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Introduction

Try this ONE WEIRD TRICK
to CALCULATE FOUR-LOOP

SCATTERING
AMPLITUDES*
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Introduction

Try this ONE WEIRD TRICK
to CALCULATE FOUR-LOOP

SCATTERING
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*In planar N=4 super Yang-Mills, for six points
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Introduction

N=4 super Yang-Mills

We are looking at N = 4 super Yang-Mills in the planar limit, in
4− 2ε dimensions
Maximally Helicity-Violating (MHV) component simplest
(−−+ + ++), Next-to-MHV (NMHV) is what this talk will explore.
Conformal symmetry enhanced by dual conformal symmetry: N = 4
amplitudes can be interpreted as polygonal Wilson loops with corners
defined in terms of the amplitude momenta, ki = xi − xi+1.
This led to understanding of IR divergences via BDS ansatz [Bern,
Dixon, Smirnov ’05].
Dividing NMHV by MHV leads to IR-finite Ratio Function, with
transcendental weight two times the loop order
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Introduction Transcendental Functions

Transcendental Functions
Transcendental functions have fixed transcendental weight:
πn, ζn, logn z , Lin(z), etc.
Classical Polylogarithms:

Lin(z) =
∫ z

0
d ln t1

∫ t1

0
d ln t2 . . .

∫ tn−1

0
d ln tn−1

∫ tn

0
d ln(1− tn)

Transcendental functions fall into a more general class, with integrals
over some set of rational functions:∫ z

0
d lnφ1(t1)

∫ t1

0
d lnφ2(t2) . . .

∫ tn

0
d lnφn(tn)

Here n is the transcendental weight, while the φr are the letters of
the symbol
Final entry of the symbol corresponds to outermost integration ⇒
First derivative
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Hexagon Functions Space of Functions

Hexagon Functions

Want to bootstrap things up through four loops, for six-particle
amplitudes
To do this, need functions germane to six-point dual conformally
invariant processes: Hexagon Functions [Dixon, Drummond, MvH,
Pennington 1308.2276]
These functions depend on three dual conformally invariant cross
ratios: u, v ,w , or alternatively parity-odd variables yu, yv , yw .
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Hexagon Functions Space of Functions

Construction

We construct functions with:
Symbol entries from Su = {u, v ,w , 1− u, 1− v , 1− w , yu, yv , yw}
Physical branch cuts: first entry must be u, v , or w

From there, bootstrap!
Derivatives of hexagon functions composed of hexagon functions of
lower weight
Fix transcendental constants with branch cuts

End up with basis of a few hundred irreducible functions.
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Computing The Ratio Function

Tree Level Ratio Function

Out of momentum twistor four-brackets 〈abcd〉 = εRSTUZR
a ZS

b ZT
c ZU

d ,
build the six superconformal R-invariants:

(f ) = [abcde] = δ4(χa〈bcde〉+ cyclic)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉

The tree-level ratio function then is:

P(0)
NMHV = (6) + (4) + (2) = (1) + (3) + (5)
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Computing The Ratio Function

Loop Level

At loop level, R-invariants are dressed with permutations of two
transcendental functions: an even parity function V , and and odd
parity function Ṽ

PNMHV= 1
2
[

[(1) + (4)]V (u, v ,w) + [(1)− (4)]Ṽ (u, v ,w)

+ [(2) + (5)]V (v ,w , u)− [(2)− (5)]Ṽ (v ,w , u)

+ [(3) + (6)]V (w , u, v) + [(3)− (6)]Ṽ (w , u, v)
]
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Computing The Ratio Function

Constraints

Lance Dixon and I tackled the ratio function at three loops [1408.1505],
and with Andrew McLeod at four loops [to appear]. We began with a
general ansatz of Hexagon Functions, then applied constraints:

Symmetry:

V (w , v , u) = V (u, v ,w) and Ṽ (w , v , u) = −Ṽ (u, v ,w)

“Gauge Freedom”: Add a cyclically symmetric function to Ṽ

1
2
[
[(1)− (4)]f̃ (u, v ,w)− [(2)− (5)]f̃ (u, v ,w) + [(3)− (6)]f̃ (u, v ,w)

]
= 1

2
[
[(1) + (3) + (5)]− [(2) + (4) + (6)]

]
f̃ (u, v ,w) = 0
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Computing The Ratio Function

Constraints, Continued
Final Entry Constraint: Q̄ equation requires that R-invariant (1) can
only multiply a function with final entries from{ u

1− u ,
v

1− v ,
w

1− w , yu, yv , yw ,
uw
v

}
,

while the other R-invariants multiply appropriate cyclic permutations
[Caron-Huot, He ’11].

I We found for loops 1-3 this is even more constrained, used for new
final entry condition{

u
1− u ,

w
1− w , yuyw , yv ,

uw
v

}
.

Spurious Pole Constraints: Unphysical poles should cancel.
R-invariants (1) and (3) contain poles as 〈2456〉 → 0, so we must
have that

[V (u, v ,w)− V (w , u, v) + Ṽ (yu, yv , yw )− Ṽ (yw , yu, yv )]〈2456〉=0 = 0
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Computing The Ratio Function

Near-Collinear Expansion

The ratio function vanishes in the collinear
limit.
Basso, Sever, and Vieira calculate Wilson
loops in N = 4 sYM for finite coupling
using integrability, expanding in GKP string
states propagating across.

I This corresponds to expansion around the
collinear limit.

I We use first-order data as constraints,
second order as a check.
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Computing The Ratio Function

Constraints in Action

Constraint L = 1 L = 2 L = 3 L = 4
even even odd even odd even odd

Integrable functions 10 82 6 639 122 5153 1763
(Anti)symmetry 7 50 2 363 39+10 2797 583+203
Final-entry conditions 3 14 1 78 21 + 3 487 321 + 64
Collinear vanishing 0 2 1 28 21 + 3 284 321 + 64
Spurious Pole 0 1 4 + 3 180 + 64
Near-Collinear OPE 0 0 0 + 3 0 + 64
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The Final Form

The Function

Can “show the function”, but it’s long, not illuminating, relies on
defining lots of lower-weight functions.
Better to look at plots.
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The Final Form

Planes in v

v34

v12

v14
V (3) (u, v, w )

u w

Figure: V (3)(u, v ,w) evaluated on
successive planes in v .

v34

v12

v14

v34

v12

v14

Ṽ (3) (u, v, w )/ Ṽ (2) (u, v, w )

u w

Figure: Ṽ (3)(u, v ,w)/Ṽ (2)(u, v ,w)
evaluated on successive planes in v .

Matt von Hippel (Perimeter) Hexagon Functions July 7, 2015 16 / 18



The Final Form

Lines through the space
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Figure: V (4)(u, 1, 1), V (3)(u, 1, 1),
V (2)(u, 1, 1), and V (1)(u, 1, 1)
normalized to one at (1, 1, 1). One loop
is in red, two loops is in green, three
loops is in yellow, and four loops is in
blue.

Figure: Ṽ (4)(u, 1, 1), Ṽ (3)(u, 1, 1) and
Ṽ (2)(u, 1, 1) normalized so they have a
ln2 u term in the u → 0 limit with
coefficient one. Two loops is in green,
three loops is in yellow, and four loops is
in blue.
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Conclusions

Conclusions and Open Questions

We have bootstrapped up amplitudes at 6 points through 4 loops for
both MHV and NMHV, with no need to know the integrands
beforehand.
Recently, Drummond, Papathanasiou, and Spradlin have found 3 loop
7 point MHV symbol in arXiv:1412.3763 [hep-th], more 7 point work
ahead, potential to go beyond 7?
BSV’s calculation of the OPE provides an enormous amount of data.
Even at first order, terms “want to be re-summed”. Better
understanding of this might lead to all-loop, all-kinematics picture.
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