Hexagon Functions: Bootstrapping an NMHV Amplitude through Four Loops

 arXiv:1308.2276, 1408.1505, plus work in progressMatt von Hippel

Perimeter Institute for Theoretical Physics

July 7, 2015

Try this ONE WEIRD TRICK to CALCULATE FOUR-LOOP AMPLITUDES*

Try this ONE WEIRD TRICK to CALCULATE EOUR-LOOP AMPLITUDES*

*In planar $\mathrm{N}=4$ super Yang-Mills, for six points

$\mathrm{N}=4$ super Yang-Mills

- We are looking at $\mathcal{N}=4$ super Yang-Mills in the planar limit, in $4-2 \epsilon$ dimensions
- Maximally Helicity-Violating (MHV) component simplest $(--++++)$, Next-to-MHV (NMHV) is what this talk will explore.
- Conformal symmetry enhanced by dual conformal symmetry: $\mathcal{N}=4$ amplitudes can be interpreted as polygonal Wilson loops with corners defined in terms of the amplitude momenta, $k_{i}=x_{i}-x_{i+1}$.
- This led to understanding of IR divergences via BDS ansatz [Bern, Dixon, Smirnov '05].
- Dividing NMHV by MHV leads to IR-finite Ratio Function, with transcendental weight two times the loop order

Transcendental Functions

- Transcendental functions have fixed transcendental weight: $\pi^{n}, \quad \zeta_{n}, \quad \log ^{n} z, \quad \operatorname{Li}_{n}(z)$, etc.
- Classical Polylogarithms:

$$
\mathrm{Li}_{n}(z)=\int_{0}^{z} d \ln t_{1} \int_{0}^{t_{1}} d \ln t_{2} \ldots \int_{0}^{t_{n-1}} d \ln t_{n-1} \int_{0}^{t_{n}} d \ln \left(1-t_{n}\right)
$$

- Transcendental functions fall into a more general class, with integrals over some set of rational functions:

$$
\int_{0}^{z} d \ln \phi_{1}\left(t_{1}\right) \int_{0}^{t_{1}} d \ln \phi_{2}\left(t_{2}\right) \ldots \int_{0}^{t_{n}} d \ln \phi_{n}\left(t_{n}\right)
$$

Here n is the transcendental weight, while the ϕ_{r} are the letters of the symbol

- Final entry of the symbol corresponds to outermost integration \Rightarrow First derivative

Hexagon Functions

- Want to bootstrap things up through four loops, for six-particle amplitudes
- To do this, need functions germane to six-point dual conformally invariant processes: Hexagon Functions [Dixon, Drummond, MvH, Pennington 1308.2276]
- These functions depend on three dual conformally invariant cross ratios: u, v, w, or alternatively parity-odd variables y_{u}, y_{v}, y_{w}.

Construction

We construct functions with:

- Symbol entries from $\mathcal{S}_{u}=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}$
- Physical branch cuts: first entry must be u, v, or w

From there, bootstrap!

- Derivatives of hexagon functions composed of hexagon functions of lower weight
- Fix transcendental constants with branch cuts

End up with basis of a few hundred irreducible functions.

(1) Introduction

(2) Hexagon Functions

(3) Computing The Ratio Function

4) The Final Form
(5) Conclusions

Tree Level Ratio Function

- Out of momentum twistor four-brackets $\langle a b c d\rangle=\epsilon_{R S T U} Z_{a}^{R} Z_{b}^{S} Z_{c}^{T} Z_{d}^{U}$, build the six superconformal R-invariants:

$$
(f)=[a b c d e]=\frac{\delta^{4}\left(\chi_{a}\langle b c d e\rangle+\text { cyclic }\right)}{\langle a b c d\rangle\langle b c d e\rangle\langle c d e a\rangle\langle\text { deab }\rangle\langle e a b c\rangle}
$$

- The tree-level ratio function then is:

$$
\mathcal{P}_{\mathrm{NMHV}}^{(0)}=(6)+(4)+(2)=(1)+(3)+(5)
$$

Loop Level

- At loop level, R-invariants are dressed with permutations of two transcendental functions: an even parity function V, and and odd parity function \tilde{V}

$$
\begin{aligned}
\mathcal{P}_{\mathrm{NMHV}}=\frac{1}{2}[& {[(1)+(4)] V(u, v, w)+[(1)-(4)] \tilde{V}(u, v, w) } \\
+ & {[(2)+(5)] V(v, w, u)-[(2)-(5)] \tilde{V}(v, w, u) } \\
+ & {[(3)+(6)] V(w, u, v)+[(3)-(6)] \tilde{V}(w, u, v)] }
\end{aligned}
$$

Constraints

Lance Dixon and I tackled the ratio function at three loops [1408.1505], and with Andrew McLeod at four loops [to appear]. We began with a general ansatz of Hexagon Functions, then applied constraints:

- Symmetry:

$$
V(w, v, u)=V(u, v, w) \quad \text { and } \quad \tilde{V}(w, v, u)=-\tilde{V}(u, v, w)
$$

- "Gauge Freedom": Add a cyclically symmetric function to \tilde{V}

$$
\begin{aligned}
& \frac{1}{2}[[(1)-(4)] \tilde{f}(u, v, w)-[(2)-(5)] \tilde{f}(u, v, w)+[(3)-(6)] \tilde{f}(u, v, w)] \\
& \quad=\frac{1}{2}[[(1)+(3)+(5)]-[(2)+(4)+(6)]] \tilde{f}(u, v, w)=0
\end{aligned}
$$

Constraints, Continued

- Final Entry Constraint: \bar{Q} equation requires that R-invariant (1) can only multiply a function with final entries from

$$
\left\{\frac{u}{1-u}, \frac{v}{1-v}, \frac{w}{1-w}, y_{u}, y_{v}, y_{w}, \frac{u w}{v}\right\}
$$

while the other R-invariants multiply appropriate cyclic permutations [Caron-Huot, He '11].

- We found for loops 1-3 this is even more constrained, used for new final entry condition

$$
\left\{\frac{u}{1-u}, \frac{w}{1-w}, y_{u} y_{w}, y_{v}, \frac{u w}{v}\right\}
$$

- Spurious Pole Constraints: Unphysical poles should cancel. R-invariants (1) and (3) contain poles as $\langle 2456\rangle \rightarrow 0$, so we must have that

$$
\left[V(u, v, w)-V(w, u, v)+\tilde{V}\left(y_{u}, y_{v}, y_{w}\right)-\tilde{V}\left(y_{w}, y_{u}, y_{v}\right)\right]_{\{2456\rangle=0}=0
$$

Near-Collinear Expansion

- The ratio function vanishes in the collinear limit.
- Basso, Sever, and Vieira calculate Wilson loops in $\mathcal{N}=4 \mathrm{sYM}$ for finite coupling using integrability, expanding in GKP string states propagating across.
- This corresponds to expansion around the collinear limit.
- We use first-order data as constraints, second order as a check.

Constraints in Action

Constraint	$L=1$	$L=2$		$L=3$		$L=4$	
	even	even	odd	even	odd	even	odd
Integrable functions	10	82	6	639	122	5153	1763
(Anti)symmetry	7	50	2	363	$39+10$	2797	$583+203$
Final-entry conditions	3	14	1	78	$21+3$	487	$321+64$
Collinear vanishing	0	2	1	28	$21+3$	284	$321+64$
Spurious Pole	0	1		$4+3$	$180+64$		
Near-Collinear OPE	0	0		$0+3$	$0+64$		

(1) Introduction

(2) Hexagon Functions

(3) Computing The Ratio Function

4 The Final Form

The Function

- Can "show the function", but it's long, not illuminating, relies on defining lots of lower-weight functions.
- Better to look at plots.

Planes in v

Figure: $V^{(3)}(u, v, w)$ evaluated on successive planes in v.

Figure: $\tilde{V}^{(3)}(u, v, w) / \tilde{V}^{(2)}(u, v, w)$ evaluated on successive planes in v.

Lines through the space

Figure: $V^{(4)}(u, 1,1), V^{(3)}(u, 1,1)$,
$V^{(2)}(u, 1,1)$, and $V^{(1)}(u, 1,1)$
normalized to one at $(1,1,1)$. One loop is in red, two loops is in green, three loops is in yellow, and four loops is in blue.

Figure: $\tilde{V}^{(4)}(u, 1,1), \tilde{V}^{(3)}(u, 1,1)$ and $\tilde{V}^{(2)}(u, 1,1)$ normalized so they have a $\ln ^{2} u$ term in the $u \rightarrow 0$ limit with coefficient one. Two loops is in green, three loops is in yellow, and four loops is in blue.

Conclusions and Open Questions

- We have bootstrapped up amplitudes at 6 points through 4 loops for both MHV and NMHV, with no need to know the integrands beforehand.
- Recently, Drummond, Papathanasiou, and Spradlin have found 3 loop 7 point MHV symbol in arXiv:1412.3763 [hep-th], more 7 point work ahead, potential to go beyond 7 ?
- BSV's calculation of the OPE provides an enormous amount of data. Even at first order, terms "want to be re-summed". Better understanding of this might lead to all-loop, all-kinematics picture.

