Improve Numerical Stabilities of Amplitudes in Precise QCD Calculations

Xuan Chen
University of Zurich

Amplitudes 2015
Zurich, July 6-10, 2015

Motivation of Precise QCD Calculations

- Precise QCD calculations involves:
- PDF sets calculated and fitted with higher order splitting function.
- Fixed order PQCD calculations including more loops and/or legs.
- Parton shower, resummation etc.
- Motivations:
- Reduced theoretical uncertainty
- Large contributions from higher order terms in pQCD
- Better understanding of S / B in LHC
- Distinguish SM signal from potential new physics

Motivation of Precise QCD Calculations

- Precise QCD calculations involves:
- PDF sets calculated and fitted with higher order splitting function.
- Fixed order pQCD calculations including more loops and/or legs.
- Parton shower, resummation etc.
- Motivations:
- Reduced theoretical uncertainty
- Large contributions from higher order terms in pQCD
- Better understanding of S / B in LHC
- Distinguish SM signal from potential new physics
- Example of cutting edge studies:
- $p p \rightarrow H$ @ $N^{3} L O$ Anastasiou et al
- Di-jet production @ $N N L O$ Currie et al
- top pair production @ $N N L O$ Abelof et al; Baernreuther et al
- H+jet @ NNLO Chen et al; Boughezal et al
- Z+jet @ NNLO Morgan et al
- W+jet @ NNLO Boughezal et al
- Higgs and Drell-Yan production@ $N N L O+P S$ Hamilton et al
- Colourless particles production@ NNLO + NNLL Wiesemann et al
- And many more...

Matrix elements involved in fixed order pQCD

- Renormalised factorized parton level differential cross section (d $\hat{\sigma}$) for example:

$$
\begin{aligned}
d \hat{\sigma}_{L O} & =\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{0}\right\rangle\right]_{n+2} d \Phi_{n} J_{n}^{(n)} \\
d \hat{\sigma}_{N L O} & =\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{0}\right\rangle\right]_{n+3} d \Phi_{n+1} J_{n}^{(n+1)} \\
& +\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{1}\right\rangle+\left\langle\mathcal{M}^{1} \mid \mathcal{M}^{0}\right\rangle\right]_{n+2} d \Phi_{n} J_{n}^{(n)} \\
d \hat{\sigma}_{N N L O} & =\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{0}\right\rangle\right]_{n+4} d \Phi_{n+2} J_{n}^{(n+2)} \\
& +\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{1}\right\rangle+\left\langle\mathcal{M}^{1} \mid \mathcal{M}^{0}\right\rangle\right]_{n+3} d \Phi_{n+1} J_{n}^{(n+1)} \\
& +\int\left[\left\langle\mathcal{M}^{1} \mid \mathcal{M}^{1}\right\rangle+\left\langle\mathcal{M}^{2} \mid \mathcal{M}^{0}\right\rangle+\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{2}\right\rangle\right]_{n+2} d \Phi_{n} J_{n}^{(n)}
\end{aligned}
$$

- Higher order contributions contains both explicit (Pole structure) and implicit IR divergences (singular in unresolved P.S.).

Matrix elements involved in fixed order pQCD

- Renormalised factorized parton level differential cross section ($d \hat{\sigma}$) for example:

$$
\begin{aligned}
d \hat{\sigma}_{L O} & =\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{0}\right\rangle\right]_{n+2} d \Phi_{n} J_{n}^{(n)} \\
d \hat{\sigma}_{N L O} & =\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{0}\right\rangle\right]_{n+3} d \Phi_{n+1} J_{n}^{(n+1)} \\
& +\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{1}\right\rangle+\left\langle\mathcal{M}^{1} \mid \mathcal{M}^{0}\right\rangle\right]_{n+2} d \Phi_{n} J_{n}^{(n)} \\
d \hat{\sigma}_{N N L O} & =\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{0}\right\rangle\right]_{n+4} d \Phi_{n+2} J_{n}^{(n+2)} \\
& +\int\left[\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{1}\right\rangle+\left\langle\mathcal{M}^{1} \mid \mathcal{M}^{0}\right\rangle\right]_{n+3} d \Phi_{n+1} J_{n}^{(n+1)} \\
& +\int\left[\left\langle\mathcal{M}^{1} \mid \mathcal{M}^{1}\right\rangle+\left\langle\mathcal{M}^{2} \mid \mathcal{M}^{0}\right\rangle+\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{2}\right\rangle\right]_{n+2} d \Phi_{n} J_{n}^{(n)}
\end{aligned}
$$

- Higher order contributions contains both explicit (Pole structure) and implicit IR divergences (singular in unresolved P.S.).
- Whether those matrix elements are stable in unresolved P.S. is an open question.

Factorisation of implicit IR divergence (NNLO)

- Implicit IR divergent behaviour of qQCD matrix elements can be factorised.
- Colour ordered amplitudes constrain the IR divergence only in colour connected partons Mangano, Parke, Giele, Xu, Berends (1980s)
- For single unresolved limits (tree level): Define $\left|M^{0}\right|^{2} \equiv\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{0}\right\rangle$

$$
\begin{aligned}
& \left|M^{0}\left(\cdots, i, j_{g}, k, \cdots\right)\right|^{2} \xrightarrow{p_{j} \rightarrow 0 \sim \Delta^{2}} S_{i j k}\left|M^{0}(\cdots, i, k, \cdots)\right|^{2} \sim \mathcal{O}\left(\Delta^{-4}\right) \\
& \left|M^{0}(\cdots, i, j, \cdots)\right|^{2} \xrightarrow{p_{i} / / p_{j}} \frac{1}{s_{i j}} P_{i j \rightarrow K}(z)\left|M^{0}(\cdots, K, \cdots)\right|^{2} \sim \mathcal{O}\left(\Delta^{-2}\right)
\end{aligned}
$$

where $s_{i j}=\left(p_{i}+p_{j}\right)^{2}, z=p_{j} /\left(p_{j}+p_{i}\right)$

$$
\begin{aligned}
S_{i j k} & =\frac{2 s_{i k}}{s_{i j} s_{j k}}, \\
P_{q g \rightarrow Q} & =P_{\bar{q} g \rightarrow \bar{Q}}=\frac{1+(1-z)^{2}-\epsilon z^{2}}{z}, \\
P_{q \bar{q} \rightarrow G} & =P_{\bar{q} q \rightarrow G}=\frac{z^{2}+(1-z)^{2}-\epsilon}{1-\epsilon}, \\
P_{g g \rightarrow G} & =2\left(\frac{z}{1-z}+\frac{1-z}{z}+z(1-z)\right) .
\end{aligned}
$$

Factorisation of implicit IR divergence (NNLO)

- For single unresolved limits (loop level): Define $\left|M^{1}\right|^{2} \equiv\left\langle\mathcal{M}^{0} \mid \mathcal{M}^{1}\right\rangle+\left\langle\mathcal{M}^{1} \mid \mathcal{M}^{0}\right\rangle$

$$
\begin{aligned}
\left|M^{1}\left(\cdots, i, j_{g}, k, \cdots\right)\right|^{2} \xrightarrow{p_{j} \text { soft }} & S_{i j k}\left|M^{1}(\cdots, i, k, \cdots)\right|^{2} \\
& +S_{i j k}^{1}\left|M^{0}(\cdots, i, k, \cdots)\right|^{2} \sim \mathcal{O}\left(\Delta^{-4}\right) \\
\left|M^{1}(\cdots, i, j, \cdots)\right|^{2} \xrightarrow{p_{i} / / p_{j}} & \frac{1}{s_{i j}} P_{i j \rightarrow K}(z)\left|M^{1}(\cdots, K, \cdots)\right|^{2} \\
+ & \frac{1}{s_{i j}} P_{i j \rightarrow K}^{1}(z)\left|M^{0}(\cdots, K, \cdots)\right|^{2} \sim \mathcal{O}\left(\Delta^{-2}\right)
\end{aligned}
$$

- For double unresolved limits (tree level):

$$
\begin{aligned}
& \left|M^{0}(\cdots, a, i, j, b, \cdots)\right|^{2} \xrightarrow{p_{i}, p_{j} \text { soft }} S_{a i j b}\left|M^{0}(\cdots, a, b, \cdots)\right|^{2} \sim \mathcal{O}\left(\Delta^{-8}\right) \\
& \left|M^{0}(\cdots, i, j, k, \cdots)\right|^{2} \xrightarrow{p_{i} / / p_{j} / / p_{k}} P_{i j k \rightarrow A}\left(z_{1,2,3}\right)\left|M^{0}(\cdots, A, \cdots)\right|^{2} \sim \mathcal{O}\left(\Delta^{-6}\right) \\
& \left|M^{0}(\cdots, a, i, j, k, \cdots)\right|^{2} \xrightarrow{p_{i} s o f t, p_{j} / / p_{k}} S_{a, i j k} \frac{1}{s_{j k}} P_{j k \rightarrow K}(z)\left|M^{0}(\cdots, a, K, \cdots)\right|^{2}
\end{aligned}
$$

Testing numerical stability of matrix elements

- Numerical instability comes from internal cancellation of terms with divergent order higher than the factorisation functions.
- Analytically check in each unresolved limits with known factorisation functions
- Keep tracking of the order of divergences and find large cancellation behaviour
- Only easy to check with small number of legs
- Matrix elements calculated using different methods needs independent test

Testing numerical stability of matrix elements

- Numerical instability comes from internal cancellation of terms with divergent order higher than the factorisation functions.
- Analytically check in each unresolved limits with known factorisation functions
- Keep tracking of the order of divergences and find large cancellation behaviour
- Only easy to check with small number of legs
- Matrix elements calculated using different methods needs independent test
- Numerically check with known factorisation functions in unresolved P.S. point
- Can use each factorisation functions for comparison
- Hard to relate parameters in exactly limit with unresolved P.S. points
- Can also use special functions that converge to different factorisation functions
- Hard to construct by hand

Testing numerical stability of matrix elements

- Numerical instability comes from internal cancellation of terms with divergent order higher than the factorisation functions.
- Analytically check in each unresolved limits with known factorisation functions
- Keep tracking of the order of divergences and find large cancellation behaviour
- Only easy to check with small number of legs
- Matrix elements calculated using different methods needs independent test
- Numerically check with known factorisation functions in unresolved P.S. point
- Can use each factorisation functions for comparison
- Hard to relate parameters in exactly limit with unresolved P.S. points
- Can also use special functions that converge to different factorisation functions
- Hard to construct by hand
- Solution is to combine analytical and numerical methods
- Analytically check matrix elements against factorisation functions
- Use analytical checked matrix elements to construct special functions for numerical check (Antenna functions)
- Recycle $\left|M_{n+4}^{0}(\cdots, i, j, k, l \cdots)\right|^{2} \rightarrow X_{4}^{0}(i, j, k, l)\left|M_{n+2}^{0}(\cdots, I, L, \cdots)\right|^{2}$

Antenna functions: multi-purpose factorisation functions

Gehrmann-De Ridder, Gehrmann, Glover

- Antenna functions constructed from normalised matrix elements
- Each function has two specified hard radiators +1 or 2 unresolved patrons

$$
\begin{aligned}
X_{3}^{0}(i, j, k) & \sim \frac{\left|M_{i j k}^{0}\right|^{2}}{\left|M_{I L}^{0}\right|^{2}} \\
X_{3}^{1}(i, j, k) & \sim \frac{\left|M_{i j k}^{1}\right|^{2}}{\left|M_{I K}^{0}\right|^{2}}-X_{i j k}^{0} \frac{\left|M_{I K}^{1}\right|^{2}}{\left|M_{I K}^{0}\right|^{2}} \\
X_{4}^{0}(i, j, k, l) & \sim \frac{\mid M_{i j k l^{0}}^{0}}{\left|M_{I L}^{0}\right|^{2}}
\end{aligned}
$$

- One antenna function mimics multiple double or single unresolved behaviour.
- Antenna functions calculated from different ME for all parton combinations:

$$
\gamma^{*} \rightarrow q \bar{q}+\text { partons } \quad \tilde{\mathcal{X}} \rightarrow \tilde{g}+\text { partons } \quad H \rightarrow \text { partons }
$$

- Momentum mappings give the P.S. for reduced ME: $3 \rightarrow 2$ or $4 \rightarrow 2$ mapping $\otimes\{F F, I F, I I\}$ combinations of hard radiators.

Testing numerical stability of matrix elements

- Construct antenna subtraction terms (ATS) to mimic unresolved limits of ME
- $M E^{0}=\left|M^{0}(\cdots, i, j, k, \cdots)\right|^{2}, A T S^{0}=X_{3}^{0}(i, j, k)\left|M^{0}(\cdots, I, K, \cdots)\right|^{2}$
- $M E^{0}=\left|M^{0}(\cdots, i, j, k, l \cdots)\right|^{2}, A T S^{0}=X_{4}^{0}(i, j, k, l)\left|M^{0}(\cdots, I, L, \cdots)\right|^{2}$
- $M E^{1}=\left|M^{1}(\cdots, i, j, k, \cdots)\right|^{2}$,
$A T S^{1}=X_{3}^{0}(i, j, k)\left|M^{1}(\cdots, I, K, \cdots)\right|^{2}+X_{3}^{1}(i, j, k)\left|M^{0}(\cdots, I, K, \cdots)\right|^{2}$
- Test structure

$$
R=\frac{M E^{0,1}}{A S T^{0,1}}
$$

- $R \sim$ horizontal axis (centre at one near the unresolved region)
- Number of P.S. points in each bin \sim vertical axis
- Controlling singular region correctly will achieve spike plot. For example:

$$
x=\frac{s_{45}}{s}
$$

$$
x s=\sum_{i \neq 3} s_{3 i}
$$

Testing numerical stability of matrix elements

- Numerical stabilities are tested for the following ME for NNLO studies:
- Tree level: $\mathcal{M}_{\gamma}^{0}(5 P), \mathcal{M}^{0}(6 P), \mathcal{M}_{H}^{0}(5 P)(E F T), \mathcal{M}_{Z}^{0}(5 P), \mathcal{M}_{W}^{0}(5 P)$
- Loop level: $\mathcal{M}_{\gamma}^{1}(4 P), \mathcal{M}^{1}(5 P), \mathcal{M}_{H}^{1}(4 P)(E F T), \mathcal{M}_{Z}^{1}(4 P), \mathcal{M}_{W}^{1}(4 P)$
- Generate unresolved P.S. points and test all possible limits

Testing numerical stability of matrix elements

- Numerical stabilities are tested for the following ME for NNLO studies:
- Tree level: $\mathcal{M}_{\gamma}^{0}(5 P), \mathcal{M}^{0}(6 P), \mathcal{M}_{H}^{0}(5 P)(E F T), \mathcal{M}_{Z}^{0}(5 P), \mathcal{M}_{W}^{0}(5 P)$
- Loop level: $\mathcal{M}_{\gamma}^{1}(4 P), \mathcal{M}^{1}(5 P), \mathcal{M}_{H}^{1}(4 P)(E F T), \mathcal{M}_{Z}^{1}(4 P), \mathcal{M}_{W}^{1}(4 P)$
- Generate unresolved P.S. points and test all possible limits
- Abnormal spike plots are found for single soft limits in $\mathcal{M}_{H}^{1}(4 P)$ (EFT):
single soft - 4

Figure: $\left|M_{H}^{1}(g g g g)\right|^{2} \quad x s=\sum_{i \neq 4} s_{4 i}$

Figure: $\left|M_{H}^{1}(q g g \bar{q})\right|^{2} \quad x s=\sum_{i \neq 3} s_{3 i}$

- Identify the unstable part of the amplitude (find NAN; change precision of variable; find identical large vlaues)

Amplitudes for $\mathcal{M}_{H}^{1}(4 P)$

- $\mathcal{M}_{H}^{1}(4 P)$ (EFT) are calculated in hep-ph:0909.4457 and implemented in MCFM:
- Use generalised unitarity method to construct the cut-constructible contributions.
- A hybrid of Feynman diagram and recursive based techniques to determine the rational piece.
- All partons are considered massless and the Higgs boson only couples to g (EFT).
- The general structure is:

$$
\begin{aligned}
\mathcal{M}_{H}^{1}(4 P) & =C_{4}(4 P)+R_{4}(4 P) \\
C_{4}(4 P) & =\sum_{i} C_{4 ; i} \mathcal{I}_{4 ; i}+\sum_{i} C_{3 ; i} \mathcal{I}_{3 ; i}+\sum_{i} C_{2 ; i} \mathcal{I}_{2 ; i}
\end{aligned}
$$

- $\mathcal{I}_{j ; i}$ represents a j-point scalar basis integral (box, triangle, bubble)
- $C_{j ; i}$ coefficients of basis integrals are calculated by on shell tree amplitudes

Amplitudes for $\mathcal{M}_{H}^{1}(4 P)$

- $\mathcal{M}_{H}^{1}(4 P)$ (EFT) are calculated in hep-ph:0909.4457 and implemented in MCFM:
- Use generalised unitarity method to construct the cut-constructible contributions.
- A hybrid of Feynman diagram and recursive based techniques to determine the rational piece.
- All partons are considered massless and the Higgs boson only couples to g (EFT).
- The general structure is:

$$
\begin{aligned}
\mathcal{M}_{H}^{1}(4 P) & =C_{4}(4 P)+R_{4}(4 P) \\
C_{4}(4 P) & =\sum_{i} C_{4 ; i} \mathcal{I}_{4 ; i}+\sum_{i} C_{3 ; i} \mathcal{I}_{3 ; i}+\sum_{i} C_{2 ; i} \mathcal{I}_{2 ; i}
\end{aligned}
$$

- $\mathcal{I}_{j ; i}$ represents a j-point scalar basis integral (box, triangle, bubble)
- $C_{j ; i}$ coefficients of basis integrals are calculated by on shell tree amplitudes
- Numerical instabilities in $\mathcal{M}_{H}^{1}(4 P)$ come from NMHV amplitude $\mathcal{M}_{H}^{1}\left(1^{+}, 2^{-}, 3^{-}, 4^{-}\right)$:
- $C_{3 ; 1234|12| 34}$ coefficient of three mass triangle integral
- Large cancellation of terms between $C_{4}(4 P)$ and $R_{4}(4 P)$

Rewrite three-mass coefficients for $\mathcal{M}_{H}^{1}(4 P)$

- The finite contributions of cut-constructible contributions contain:

$$
C_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right) \sim C_{3 ; 1234|12| 34}\left(H, 1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right) \mathcal{I}_{3,3 m}\left(m_{H}^{2}, s_{12}, s_{34}\right)
$$

with $\left(s_{i j}=\langle i j\rangle[j i]\right)$

$$
\begin{aligned}
C_{3 ; 1234|2| 34}\left(H, 1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right) & =\sum_{\gamma=\gamma_{ \pm}} \frac{\left.\left.\left.m_{H}^{4}\langle 34\rangle^{3}\langle 2| K_{1}^{b} \mid 1\right]\langle 2| K_{1}^{b} \mid 3\right]\langle 2| K_{1}^{b} \mid 4\right]}{2 \gamma\left(\gamma+m_{H}^{2}\right)\langle 12\rangle s_{1 K_{1}^{b}} s_{3 K_{1}^{b}} s_{4 K_{1}^{b}}} \\
K_{1}^{b \mu} & =\gamma \frac{\gamma K_{1}^{\mu}-K_{1}^{2} K_{2}^{\mu}}{\gamma^{2}-K_{1}^{2} K_{2}^{2}}
\end{aligned}
$$

where K_{1}, K_{2} (and K_{3}) are the momenta of the three off-shell legs and where γ is determined by the two solutions that ensure that K_{1}^{b} is light-like

$$
\begin{gathered}
K_{1}^{\mu}=-p_{1}^{\mu}-p_{2}^{\mu}-p_{3}^{\mu}-p_{4}^{\mu}, \quad K_{2}^{\mu}=p_{1}^{\mu}+p_{2}^{\mu}, \quad K_{3}^{\mu}=p_{3}^{\mu}+p_{4}^{\mu} \\
\gamma^{2}-2 K_{1} \cdot K_{2} \gamma+K_{1}^{2} K_{2}^{2}=0 \\
\gamma_{ \pm}=K_{1} \cdot K_{2} \pm \sqrt{\left(K_{1} \cdot K_{2}\right)^{2}-K_{1}^{2} K_{2}^{2}}
\end{gathered}
$$

Rewrite three-mass coefficients for $\mathcal{M}_{H}^{1}(4 P)$

- Solutions of γ satisfy following identities:

$$
\begin{gathered}
\gamma_{+}+\gamma_{-}=2 K_{1} \cdot K_{2}, \quad \gamma_{+} \gamma_{-}=K_{1}^{2} K_{2}^{2} \\
\left(\gamma_{-}+K_{1}^{2}\right)\left(\gamma_{+}+K_{1}^{2}\right)=K_{1}^{2} K_{3}^{2} \\
\left(\gamma_{-}+K_{2}^{2}\right)\left(\gamma_{+}+K_{2}^{2}\right)=K_{2}^{2} K_{3}^{2}
\end{gathered}
$$

Rewrite three-mass coefficients for $\mathcal{M}_{H}^{1}(4 P)$

- Solutions of γ satisfy following identities:

$$
\begin{array}{r}
\gamma_{+}+\gamma_{-}=2 K_{1} \cdot K_{2}, \quad \gamma_{+} \gamma_{-}=K_{1}^{2} K_{2}^{2} \\
\left(\gamma_{-}+K_{1}^{2}\right)\left(\gamma_{+}+K_{1}^{2}\right)=K_{1}^{2} K_{3}^{2} \\
\left(\gamma_{-}+K_{2}^{2}\right)\left(\gamma_{+}+K_{2}^{2}\right)=K_{2}^{2} K_{3}^{2}
\end{array}
$$

- In general $C_{3 ; K_{1}\left|K_{2}\right| K_{3}}$ is sensitive to the three massive momentum inputs K_{1}, K_{2} and K_{3} when one of the legs becomes massless (e.g. $K_{3}^{2} \rightarrow 0$):

$$
-2 K_{1} \cdot K_{2} \rightarrow K_{1}^{2}+K_{2}^{2} \quad \gamma_{+} \rightarrow-K_{2}^{2} \quad \gamma_{-} \rightarrow-K_{1}^{2}
$$

- A potentially large cancellation for example is inside $s_{3 K_{1}^{b}}$:

$$
s_{3 K_{1}^{b}}^{-}=\frac{-\gamma_{-}\left(K_{1}^{2}+\gamma_{-}\right)\left(s_{13}+s_{23}\right)-\gamma_{-}^{2} s_{34}}{\gamma_{-}^{2}-K_{1}^{2} K_{2}^{2}},
$$

- The result of $\left(K_{1}^{2}+\gamma_{-}\right)$in $K_{3}^{2} \rightarrow 0$ limit is analytically proportional to the small value $K_{3}^{2}=s_{34}$.
- Numerically unstable when the result of large cancellation is combined with small values.

Rewrite three-mass coefficients for $\mathcal{M}_{H}^{1}(4 P)$

- Rewrite $s_{3 K_{1}^{b}}^{-}$using identities of $\gamma_{ \pm}$:

$$
s_{3 K_{1}^{b}}^{-}=-\frac{\gamma_{-} s_{34} m_{H}^{2}}{\gamma_{+}\left(\gamma_{-}^{2}-m_{H}^{2} s_{12}\right)\left(m_{H}^{2}+\gamma_{+}\right)}\left(\frac{m_{H}^{2} s_{12} s_{34}}{\gamma_{-}+s_{12}}-\left(s_{14}+s_{24}+s_{34}\right) \gamma_{+}\right)
$$

- $s_{3 K_{1}^{b}}^{-}$is explicitly proportional to the s_{34} and there are no large cancellations
- $s_{4 K_{1}^{\text {b }}}^{-}$in $C_{3 ; 1234|12| 34}\left(H, 1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right)$has similar issue
- $C_{3 ; 1234|12| 34}\left(H, 1_{\bar{q}}, 2_{q}^{+}, 3_{g}^{-}, 4_{g}^{-}\right)$and $C_{3 ; 1234|41| 23}\left(H, 1_{\bar{q}}^{-}, 2_{q}^{+}, 3_{g}^{-}, 4_{g}^{-}\right)$

Rewrite cut-completion terms for $\mathcal{M}_{H}^{1}(4 P)$

- Counting the order of divergence (Δ^{-1}) in single soft limit $\left(p_{2} \rightarrow 0 \sim \Delta^{2}\right)$:

$$
\langle 2 i\rangle,[2 i] \sim \Delta, \quad s_{i 2} \sim \Delta^{2}
$$

- The overall divergence of the $\mathcal{M}_{H}^{1}(4 P)$ amplitude should be $\mathcal{O}\left(\Delta^{-2}\right)$, however there are terms of $\mathcal{O}\left(\Delta^{-4}\right)$ inside $\mathcal{M}_{H}^{1}(4 P)$:

$$
\begin{aligned}
& C_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right) \sim \\
& \\
& \quad+\frac{\left\langle\langle 4\rangle[41]\left(3 s_{124}\langle 34\rangle[41]+\langle 24\rangle\langle 3| p_{H} \mid 1\right][42]\right)}{3[42]^{2}} \hat{L}_{2}\left(s_{124}, s_{12}\right) \\
& \\
& \quad+\left(\frac{2 s_{124}\langle 34\rangle^{2}[41]^{2}}{\langle 24\rangle[42]^{3}}-\frac{\left.\langle 24\rangle\langle 3| p_{H} \mid 1\right]^{2}}{3 s_{124}[42]}\right) \hat{L}_{1}\left(s_{124}, s_{12}\right) \\
& \\
& \quad+\frac{\left.\left.\langle 3| p_{H} \mid 1\right]\left(4 s_{124}\langle 34\rangle[41]+\langle 3| p_{H} \mid 1\right]\left(2 s_{14}+s_{24}\right)\right)}{s_{124}\langle 24\rangle[42]^{3}} \hat{L}_{0}\left(s_{124}, s_{12}\right) \\
& R_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right) \sim \frac{[14]^{2}\langle 43\rangle^{2}}{2 s_{12}[42]^{2}}
\end{aligned}
$$

Rewrite cut-completion terms for $\mathcal{M}_{H}^{1}(4 P)$

- The cut-completion terms are defined as

$$
\begin{aligned}
& \hat{L}_{3}(s, t)=L_{3}(s, t)-\frac{1}{2(s-t)^{2}}\left(\frac{1}{s}+\frac{1}{t}\right) \\
& \hat{L}_{2}(s, t)=L_{2}(s, t)-\frac{1}{2(s-t)}\left(\frac{1}{s}+\frac{1}{t}\right) \\
& \hat{L}_{1}(s, t)=L_{1}(s, t), \quad \hat{L}_{0}(s, t)=L_{0}(s, t), \quad L_{k}(s, t)=\frac{\log (s / t)}{(s-t)^{k}}
\end{aligned}
$$

Rewrite cut-completion terms for $\mathcal{M}_{H}^{1}(4 P)$

- The cut-completion terms are defined as

$$
\begin{aligned}
& \hat{L}_{3}(s, t)=L_{3}(s, t)-\frac{1}{2(s-t)^{2}}\left(\frac{1}{s}+\frac{1}{t}\right), \\
& \hat{L}_{2}(s, t)=L_{2}(s, t)-\frac{1}{2(s-t)}\left(\frac{1}{s}+\frac{1}{t}\right), \\
& \hat{L}_{1}(s, t)=L_{1}(s, t), \quad \hat{L}_{0}(s, t)=L_{0}(s, t), \quad L_{k}(s, t)=\frac{\log (s / t)}{(s-t)^{k}}
\end{aligned}
$$

- Identities for cut-completion terms

$$
\begin{aligned}
& s \hat{L}_{3}(s, t)=t \hat{L}_{3}(s, t)+\hat{L}_{2}(s, t) \\
& s \hat{L}_{2}(s, t)=t \hat{L}_{2}(s, t)+\hat{L}_{1}(s, t)-\frac{1}{2}\left(\frac{1}{s}+\frac{1}{t}\right) \\
& \frac{1}{s} \hat{L}_{1}(s, t)=\hat{L}_{2}(s, t)-\frac{t}{s} \hat{L}_{2}(s, t)+\frac{1}{2 s}\left(\frac{1}{s}+\frac{1}{t}\right) \\
& s \hat{L}_{1}(s, t)=t \hat{L}_{1}(s, t)+\hat{L}_{0}(s, t), \quad \frac{1}{s} \hat{L}_{0}(s, t)=\hat{L}_{1}(s, t)-\frac{t}{s} \hat{L}_{1}(s, t)
\end{aligned}
$$

Rewrite cut-completion terms for $\mathcal{M}_{H}^{1}(4 P)$

- Inserting $\left.\langle 3| p_{H} \mid 1\right]=-\langle 32\rangle[31]-\langle 34\rangle[41]$ into $C_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right)$:

Rewrite cut-completion terms for $\mathcal{M}_{H}^{1}(4 P)$

- Inserting $\left.\langle 3| p_{H} \mid 1\right]=-\langle 32\rangle[31]-\langle 34\rangle[41]$ into $C_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right)$:

$$
\begin{aligned}
C_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right) \sim \frac{\langle 34\rangle^{2}[41]^{2}}{3[42]^{2}} & \left(+3 s_{124} \hat{L}_{2}-\frac{3}{s_{124}} \hat{L}_{0}\right. \\
& \left.+\frac{1}{s_{24}}\left(6 s_{124} \hat{L}_{1}-6 \hat{L}_{0}-\frac{6 s_{12}}{s_{124}} \hat{L}_{0}\right)\right) \sim \mathcal{O}\left(\Delta^{-4}\right)
\end{aligned}
$$

- Repeat using identities for cut-completion terms, we can rewrite:

$$
\begin{aligned}
& \frac{\langle 34\rangle^{2}[41]^{2}}{3[42]^{2}}\left(3 s_{124} \hat{L}_{2}-\frac{3}{s_{124}} \hat{L}_{0}\right)= \\
& \frac{\langle 34\rangle^{2}[41]^{2}}{[42]^{2}}\left(s_{12} \hat{L}_{2}+\frac{s_{12}}{s_{124}} \hat{L}_{1}-\frac{1}{2}\left(\frac{1}{s_{124}}+\frac{1}{s_{12}}\right)\right) \sim \mathcal{O}\left(\Delta^{-2}\right)-\frac{\langle 34\rangle^{2}[41]^{2}}{2 s_{12}[42]^{2}} \\
& \frac{\langle 34\rangle^{2}[41]^{2}}{3[42]^{2} s_{24}}\left(6 s_{124} \hat{L}_{1}-6 \hat{L}_{0}-\frac{6 s_{12}}{s_{124}} \hat{L}_{0}\right)=\frac{\langle 34\rangle^{2}[41]^{2}}{[42]^{2} s_{24}}\left(\frac{2 s_{12}^{2}}{s_{124}} \hat{L}_{1}\right) \sim \mathcal{O}\left(\Delta^{0}\right)
\end{aligned}
$$

Rewrite cut-completion terms for $\mathcal{M}_{H}^{1}(4 P)$

- Inserting $\left.\langle 3| p_{H} \mid 1\right]=-\langle 32\rangle[31]-\langle 34\rangle[41]$ into $C_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right)$:

$$
\begin{aligned}
C_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right) \sim \frac{\langle 34\rangle^{2}[41]^{2}}{3[42]^{2}} & \left(+3 s_{124} \hat{L}_{2}-\frac{3}{s_{124}} \hat{L}_{0}\right. \\
& \left.+\frac{1}{s_{24}}\left(6 s_{124} \hat{L}_{1}-6 \hat{L}_{0}-\frac{6 s_{12}}{s_{124}} \hat{L}_{0}\right)\right) \sim \mathcal{O}\left(\Delta^{-4}\right)
\end{aligned}
$$

- Repeat using identities for cut-completion terms, we can rewrite:

$$
\begin{aligned}
& \frac{\langle 34\rangle^{2}[41]^{2}}{3[42]^{2}}\left(3 s_{124} \hat{L}_{2}-\frac{3}{s_{124}} \hat{L}_{0}\right)= \\
& \frac{\langle 34\rangle^{2}[41]^{2}}{[42]^{2}}\left(s_{12} \hat{L}_{2}+\frac{s_{12}}{s_{124}} \hat{L}_{1}-\frac{1}{2}\left(\frac{1}{s_{124}}+\frac{1}{s_{12}}\right)\right) \sim \mathcal{O}\left(\Delta^{-2}\right)-\frac{\langle 34\rangle^{2}[41]^{2}}{2 s_{12}[42]^{2}} \\
& \frac{\langle 34\rangle^{2}[41]^{2}}{3[42]^{2} s_{24}}\left(6 s_{124} \hat{L}_{1}-6 \hat{L}_{0}-\frac{6 s_{12}}{s_{124}} \hat{L}_{0}\right)=\frac{\langle 34\rangle^{2}[41]^{2}}{[42]^{2} s_{24}}\left(\frac{2 s_{12}^{2}}{s_{124}} \hat{L}_{1}\right) \sim \mathcal{O}\left(\Delta^{0}\right)
\end{aligned}
$$

- Cancellation with $R_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right) \sim \frac{[14]^{2}\langle 43]^{2}}{2 s_{12}[42]^{2}}$

Improve numerical stability of matrix elements

- After rewriting of $C_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right)$and $R_{4}\left(1_{g}^{+}, 2_{g}^{-}, 3_{g}^{-}, 4_{g}^{-}\right)$:

Figure: $\left|M_{H}^{1}(g g g g)\right|^{2}$ unstable

Figure: $\left|M_{H}^{1}(g g g g)\right|^{2}$ stable

- $\left|M_{H}^{1}(q g g \bar{q})\right|^{2}$ and $\left|\hat{M}_{H}^{1}(g g g g)\right|^{2}$ can achieve spike plots with the same treatment

Summary

- Precise QCD calculations require amplitudes for higher orders
- More and more efforts are required to obtain amplitudes with more loops and legs. We also need these amplitudes to be IR stable in unresolved P.S.
- Subtraction terms from phenomenology studies can be used to test the IR behaviour of amplitudes
- Examples of identifying large cancellations and rewriting amplitudes are introduced in this talk
- Testing of more amplitudes are needed

Back up slides

Improve numerical stability of matrix elements

