

π

3∑
i=1

E2; 0(wi (q); −1; −q) where q = e
πi
ψ1
ψ2 .

The arguments w1, w2, w3 are obtained from the intersection points P1, P2, P3 by
above transformations of the elliptic curve.



S(2− 2ϵ, t) = S(0)(2, t) + S(1)(2, t)ϵ+O
(
ϵ2
)
,

S(4− 2ϵ, t) = S(−2)(4, t)ϵ−2 + S(−1)(4, t)ϵ−1 + S(0)(4, t) +O(ϵ)

Using Tarasov's method (1996, 1997), we express S(0)(4, t) as linear combination of

S(0)(2, t), S(1)(2, t),
∂

∂m2
i

S(0)(2, t),
∂

∂m2
i

S(1)(2, t), i = 1, 2, 3.

S(1)(2, t) satis�es a di�erential equation

L1,aL1,bL2S
(1)(2, t) = I1(t).

This can be solved for L2S(1)(2, t) and gives

L2S
(1)(2, t) = I2(t).

Solving this equation, we obtain results for S(1)(2, t) and S(0)(4, t). (Adams, C.B.,
Weinzierl 2015)

In these results, we �nd the functions E1; 0, E2; 0, E3; 1 and a more complicated
quadruple sum.



The functions E1; 0, E2; 0, E3; 1 de�ned by

ELin;m(x ; y ; q) =
∞∑
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)
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1
2
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1
2
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can be seen as generalizations of Clausen and Glaisher functions:

Cln(φ) =

{
1
2i

(
Lin

(
e iφ
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(
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))
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limq→0E1; 0

(
e iφ; y ; q

)
= Cl1 (φ) ,

limq→0E2; 0

(
e iφ; y ; q

)
= Cl2 (φ) ,

limq→0E3; 1

(
e iφ; y ; q

)
= Gl3 (φ) .



Conclusions:

An elliptic curve, de�ned by the second Symanzik polynomial F is very useful in the

computation of the sunrise integral.

In D = 2 we obtain an elliptic generalization E2; 0 of the dilogarithm Li2(z) with

arguments obtained from the elliptic curve.

In D = 4− 2ϵ we obtain a result furthermore involving E1; 0, E2; 0, E3; 1.

A further investigation of these functions and their relation with elliptic iterated
integrals (Brown, Levin 2010, Broedel, Mafra, Mattthes, Schlotterer 2014) will be
interesting.




