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Motivation

• Analytic S-matrix programme	


• Dream goal: define and calculate scattering amplitudes in terms of 
the analytic properties they obey.	


• Singularities: poles and cuts correspond to physical processes.	


• Properties like unitarity should heavily constrain the results.



Motivation

• N=4 super Yang-Mills the simplest 4d gauge theory.	


• Integrability in the planar limit gives even more structure.	


• Duality between amplitudes and light-like Wilson loops.	


• Analytic structure is more tractable.



Bootstrap programme

• Proceed experimentally:	


• Observe that in perturbation theory amplitudes/Wilson loops are 
described by particular classes of functions.	


• Make an ansatz in terms of these functions.	


• Constrain ansatz with some physical input:	


• Branch cuts (locality/unitarity), collinear limits, supersymmetry, OPE 
for Wilson loops, Regge limits for amplitudes…



• Simplest amplitudes are the six-point ones.	


• Functions appearing are polylogarithms on 	


• Impose physical branch cuts: Hexagon functions.	


• Impose proper collinear behaviour.	


• OPE (near collinear) limit/Regge limit data required to fix amplitude 
from three loops onwards.	


• Fruitful interplay with integrable OPE approach [Sever’s talk]
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Hexagon amplitudes
[Dixon, JMD, Henn], [Dixon, JMD, von Hippel, Pennington], 	


[Dixon, JMD, Duhr, Pennington]



Cluster Algebras on G(4,n)

• Observation: singularities of two-loop results ([Caron-Huot]) coincide with A-
coordinates of cluster algebras based on the Grassmannians G(4,n).	


• This allows us to expand the bootstrap programme to higher points. 	


• Today we analyse heptagon amplitudes (next simplest & finite set of A-
coordinates).

[Golden, Goncharov, Spradlin, Vergu, Volovich]



Scattering amplitudes
Amplitudes depend on:	


On-shell (light-like) momenta 	


Helicities	
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N=4 supersymmetry
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Wilson loops

p1

p2 p3

p4

pn
x1

x2

x3

x4

x5

xn

[Alday, Maldacena], [JMD, Korchemsky, Sokatchev], [Brandhuber, Heslop, Travaglini], [JMD,Henn,Korchemsky,Sokatchev],…

• Naturally come with a dihedral symmetry.	


• Colour-ordered MHV amplitudes and Wilson loops coincide.	


• Super Wilson loops for non-MHV amplitudes.	


• Conformal symmetry of Wilson loop is symmetry of amplitude.

[Mason, Skinner], [Caron-Huot]
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Dual conformal symmetry
• Space of light-like polygons stable under conformal transformations.	


• Conformal symmetry of Wilson loops broken by ultraviolet divergences. 	


• Divergences factorise and exponentiate. 	


• Interesting piece is the conformally invariant finite ‘remainder’.
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• Divergences organised so that remainder begins at two loops in pert. theory.

• First conformal invariants at six points:	


• Four and five points ‘trivial’.
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Twistors
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• Best to describe a sequence of intersecting null rays via twistors	


• Due to the relation to particle momenta, often called ‘momentum twistors’.
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• The corners of the loop map to lines in twistor space

(pi + pi+1 + . . . pj�1)
2 = (xi � xj)
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Arrange the twistors into a (4 x n) matrix: (ZA
i )

Gives a description of the Grassmannian G(4, n)

Kinematical space identified with:
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Polylogarithms
Classical polylogarithms: Li
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[Chen], [Goncharov], [Brown], …



Cluster algebras
The letters (singularities) will be dictated by cluster algebras associated to 

• Commutative algebras with distinguished set of generators (cluster variables).	


• Variables grouped into overlapping sets (clusters).	


• Clusters constructed from initial cluster via a process called ‘mutation’.

Cluster algebras: [Fomin, Zelevinsky] 
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 exampleA2
• Cluster variables:	


• Initial cluster: 	


• Clusters:	


• Mutation:

am , m 2 Z

{a1, a2}

{am, am+1}

{am�1, am} ! {am, am+1}, am+1 =
1 + am
am�1

a3 =
1 + a2
a1

, a4 =
1 + a1 + a2

a1a2
, a5 =

1 + a1
a2

, a6 = a1 , a7 = a2

Finite number of clusters:

Topology of mutations	

 is a pentagon.



Quivers
More generally, consider a quiver diagram, corresponding to a cluster.	


Each cluster variable corresponds to node.	


Mutation on node    yields a new quiver via the rules:

For each 	


add new arrow	


reverse all arrows to/from 	


delete opposing pairs and returning arrows
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Sometimes finite, sometimes infinite.



Grassmannian G(4,n)
Can associate a cluster algebra to the Grassmannian   	


Initial cluster given by specified set of 4-brackets 	


Mutation generates homogeneous polynomials in 4-brackets	


For               algebras are finite (correspond to      and     )	


For            algebra is infinite.

Observation: 	

known two-loop results show that letters are cluster A-coordinates.

[Golden, Goncharov, Spradlin, Vergu, Volovich]

Cluster bootstrap ansatz: letters are A-coordinates.

For hexagon: 9 A-coordinates,	

For heptagon: 42 of them.

[Scott]



Hexagons 

u1 =
h1236ih3456i
h1346ih2356i , 1� u1 =

h1356ih2346i
h1346ih2356i , y1 =

h1345ih2456ih1236i
h1235ih3456ih1246i

Mutations generate letters, 

and those related by cyclic rotation of the labels.

Once obtained, any multiplicatively independent set of nine will do.

Topology of mutations is Stasheff polytope.

Can replace 4-brackets with 2-brackets:	


Space of functions identified with polylogarithms on 

h1234i ! h56i
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Heptagons

a11 =
h1234ih1567ih2367i
h1237ih1267ih3456i , a41 =

h2457ih3456i
h2345ih4567i ,

a21 =
h1234ih2567i
h1267ih2345i , a51 =

h1(23)(45)(67)i
h1234ih1567i ,

a31 =
h1567ih2347i
h1237ih4567i , a61 =

h1(34)(56)(72)i
h1234ih1567i

For heptagons we generate the following letters

and those obtained by cyclic rotation of the labels.

ha(bc)(de)(fg)i ⌘ habdeihacfgi � habfgihacdei

Unlike in the hexagon case, the space of singularities depends on the choice of 	

dihedral structure.

Naturally associated to the kinematic space of light-like Wilson loops.



Heptagon symbols
Heptagon symbols:	


Now we want to build integrable words from the 42 heptagon letters	


Locality: initial letters are a1i

Symbol of heptagon Wilson loop remainder should be a heptagon symbol	


Supersymmetry: final letters are	


Collinear limit:  

a2i , a3i

Rn ! Rn�1 (i||i+ 1)



Constructing symbols
Impose integrability by equating two decompositions of a word into integrable parts:

w(n) =
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These give homogeneous linear equations for c(1)ij , c(2)rs

The calculation is just linear algebra but for rather large matrices. 	

Efficient algorithms for calculating the null spaces of integer matrices are very useful.

The calculation can be adapted easily for imposing conditions on initial and final	

entries simultaneously.

A.C = 0



Weight k = 1 2 3 4 5 6

Number of heptagon symbols 7 42 237 1288 6763 ?

well-defined in the 7 k 6 limit 3 15 98 646 ? ?

which vanish in the 7 k 6 limit 0 6 72 572 ? ?

well-defined for all i+1 k i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table 1: Heptagon symbols and their properties.

1

Results 1

The symbol of the two-loop remainder function is the only weight 4 heptagon	

 symbol which is well-defined in all collinear limits.

There is a unique weight 6 heptagon symbol which obeys the final entry and is 	

finite in all collinear limits. 	

We conclude this must be the symbol of the three-loop heptagon remainder.



Results 2

Weight k = 1 2 3 4 5 6

Number of hexagon symbols 3 9 26 75 218 643

well-defined (hence vanish) in the 6 k 5 limit 0 2 11 44 155 516

well-defined (hence vanish) for all i+1 k i 0 0 2 12 68 307

with MHV last entries 0 3 7 21 62 188

with both of the previous two 0 0 1 4 14 59

Table 1: Hexagon symbols and their properties.

1

For comparison, hexagon symbols:

• In hexagon case must appeal to further input to fix the Wilson loop.	


• OPE data or information from Regge limit required.	


• Heptagon bootstrap more powerful than hexagon one!	


• Hexagon can be recovered from heptagon by collinear limit.



Checks and Extensions
The Wilson loop admits an expansion around the collinear limit, similar to the	

operator product expansion for local operators in a CFT.
[Alday, Gaiotto, Maldacena, Sever, Vieira]

Further progress allows the prediction of the power suppressed terms in 	

this limit.
[Basso, Sever, Vieira]

We find perfect agreement between this expansion and the series expansion 	

of our symbol.

NMHV:  We also find that the two-loop NMHV amplitude of Caron-Huot and He	

is the unique possible expression compatible with dihedral symmetry both before	

and after taking a collinear limit.	

!
(up to adding the MHV expression multiplied by the tree amplitude).



Discussion and Outlook
Using the notion of cluster algebras we have a natural conjecture for the space	

of singularities for planar MHV amplitudes/Wilson loops to all orders.

We have tested this structure with a three-loop seven-point calculation.

Surprisingly, the bootstrap for the heptagon is actually more powerful than for	

the hexagon.

Intuitively it feels that the structure should be applicable more generally to 	

light-like Wilson loops in any weakly coupled conformal gauge theory.

The heptagon calculate required no input from the Wilson loop OPE. This 	

approach provides a test of OPE conjectures.	

Perhaps an alternative formulation of integrability?

Requires further investigation…


