лонannes GUTENBERG UNIVERSITÄT MAINZ

On five-particle scattering amplitudes

Johannes M. Henn

Applying $\mathrm{N}=4$ sYM insights to QCD

- easier to obtain multi-leg/loop results in $\mathrm{N}=4 \mathrm{sYM}$ simplicity allows to `see` things analytically sometimes leads to techniques that are universally applicable
- important example: connection between leading singularities of integrals and weight properties ("transcendentality") of integrated answer
- these ideas have led to efficient methods for computing loop integrals in QCD

Outline of talk

- motivation for multi-leg computations
- technique
- analytic results for 2-loop 5-particle integrals
- applications to amplitudes

Experiment and theory

- The Higgs boson has been found at the LHC

Huge success both for theory and experiment
-What's next?

- determine properties of the new particle
- search for deviations from the standard model
- Increasing experimental precision puts new challenges to theory community

Les Houches wishlist

NNLO QCD and NLO EW Les Houches Wishlist

Wishlist part 1 - Higgs (V=W,Z)

Process	known	desired	motivation
H	d \sigma @ NNLO QCD d \sigma @ NLO EW finite quark mass effects @ NLO	d \sigma @ NNNLO QCD + NLO EW MC@NNLO finite quark mass effects @ NNLO	H branching ratios and couplings
$\mathrm{H}+\mathrm{j}$	d \backslash sigma @ NNLO QCD (g only) d \backslash sigma @ NLO EW	d \sigma@ NNLO QCD + NLO EW finite quark mass effects @ NLO	H p_T
H+2j	\sigma_tot(VBF) @ NNLO(DIS) QCD $\mathrm{d} \backslash$ sigma $(\mathrm{gg}) @$ NLO QCD d \backslash sigma(VBF) @ NLO EW	d \sigma @ NNLO QCD + NLO EW	H couplings
$\mathrm{H}+\mathrm{V}$	d \backslash sigma(V decays) @ NNLO QCD d \backslash sigma @ NLO EW	with $\mathrm{H} \rightarrow \mathrm{bb}$ @ same accuracy	H couplings
$\begin{aligned} & \mathrm{t} \backslash \text { bar } \\ & \mathrm{tH} \end{aligned}$	d \backslash sigma(stable tops) @ NLO QCD	d \backslash sigma(NWA top decays) @ NLO QCD + NLO EW	top Yukawa coupling
HH	d\sigma@LO QCD finite quark mass effects d \backslash sigma @ NLO QCD large m_t limit	$\mathrm{d} \backslash$ sigma @ NLO QCD finite quark mass effects d \backslash sigma @ NNLO QCD	Higgs self coupling

Wishlist part 2 - jets and heavy quarks

Process	known	desired	motivation
t \backslash bar t	\backslash sigma_tot @ NNLO QCD $\mathrm{d} \backslash$ sigma(top decays) @ NLO QCD $\mathrm{d} \backslash$ sigma(stable tops) @ NLO EW	$\mathrm{d} \backslash$ sigma(top decays) @ NNLO QCD + NLO EW	precision top/QCD, gluon PDF effect of extra radiation at high rapidity top asymmetries
t \backslash bar $\mathrm{t}+\mathrm{j}$	$\mathrm{d} \backslash$ sigma(NWA top decays) @ NLO QCD	d \backslash sigma(NWA top decays) @ NLO QCD + NLO EW	precision top/QCD, top asymmetries

Les Houches wishlist

	QCD (g only) d \backslash sigma @ NLO weak	NLO EW	-> PDF fits (gluon at high x) -> alpha_s CMS x sections: http://arxiv.org/abs/1212.6660 [http://arxiv.org/abs/1212.6660]
3 j	d \sigma @ NLO QCD	d \backslash sigma @ NNLO QCD + NLO EW	Obs.: R3/2 or similar -> alpha_s at high pT dom. uncertainty: scales see http://arxiv.org/abs/1304.7498 [http://arxiv.org/abs/1304.7498] (CMS)
$\backslash \mathrm{gamma}+\mathrm{j}$	d \backslash sigma @ NLO QCD d \backslash sigma @ NLO EW	d \sigma @ NNLO QCD + NLO EW	gluon PDF , \backslash gamma+b for bottom PDF

Wishlist part 3 - EW gauge bosons ($\mathrm{V}=\mathrm{W}, \mathrm{Z}$)

Process	known	desired	motivation
V	d \backslash sigma(lept. V decay) @ NNLO QCD + EW	$\mathrm{d} \backslash$ sigma(lept. V decay) @ NNNLO QCD + NLO EW MC@NNLO	precision EW, PDFs
V+j	d \backslash sigma(lept. V decay) @ NLO $\mathrm{QCD}+\mathrm{EW}$	$\mathrm{d} \backslash$ sigma(lept. V decay) @ NNLO QCD + NLO EW	Z +j for gluon PDF $\mathrm{W}+\mathrm{c}$ for strange PDF
V+jj	d \sigma(lept. V decay) @ NLO QCD	$\mathrm{d} \backslash$ sigma(lept. V decay) @ NNLO QCD + NLO EW	study of systematics of $\mathrm{H}+\mathrm{jj}$ final state
VV'	$\mathrm{d} \backslash$ sigma (V decays) @ NLO QCD d \backslash sigma(stable V) @ NLO EW	$\mathrm{d} \backslash$ sigma(V decays) @ NNLO QCD + NLO EW	$\begin{aligned} & \text { bkg H } \rightarrow \text { VV } \\ & \text { TGCs } \end{aligned}$
$\mathrm{gg} \rightarrow \mathrm{VV}$	$\mathrm{d} \backslash$ sigma (V decays) @ LO	$\mathrm{d} \backslash$ sigma(V decays) @ NLO QCD	bkg to $\mathrm{H} \rightarrow \mathrm{VV}$
V \gamma	d \backslash sigma (V decay) @ NLO QCD d \backslash sigma(PA, V decay) @ NLO EW	$\mathrm{d} \backslash$ sigma $(\mathrm{V}$ decay) @ NNLO QCD + NLO EW	TGCs
Vb \bar b	$\begin{gathered} \mathrm{d} \backslash \text { sigma(lept. V decay) @ NLO } \\ \text { QCD } \\ \text { massive b } \end{gathered}$	$\begin{gathered} \mathrm{d} \backslash \text { sigma(lept. } \mathrm{V} \text { decay) @ NNLO } \\ \text { QCD } \\ \text { massless b } \end{gathered}$	bgk to VH(\rightarrow bb)
VV'\gamma	$\mathrm{d} \backslash$ sigma(V decays) @ NLO QCD	$\mathrm{d} \backslash$ sigma(V decays)	QGCs

Challenges for calculations in QFT

- Many processes involve several variables (masses, scattering angles), e.g. 2->3 processes
- One of the main obstacles: often, no analytic expressions for the Feynman integrals are available
- In this talk, I will focus on virtual contributions and present tools for the evaluation of the Feynman integrals

Connection between integrands and integrated functions

$$
\int d^{D} k_{1} \ldots d^{D} k_{L} \frac{1}{\prod_{i} P_{i}} \rightarrow \sum(\text { special functions })
$$

- I will review how "looking at" the LHS can be used to learn a lot about the RHS
- this talk: RHS evaluates to multiple polylogarithms

Analyzing loop integrands: maximal cuts, leading singularities

- maximal cuts

$$
D_{1}=k^{2} \quad D_{2}=\left(k+p_{1}\right)^{2} \quad D_{3}=\left(k+p_{1}+p_{2}\right)^{2} \quad D_{4}=\left(k+p_{1}+p_{2}+p_{3}\right)^{2}
$$

note: there are two solutions that localize the loop
momentum (related by complex conjugation); these
correspond to the leading singularities
[Cachazo; Cachazo, Skinner]

- at higher loops, maximal cuts do not completely localize the loop momenta; leading singularities `cut` also Jacobian factors

Pentagon example

- one-loop pentagon integrals
$D_{1}=k^{2} \quad D_{2}=\left(k+p_{1}\right)^{2} \quad D_{3}=\left(k+p_{1}+p_{2}\right)^{2} \quad D_{4}=\left(k+p_{1}+p_{2}+p_{3}\right)^{2} \quad D_{5}=\left(k-p_{5}\right)^{2}$
- now there are five different maximal cuts we can take
- leading singularities of the scalar pentagon integral cannot all be normalized to one
- consider a pentagon integral with numerator:

$$
\int d^{4} k \frac{N(k)}{D_{1} D_{2} D_{3} D_{4} D_{5}}
$$

- can choose numerator such that integral has constant leading singularities
- Such integrals `naturally` appear in $\mathrm{N}=4 \mathrm{SYM}$ [Arkani-Hamed et al, 20।0]

Leading singularities, weight conjecture

- observation: these integrals have homogeneous logarithmic weight ('transcendentality'); e.g.,

assign log weight: $\quad w(\log)=1 \quad w\left(\operatorname{Li}_{n}\right)=n \quad w(\pi)=1$

$$
w(a b)=w(a)+w(b)
$$

function has uniform weight 2 and kinematic-independent prefactors

- weight conjecture [Arkani-Hamed, Bourjaily, Cachzao, Trnka, 20I0] [Arkani-Hamed et al, 2012] integrals with constant leading singularities should have uniform weight
- as we will see, differential equations can shed more light on the weight properties

Example: choice of integral basis three-loop N=4 SYM form factor

$$
\begin{align*}
& F_{S}^{(3)}=R_{\epsilon}^{3}\left[+\frac{(3 D-14)^{2}}{(D-4)(5 D-22)} A_{9,1}-\frac{2(3 D-14)}{5 D-22} A_{9,2}-\frac{4(2 D-9)(3 D-14)}{(D-4)(5 D-22)} A_{8,1}\right. \\
& -\frac{20(3 D-13)(D-3)}{(D-4)(2 D-9)} A_{7,1}-\frac{40(D-3)}{D-4} A_{7,2}+\frac{8(D-4)}{(2 D-9)(5 D-22)} A_{7,3} \\
& -\frac{16(3 D-13)(3 D-11)}{(2 D-9)(5 D-22)} A_{7,4}-\frac{16(3 D-13)(3 D-11)}{(2 D-9)(5 D-22)} A_{7,5} \\
& -\frac{128(2 D-7)(D-3)^{2}}{3(D-4)(3 D-14)(5 D-22)} A_{6,1} \\
& -\frac{16(2 D-7)(5 D-18)\left(52 D^{2}-485 D+1128\right)}{9(D-4)^{2}(2 D-9)(5 D-22)} A_{6,2} \\
& -\frac{16(2 D-7)(3 D-14)(3 D-10)(D-3)}{(D-4)^{3}(5 D-22)} A_{6,3} \\
& -\frac{128(2 D-7)(3 D-8)\left(91 D^{2}-821 D+1851\right)(D-3)^{2}}{3(D-4)^{4}(2 D-9)(5 D-22)} A_{5,1} \\
& -\frac{128(2 D-7)\left(1497 D^{3}-20423 D^{2}+92824 D-140556\right)(D-3)^{3}}{9(D-4)^{4}(2 D-9)(3 D-14)(5 D-22)} A_{5,2} \\
& +\frac{4(D-3)}{D-4} B_{8,1}+\frac{64(D-3)^{3}}{(D-4)^{3}} B_{6,1}+\frac{48(3 D-10)(D-3)^{2}}{(D-4)^{3}} B_{6,2} \\
& -\frac{16(3 D-10)(3 D-8)\left(144 D^{2}-1285 D+2866\right)(D-3)^{2}}{(D-4)^{4}(2 D-9)(5 D-22)} B_{5,1} \\
& +\frac{128(2 D-7)\left(177 D^{2}-1584 D+3542\right)(D-3)^{3}}{3(D-4)^{4}(2 D-9)(5 D-22)} B_{5,2} \\
& +\frac{64(2 D-5)(3 D-8)(D-3)}{9(D-4)^{5}(2 D-9)(3 D-14)(5 D-22)} \\
& \times\left(2502 D^{5}-51273 D^{4}+419539 D^{3}-1713688 D^{2}+3495112 D-2848104\right) B_{4,1} \\
& \left.+\frac{4(D-3)}{D-4} C_{8,1}+\frac{48(3 D-10)(D-3)^{2}}{(D-4)^{3}} C_{6,1}\right] \tag{B.1}
\end{align*}
$$

Gehrmann, J.M.H., Huber (20II)

$A_{5,1}$

$A_{6,3}$

$A_{7,4}$

$A_{5,2}$

$A_{7,1}$

$A_{7,5}$

$A_{9,2}$

$B_{5,2}\left[=A_{5,4}\right]$

Figure 1: Master integrals for the three-loop form factors. Labels in brackets indicate the naming convention of Ref. [25].

Gehrmann, Glover, Huber, Ikizlerli, Studerus;
Lee, Smirnov \& Smirnov

Example: choice of integral basis three-loop $\mathrm{N}=4 \mathrm{SYM}$ form factor

$$
F_{S}^{(3)}=R_{\epsilon}^{3} \cdot\left[8 F_{1}^{\exp }-2 F_{2}^{\exp }+4 F_{3}^{\exp }+4 F_{4}^{\exp }-4 F_{5}^{\exp }-4 F_{6}^{\exp }-4 F_{8}^{\exp }+2 F_{9}^{\exp }\right]
$$

$$
\begin{aligned}
F_{S}^{(3)}= & R_{\epsilon}^{3} \cdot\left[8 F_{1}^{\exp }-2 F_{2}^{\exp }+4 F_{3}^{\exp }+4 F_{4}^{\exp }-4 F_{5}^{\exp }-4 F_{6}^{\exp }-4 F_{8}^{\exp }+2 F_{9}^{\exp }\right] \\
= & -\frac{1}{6 \epsilon^{6}}+\frac{11 \zeta_{3}}{12 \epsilon^{3}}+\frac{247 \pi^{4}}{25920 \epsilon^{2}}+\frac{1}{\epsilon}\left(-\frac{85 \pi^{2} \zeta_{3}}{432}-\frac{439 \zeta_{5}}{60}\right) \\
& -\frac{883 \zeta_{3}^{2}}{36}-\frac{22523 \pi^{6}}{466560}+\epsilon\left(-\frac{47803 \pi^{4} \zeta_{3}}{51840}+\frac{2449 \pi^{2} \zeta_{5}}{432}-\frac{385579 \zeta_{7}}{1008}\right) \\
& +\epsilon^{2}\left(\frac{1549}{45} \zeta_{5,3}-\frac{22499 \zeta_{3} \zeta_{5}}{30}+\frac{496 \pi^{2} \zeta_{3}^{2}}{27}-\frac{1183759981 \pi^{8}}{7838208000}\right)+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

- each integral has uniform (and maximal)
"transcendentality"
T[Zeta[n]] = n
T[eps^n] = n
$T[A B]=T[A]+T[B]$
- for theories with less susy, other integrals also needed

F_{4}

F_{8}

F_{2}

`d-log forms'

- observation: sometimes, loop integrand can be rewritten in suggestive form

[Arkani-Hamed et al, 2012] [Caron-Huot, talk at Trento, 2012] [Lipstein and Mason, 2013-2014]

$$
\begin{array}{cc}
\frac{d^{4} \ell\left(p_{1}+p_{2}\right)^{2}\left(p_{1}+p_{3}\right)^{2}}{} \quad \begin{array}{l}
\text { [also see recent work, on non-planar cases: } \\
\ell^{2}\left(\ell+p_{1}\right)^{2}\left(\ell+p_{1}+p_{2}\right)^{2}\left(\ell-p_{4}\right)^{2}
\end{array} & \text { Arkani-Hamed et al, 20। 4; Bern et al., 20। 5] } \\
=d \log \left(\frac{\ell^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell+p_{1}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell+p_{1}+p_{2}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right) d \log \left(\frac{\left(\ell-p_{4}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}\right)
\end{array}
$$

- `d-log forms`: make leading singularities obvious

Summary integrand investigations

- leading singularities - maximal weight conjecture
- allows to systematically construct uniform weight integrals
- works both in planar/non-planar case
- assign weight -I to I/eps to extend to dimensionally regulated integrals

Next step:

- prove uniform weight properties using differential equations
- extend to uniform but non-maximal weights

Differential equations (DE) technique

- idea: differentiate Feynman integral w.r.t. external variables, e.g. s, t, masses
Some general facts:
- a given Feynman integral f satisfies an n-th order DE
- equivalently described by a system of n first-order equations for \vec{f}

$$
\partial_{x} \vec{f}(x, \epsilon)=A(x, \epsilon) \vec{f}(x, \epsilon)
$$

since they come from Feynman integrals, they can only have regular singularities. Constrains matrix $A(x, \epsilon)$

Long and successful history:
[Kotikov, 1991] [Remiddi, 1997] [Gehrmann, Remiddi, 2000] [...]
New idea: use integrals with constants leading singularities as basis for DE system [JMH, 2013]

Example: one-loop four-point integral

- choose basis according to [JMH, 2013]
- differential equations $x=t / s \quad D=4-2 \epsilon$

$$
\begin{aligned}
& \partial_{x} \vec{f}(x, \epsilon)=\epsilon\left[\frac{a}{x}+\frac{b}{1+x}\right] \vec{f}(x, \epsilon) \\
& a=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
-2 & 0 & -1
\end{array}\right) \quad b=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 2 & 1
\end{array}\right)
\end{aligned}
$$

- make singularities manifest
- asymptotic behavior governed by matrices a, b
- Solution: expand to any order in ϵ

$$
\vec{f}=\epsilon^{-p} \sum_{k \geq 0} \epsilon^{k} \vec{f}^{(k)}
$$

$\vec{f}^{(k)}$ is k-fold iterated integral (uniform weight k)

Technique applies to QCD integrals

- system of DE for ' $\mathrm{N}=4$ ㄱ integral contains QCD integrals

$$
f(x, \epsilon)=
$$

Multi-variable case and the alphabet

- Natural generalization to multi-variable case

$$
d \vec{f}(\vec{x} ; \epsilon)=\epsilon d\left[\sum_{k} A_{k} \log \alpha_{k}(\vec{x})\right] \vec{f}(\vec{x} ; \epsilon)
$$

- Examples of alphabets:

4-point on-shell
two-variable example (from
I-loop Bhabha scattering):
`’hexagon functions" in $N=4 S Y M$

$$
\begin{aligned}
& \alpha=\{x, 1+x\} \\
& \alpha=\{x, 1 \pm x, y, 1 \pm y, x+y, 1+x y\} \\
& \text { [J.M.H., Smirnov] } \\
& \alpha=\{x, y, z, 1-x, 1-y, 1-z, \\
& 1-x y, 1-x z, 1-y z, 1-x y z\} \\
& \text { [Goncharov, Spradlin,Vergu,Volovich] [Caron-Huot, He] } \\
& \text { [Dixon, Drummond, J.M.H.] [Dixon et al.] }
\end{aligned}
$$

- Matrices and letters determine solution
- Immediate to solve in terms of iterated integrals

Physics applications of new ideas for DE

- vector boson production

VV' planar and non-planar NNLO integrals
[Caola, JMH, Melnikov, Smirnov, Smirnov, 2014]
equal mass case: [Gehrmann, von Manteuffel, Tancredi, Weihs, 2014]
essential ingredient for ZZ andW+W- production at NNLO
[Cascioli et al, 2014] [Gehrmann et al, 2014]

- 3-loop QCD cusp anomalous dimension (determines IR structure of planar QCD scattering amplitudes)
[Grozin, JMH, Korchemsky, Marquard, 2014]
- B physics
[Bell, Huber, 2014] [Huber, Kraenkl, 2015]
- integrals for H production in gluon fusion at N3LO
[Dulat, Mistlberger, 20I4] [Hoeschele,Hoff,Ueda, 2014]
physics result: [Anastasiou et al, 2014]

Beyond iterated integrals

- Note: functions beyond iterated integrals can appear in Feynman integrals
- One such class are elliptic functions, needed e.g. in top quark physics
[Czakon and Mitov, 20I0]
- A generalization of the above methods is required here

New results for penta-box integrals and five-particle amplitudes at NNLO

[Gehrmann, JMH, Lo Presti]

[related work with Frellesvig on one-loop pentagon integrals]

five-point kinematics

- massless 5->0 process

$$
s_{i j}=\left(p_{i}+p_{j}\right)^{2}
$$

- independent variables $\vec{x}=\left\{s_{12}, s_{23}, s_{34}, s_{45}, s_{51}\right\}$
- convenient to start with non-physical region where all planar integrals are real-valued

$$
s_{i, i+1}<0
$$

- other kinematic regions can be reached by analytic continuation

differential equations for penta-box integrals

-6l planar master integrals

$$
d \vec{f}(\vec{x} ; \epsilon)=\epsilon d\left[\sum_{k} A_{k} \log \alpha_{k}(\vec{x})\right] \vec{f}(\vec{x} ; \epsilon)
$$

- integral basis chosen following [MH, 2013]

$$
\vec{x}=\left\{s_{12}, s_{23}, s_{34}, s_{45}, s_{51}\right\}
$$

- alphabet of 24 letters $\alpha_{k}(\vec{x})$ e.g.

$$
\begin{gathered}
s_{12} \quad s_{12}-s_{34} \\
s_{12}+s_{23} \quad s_{12}-s_{34}+s_{51} \\
\left(s_{23}-s_{51}\right) \sqrt{\Delta}+s_{12} s_{23}^{2}-s_{34} s_{23}^{2}+s_{34} s_{45} s_{23}-2 s_{12} s_{51} s_{23} \\
+s_{34} s_{51} s_{23}+s_{45} s_{51} s_{23}+s_{12} s_{51}^{2}-s_{45} s_{51}^{2}+s_{34} s_{45} s_{51}
\end{gathered}
$$

Gram determinant Δ

boundary conditions (I)

- the boundary conditions can be obtained from physical conditions
- no singularities in non-physical region $s_{i, i+1}<0$
- this means that certain singularities are spurious (on the first sheet of the multivalued functions), e.g. at

$$
\begin{aligned}
& s_{12}=s_{34} \\
& s_{12}+s_{51}=s_{34}
\end{aligned}
$$

- similarly, no branch cuts should start at $\Delta=0$
- these conditions fix everything except trivial single-scale integrals that are evaluated in terms of gamma functions

boundary conditions (2)

- boundary values at symmetric point

$$
s_{12}=-\frac{x}{(1-x)^{2}}, \quad s_{23}=-1, \quad s_{34}=-1, \quad s_{45}=-1, \quad s_{51}=-1
$$

- reduced alphabet (no square root)

$$
\begin{aligned}
& \left\{x+1, x, x-\frac{1}{2}, x-1, x-2,1-3 x+x^{2}, 1-x+x^{2}\right\} \\
& s_{12}=-1 \quad \longleftrightarrow 1-3 x+x^{2}=0 \\
& \Delta=0 \quad \longleftrightarrow \quad x=-1
\end{aligned}
$$

analytic solution

- we have

$$
d \vec{f}(\vec{x}, \epsilon)=\epsilon d \tilde{A} \vec{f}(\vec{x}, \epsilon) \quad \tilde{A}=\sum_{k} A_{k} \alpha_{k}(\vec{x})
$$

- solution in terms of iterated integrals

$$
\begin{aligned}
\vec{f}(\vec{x}, \epsilon)= & \mathbb{P} \exp \left[\epsilon \int_{\gamma} d \tilde{A}\right] \vec{f}\left(\vec{x}_{0}, \epsilon\right) \\
& \gamma:[0,1] \longrightarrow \mathcal{M} \\
& \gamma(0)=\vec{x}_{0} \quad \gamma(1)=\vec{x}
\end{aligned}
$$

- can be written in terms of Goncharov polylogarithms (for a convenient choice of γ)
- Note: knows about all " $s y m b o l$ " simplifications, but has exact information about boundary values

application to five-particle amplitudes

- five-particle scattering amplitudes were conjectured to have the following form (in modern language) [Bern, Dixon, Smirnov, 2003]

$$
\begin{aligned}
\log M_{5}= & \sum_{L \geq 1} a^{L}\left[-\frac{\gamma^{(L)}}{8(L \epsilon)^{2}}-\frac{\mathcal{G}_{0}^{(L)}}{4 L \epsilon}+f^{(L)}\right] \sum_{i=1}^{5}\left(\frac{\mu^{2}}{s_{i, i+1}}\right)^{L \epsilon} \\
& +\frac{\gamma(a)}{4} F_{n}^{(1)}\left(s_{i j}\right)+C(a)+\mathcal{O}(\epsilon)
\end{aligned}
$$

- This is in part due to the infrared structure of amplitudes
- The BDS conjecture fixes the finite part; it is now understood to follow from dual conformal symmetry
[Drummond, JMH, Korchemsky, Sokatchev, 2008]
- previously, this formula had been tested numerically
[Cachazo, Spradlin,Volovich, 2006] (parity-even part)
[Bern, Czakon, Kosower, Roiban, Smirnov, 2006]

application to five-particle amplitudes

$$
\begin{aligned}
\log M_{5}= & \sum_{L \geq 1} a^{L}\left[-\frac{\gamma^{(L)}}{8(L \epsilon)^{2}}-\frac{\mathcal{G}_{0}^{(L)}}{4 L \epsilon}+f^{(L)}\right] \sum_{i=1}^{5}\left(\frac{\mu^{2}}{s_{i, i+1}}\right)^{L \epsilon} \\
& +\frac{\gamma(a)}{4} F_{n}^{(1)}\left(s_{i j}\right)+C(a)+\mathcal{O}(\epsilon)
\end{aligned}
$$

- all ingredients now known analytically
- we verified the parity-even part of it using our analytic results

$$
\begin{aligned}
M_{5}^{(2)} & =\sum_{\text {cyclic }}\left[\epsilon^{2}\left(f_{60}+f_{54}+f_{52}\right)\right] \\
f_{60}^{(0)} & =-3 C[] \\
f_{60}^{(1)} & =2 C[5]+C[7]+C[8]+C[10]+C[11]+3 C[12]-4 C[14]-3 C[16]+2 C[21]
\end{aligned}
$$

- reproduces everything, including constants

Summary

- unitarity-based methods for determining integrands complemented with a new method for evaluating the integrals
- both rely on analyzing the integrand's singularity structure
- DE method particularly useful for problems with many scales
- new result: all planar on-shell five-particle two-loop integrals

Outlook

- opens the door for applications to 2->3 amplitudes
- can be used to compute QCD ++++++ amplitude
[Badger, Frellesvig, Zhang, 2013]
- non-planar integrals
- extension to Higgs plus jet integrals

Thank you!

Extra slides

Algebraic approach to differential equations

- The leading singularities approach allows to find a canonical form of the differential equations in an efficient way
- The exist also approaches (mostly) ignoring the Feynman integral origin, and working directly at the level of the DE
- Differential equations for Feynman integrals only have regular singularities (Fuchsian differential equations)
- Algorithms exist to make this manifest
[Moser, 1960; Barkatou]
- Recently proposed to apply this to obtain canonical form [JMH, 2014]
- Implementation (with improvements) [Lee, 2014]

The alphabet and perfect bricks (I)

Can we parametrize variables such that alphabet is rational?
Not essential, but nice feature.

- Example: Higgs production

$$
\begin{aligned}
& \text { encounter } \sqrt{1-4 m^{2} / s} \\
& \text { choose } \quad-m^{2} / s=x /(1-x)^{2} \\
& \alpha=\{x, 1-x, 1+x\} \quad \text { (to two loops) }
\end{aligned}
$$

Note: this is a purely kinematical question. Independent of basis choice.

- Related to diophantine equations
e.g. find rational solutions to equations such as

$$
1+4 a=b^{2}
$$

here we found a I-parameter solution

$$
a=\frac{x}{(1-x)^{2}} \quad b=\frac{1+x}{1-x}
$$

The alphabet and perfect bricks (2)

- Classic example: Euler brick problem

Find a brick with sides a, b, c and diagonals d, e, f integers
smallest solution (P. Halcke):
$(\mathrm{a}, \mathrm{b}, \mathrm{c})=(44,117,240)$

$$
\begin{aligned}
& a^{2}+b^{2}=d^{2} \\
& a^{2}+c^{2}=e^{2} \\
& b^{2}+c^{2}=f^{2}
\end{aligned}
$$

Perfect cuboid (add eq. $\quad a^{2}+b^{2}+c^{2}=g^{2} \quad$): open problem in mathematics!

- Similar equations for particle kinematics
e.g encountered in 4-d light-by-light scattering

$$
\begin{aligned}
& u=-4 m^{2} / s \quad v=-4 m^{2} / t \\
& \beta_{u}=\sqrt{1+u}, \beta_{v}=\sqrt{1+v}, \beta_{u v}=\sqrt{1+u+v}
\end{aligned}
$$

[Caron-Huot JMH, 2014]

Need two-parameter solution to

$$
\begin{aligned}
\beta_{u}^{2}+\beta_{v}^{2} & =\beta_{u v}^{2}+1 \\
\text { e.g. } \quad \beta_{u} & =\frac{1-w z}{w-z}, \quad \beta_{v}=\frac{w+z}{w-z}, \quad \beta_{u v}=\frac{1+w z}{w-z} .
\end{aligned}
$$

more roots in D-dim and at 3 loops! - in general alphabet changes with the loop order!
Find such solutions systematically? Minimal polynomial order?

Feynman integrals as iterated integrals (I)

- Logarithm and dilogarithm are first examples of iterated integrals with special " ${ }^{\text {d-log" integration kernels }}$

$$
\frac{d t}{t}=d \log t \quad \frac{-d t}{1-t}=d \log (1-t) \quad \frac{d t}{1+t}=d \log (1+t)
$$

- these are called harmonic polylogarithms (HPL) [Remiddi,Vermaseren] e.g. $\quad H_{1,-1}(x)=\int_{0}^{x} \frac{d x_{1}}{1-x_{1}} \int_{0}^{x_{1}} \frac{d x_{2}}{1+x_{2}}$
- shuffle product algebra
- coproduct structure
- Mathematica implementation [Maitre]
- weight: number of integrations
- special values related to multiple zeta values (MZV)

$$
\zeta_{i_{1}, i_{2}, \ldots, i_{k}}=\sum_{a_{1}>a_{2}>\ldots a_{k} \geq 1} \frac{1}{a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{k}^{i_{k}}} \quad \begin{aligned}
& \text { cf. e.g. [Bluemlein, Broadhurst, } \\
& \text { Vermaseren] }
\end{aligned}
$$

$$
\text { e.g. } \quad H_{0,1}(1)=\operatorname{Li}_{2}(1)=\zeta_{2}
$$

Feynman integrals as iterated integrals (2)

- Natural generalization: multiple polylogarithms allow kernels $\quad w=d \log (t-a)$

$$
G_{a_{1}, \ldots a_{n}}(z)=\int_{0}^{z} \frac{d t}{t-a_{1}} G_{a_{2}, \ldots, a_{n}}(t)
$$

[also called hyperlogarithms; Goncharov polylogarithms]
numerical evaluation: GINAC [Vollinga, Weinzierl]

- Chen iterated integrals

$$
\int_{C} \omega_{1} \omega_{2} \ldots \omega_{n} \quad C:[0,1] \longrightarrow M \quad \text { (space of kinematical variables) }
$$

Alphabet: set of differential forms $\omega_{i}=d \log \alpha_{i}$ integrals we discuss will be monodromy invariant on $M \backslash S$ S (set of singularities) more flexible than multiple polylogarithms!

- Uniform weight functions (pure functions):
\mathbb{Q}-linear combinations of functions of the same weight

