A Nice Approach to Scattering in Non-planar Theories

Five point I-loop (no triangles, no bubbles)

Five point 2-loop (no triangles, no bubbles)

(34)

(23)

(24)

(32)

Number of graphs grows factorially: Scaling Behavior

Color and Kinematics dance together.

Solving Yang-Mills theories means solving Gravity theories.

Calculate by Exploiting Color-Kinematics Duality

Bern, JJMC, Johansson (`08, `।0)

Leads to important constraints at tree \& loop-level for gauge theories

Calculate by Exploiting Color-Kinematics Duality

Bern, JJMC, Johansson (`08, `।0)

Leads to important constraints at tree \& loop-level for gauge theories

Calculate by Exploiting Color-Kinematics Duality

Bern, JJMC, Johansson (`08, `। 0)

(d)

Leads to important constraints at tree \& loop-level for gauge theories

Gluons for (almost) nothing... gravitons for free!

Five point 3-loop N=4 SYM \& N=8 SUGRA

Five point 3-loop N=4 SYM \& N=8 SUGRA

Five point 3-loop $\mathrm{N}=4$ SYM \& $\mathrm{N}=8$ SUGRA
JJMC, Johansson (to appear)

(20)

(29)

(35)

(24)

(6)

(32)

Full four loop N=4 SYM \& N=8 SUGRA
Bern, JJMC, Dixon, Johansson, Roiban (2012)

(4)
(

-5

?
$>+$

 (8) (8) () $(\mathbb{1})$
$-\left(e_{i}^{5}+\right.$

Cosers)

$=$
(
Coses)
为

(32)

-
(1)
(-2
$(-2)-2$
(2)
$=1$

 (4) (7) $(9)(\mathbb{O}$
(1) (1)

(y)
(i)

Full four loop N=4 SYM \& N=8 SUGRA
Bern, JJMC, Dixon, Johansson, Roiban (2012)

(4)
(oseis)
隹

?
$2(-3$
(31)

 $=$

Cosers)

(1)- (H)
$=$
$-($
$=$
为
${ }^{2} \rightarrow-\square$

(52) (A) (1)
©
(1)
-
(-2)
(2is)
$\rightarrow-$

 (4) (8)
(1) (1)

(y)
(i)

$\rightarrow(-3$

$-\left(e_{i}^{5}+\right.$

\rightarrow

(8)

- (-2

(2)
(1) (1)
 (12) (1) (H) (H)
(1) (5)
 (4)

4-loops Maximal SUSY

Many things to be learned, not the least, the existence of integral relations between gauge and gravity theories

Problem Solved?

No.

We want all-order understanding!

What's the barrier?

Frustrating Problem:

- Exploiting Color-Kinematics duality at loop-level means solving functional equations: number of master graphs controlled, but now need an ansatz.

The set of multi loop Jacobi equations will relate the same numerator functions with permuted arguments.
tree-level, no problem

each vertex is a graph
each triangle represents a Jacobi identity between graphs

tree-level, no problem

as each node represents a separate graph, Jacobi eqns impose linear relations between numerators
loop level, functional constraints

nodes can be the same graph with permuted labels!

Let's get specific...

- It would be great to understand the origins of divergences in QFT of gravity.
- Evidence that they're intimately related to anomalies (some of which, at least, can be appreciated in non-supersymmetric YM.)

JJMC, Kallosh, Roiban, Tseytlin 'I3
Bern, Davies, Dennen, Smirnov, Smirnov 'I3

[see Tristan's talk]

Is N=8 SG perturbatively finite?

Integral Relations at 4-loops

$$
\begin{aligned}
\left.\mathcal{M}_{4}^{(4)}\right|_{\text {pole }} & =-\frac{23}{8}\left(\frac{\kappa}{2}\right)^{10} s t u\left(s^{2}+t^{2}+u^{2}\right)^{2} M_{4}^{\text {tree }}()^{\uparrow}+2 \\
- & 256 \\
& +\frac{2025}{8} \longleftarrow \text { 12- and 13-propagator integrals } \\
& \text { 11-propagator integrals; same as in sYM }
\end{aligned}
$$

$$
\begin{aligned}
\left.\mathcal{A}_{4}^{(4)}\right|_{\text {pole }} ^{S U\left(N_{c}\right)} & =-6 g^{10} \mathcal{K} N_{c}^{2}\left(N_{c}^{2}\right. \\
\times & \left(s\left(\operatorname{Tr}_{1324}+\operatorname{Tr}_{1423}\right)+t\left(\operatorname{Tr}_{1243}+\operatorname{Tr}_{1342}\right)+u\left(\operatorname{Tr}_{1234}+\operatorname{Tr}_{1432}\right)\right)
\end{aligned}
$$

$D=11 / 2$

5-loops? Need the SG integrand first!

5-loops N=4 sYM:

- ~900 cubic graphs with no bubbles, and no triangles
- Jacobi's fix to a set of 2 non-planar masters!
- can impose a consistent minimal power-counting.
- can impose all symmetries

Maximal cuts break almost immediately!

Just like 3-loops before including:

Relaxing ansatz:

- Relax power counting
- Allow for add'I graphs (e.g non-planar triangles)
- Generalize prescription to handle unusual graphs
- Nonlocal numerators? (unbounded complexity)

The sea of space to explore is unfortunately vast and expensive at 5 loops

Is there a non-ansatz path forward?

Is there a non-ansatz path forward?

= YES!

a solution to label-shifting

introduce a distinct graph for every possible labeling of m-point L-loop graph topologies
this will be isomorphic to a subset of ($2 \mathrm{~L}+\mathrm{m}$)-point tree graphs, with 2 L "ext" labels: $\left\{l_{1},-l_{1}, \ldots,-l_{L}, l_{L}\right\}$

Brief interlude, a comment on my title:

nice
adjective:

1. pleasing; agreeable; delightful.
2. characterized by great accuracy, precision, or delicacy.

Brief interlude, a comment on my title:

nice
adjective:

1. pleasing; agreeable; delightful.
2. characterized by great accuracy, precision, or delicacy.

caution

origin:
1250-1300; Middle English: foolish, stupid < Old French: silly
there will be a lot of graphs.

An algebraic loop-level approach JJMC

- Introduce multi-loop objects: pre-Integrands $\mathcal{I}_{m}^{L}=$
- will contain all cut information manifestly, not functionally!
- can decompose into color-stripped polytopes just like at tree-level
- introduce enough graphs to cover all labelings
- each graph appears with fixed labels so can solve Jacobi's linearly

$$
\left\{n_{a}+n_{b}+n_{c}=0\right\} \rightarrow n_{j}=J_{j k} m_{k}
$$

Functional Integrands

- Functional integrands are the set of maps from labeled graphs to:
- n (numerators)
- d (propagators as in a scalar theory)
- c (color factors)
- S (symmetry factors: \# of automorphisms)
- cut satisfaction cut satisfaction \quad means: Amplitude $=\int \prod_{j=1}^{L} \frac{d^{D} l_{j}}{(2 \pi)^{D}} \sum_{i \in \text { cubic }} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{d_{i}}$.
- Two integrands that satisfy all cuts differ at most by something that integrates to zero.

Pre-Integrand: \mathcal{I}_{m}^{L} from integrand $\{n, d, c, S\}$

- take ($2 \mathrm{~L}+\mathrm{M}$)-point color-dressed tree graphs
- identify 2 L ext legs with $+/$ - indep loop momental labels

$$
\left\{k_{1}, \ldots, k_{m},-l_{1}, l_{1}, \ldots,-l_{L}, l_{L}\right\}
$$

- label channels momentum can run through at L loops M-point.

$$
\mathcal{I}_{m}^{L}=\sum_{j \in \mathrm{assym}} \frac{n_{j} c_{j}}{d_{j}} \quad \mathrm{I}_{i}=\sum_{j \in \mathrm{perm}_{i}} \frac{n_{j}}{d_{j}}
$$

Graphs contributing to a color-ordered tree, generate the 1skeleton of Stasheff polytopes joined only by \hat{t}

5pt example:

Note: same color-order!
(these polytopes are also called associahedra)

You might think you need (m-2)! of these color-ordered amplitudes to capture everything because this is what is required to touch every vertex at least once:

You might think you need (m-2)! of these color-ordered amplitudes to capture everything because this is what is required to touch every vertex at least once:

In fact, this is the KK basis, proven by Del Duca, Dixon, and Maltoni to be sufficient

But notice, only (m-2)! nodes are needed to specify both the color factors and numerator factors of everyone

But notice, only (m-2)! nodes are needed to specify both the color factors and numerator factors of everyone

But notice, only (m-2)! nodes are needed to specify both the color factors and numerator factors of everyone

This reduces the set of necessary color-ordered amplitudes to (m-3!)

At every multiplicity the masters can be chosen to form the 1 -skeleton of a polytope related by \hat{u} on every internal edge of the scattering graphs

(these polytopes are called permutahedra)

Can linearly solve for the (m-2)! numerators of the masters in terms of the ($\mathrm{m}-3$)! "BCJ" independent color-ordered amplitudes. In fact you get (m-3)! numerators in terms of the color-ordered amplitudes and (m-3)(m-3)! free functions.

(generalized gauge freedom)

Building blocks at 6-points:

color-ordered amplitude

associahedron

set of masters

permutahedron
cubic graphs at 6 pt

set of masters

full amplitude

Now we can talk interestingly about pre-Integrands of loops
set of masters

Now we can talk interestingly about pre-Integrands of loops
set of masters

non-masters

Any given

will be comprised of all the one-loop graphs labeled appropriately to the color-order:

Any given

can dress with off-shell information (unitarity, recursion, etc)
does not need to come from a Jacobi satisfying representation. This will be boundary data. It just has to be true and off-shell on internal legs.

Then demand

 satisfies Jacobi for a new rep.
and solve for new:

This works!
For $\mathrm{N}=4$ SYM at 4 pt one-loop only need boxes

So Jacobi eqns reduce all numerators to the same function if you impose vanishing of all triangles.
st A(1234)

For $\mathrm{N}=4$ SYM at 4pt two-loop only need planar and non-planar boxes

+ perms

Jacobi eqns reduce all numerators to linear combination of two functions

$$
s(s t A(1234)) \quad t(s t A(1234))
$$

After Jacobi, now have a color-kinematic satisfying representation at loop level -- no ansatz.

Asymmetric graphs can have Jacobi's imposed linearly on all edges but L

Conjecture: this is sufficient for double-copy to hold

Verification: Gravity amplitude must be checked on a spanning set of cuts by symmetrizing into symmetric functional representation.

Verified at 1 loop 4-pt for $\mathrm{N}<=4$ SYM Verified at 2 loop 4-pt for $\mathrm{N}=4$ SYM

Summary: Presented path forward to find C/K satisfying representations without an ansatz.

There is a cautionary note, this way forward involves increasing the redundancy of graph descriptions - no free lunch, but at least a bounded complexity problem.

The HOPE

Can be a spring board to a description that starts collapsing the redundancy.
May be an avenue to recycle formal all-multiplicity tree-level insight into all multiplicity loop-level insight

Should at least be a vehicle to get more c/k data at lower-loops in theories with less SUSY

Happy to help you play these games with your own non-planar integrands!

