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Schouten identities for the solution of systems of differential equations for Feynman integrals

Any Feynman Diagrams is (after some tedious but elementary algebra!)
nothing but a collection of scalar Feynman Integrals

I(p1, p2, q1) =
- -

--p1

p2

q1

q2

with q2 = p1 + p2 − q1

A (possible) representation in momentum space (massless case!)

I(p1, p2, q1) =

∫
Dd k Dd l

k2 l2 (k − l)2 (k − p1)2 (k − p12)2 (l − p12)2 (l − q1)2

Typical 2-loop Feynman Integral required for the computation of a 2→ 2

scattering process.
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Schouten identities for the solution of systems of differential equations for Feynman integrals

How do we (tentatively!) compute analytically such integrals?

1. Integrals are ill-defined in d = 4 → need a regularization procedure!

2. Use of dimensional regularization to regulate UV and IR divergences.

3. Dimensional regularisation turned out to be much MORE than just a
regularization scheme!

⇓

Dimensionally regularized Feynman integrals always converge!

This allows to derive a large number of unexpected relations...

I Integration by Parts, Lorentz invariance identities, Schouten Identities,...
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Schouten identities for the solution of systems of differential equations for Feynman integrals

This large set of identities makes it simpler to compute Feynman integrals in
d continuous dimensions than in d = 4!

A general scalar Feynman Integral (l-loops) can be written as

I(σ1, ..., σs ;α1, ..., αn) =

∫ l∏
j=1

ddkj
(2π)d

Sσ1
1 ... Sσs

s

Dα1
1 ...Dαn

n

where

Dn = (q2
n + m2

n) , are the propagators

Sn = ki · pj , are scalar products among internal and external momenta

This introduces the concept of Topology
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Schouten identities for the solution of systems of differential equations for Feynman integrals

1. Integration By Parts Identities (IBPs)

∫ l∏
j=1

dd kj
(2π)d

(
∂

∂kµ
j

vµ
Sσ1

1 ...Sσs
s

Dα1
1 ...Dαn

n

)
= 0 , vµ = kµ

j , p
µ
k

2. They generate huge systems of linear equations which relates integrals
with different powers of numerators and denominators.

3. The integrals always belong to the same topology, as defined above.

The IBPs can be solved using computer algebra (Reduze2, AIR, FIRE5...)
As a result, all integrals are expressed as linear combination of a small subset of

Master Integrals

Typically we go from thousands to tens of integrals → The basis is of course
not unique!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Dimensionally regularised Feynman Integrals fulfil differential equations!

[Kotikov ’90, Remiddi ’99, Gehrmann-Remiddi ’00,...]

Let us take a topology of integrals which depend on two external invariants

p2 , m2 → x =
p2

m2
.

I(p2,m2;α1 , ..., αn) =

∫ l∏
j=1

dd kj
(2π)d

1

Dα1
1 ...Dαn

n
, (same with scalar products)

Assume IBPs reduce all integrals into this topology to N Master Integrals
mi (p

2; d), with i = 1, ...,N.

6 / 36



Schouten identities for the solution of systems of differential equations for Feynman integrals

1) All integrals depend on x = p2/m2 only.

2) Differentiation w.r.t to an external invariant:

p2 = pµ pµ → ∂

∂ p2
=

1

2 p2

(
pµ ∂

∂pµ

)

∂

∂ p2

∫ l∏
j=1

dd kj

(2π)d
1

Dα1
1 ...Dαn

n
=

∫ l∏
j=1

dd kj

(2π)d
1

2 p2

(
pµ

∂

∂pµ

)
1

Dα1
1 ...Dαn

n

3) With IBPs integrals on r.h.s. can be reduced again to the MIs

∂

∂ p2
mi (d ; p2) =

N∑
j=1

cij(d ; p2)mj(d ; p2) .

System of N coupled differential equations for mi (d ; p2)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

How does this help in practise?
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Schouten identities for the solution of systems of differential equations for Feynman integrals

What if N = 1? (There is only 1 MI!)

If there is only 1 master integral the situation is in principle trivial:

∂

∂ p2
m(d ; p2) = c(d ; p2)m(d ; p2)

First order linear equation, can be solved by quadrature

m(d ; p2) = C0 exp

(∫ p2

0

dt c(d ; t)

)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

What if N > 1? (Life is not that easy anymore!)

If the system is coupled, it corresponds to a N-th order differential equation for
any of the MIs. No general strategy for a solution is known.

⇓

Observations

1. We are free of choosing our basis of MIs!

2. We are interested in the expansion for d → 4!

⇓

Changing the basis can simplify the structure of the differential equations!

At least in the limit for d → 4!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

We can very often find a basis of MIs where the equations become
triangular as d → 4 [Gehrmann, Remiddi ’00, ’01]

∂

∂p2

 m1

...
mN

 =


c

(0)
11 c

(0)
12 ... c

(0)
1N

0 c
(0)
22 ... c

(0)
2N

... ... ... ...

0 0 ... c
(0)
NN


 m1

...
mN

+O(d − 4)

This reduces, in principle, the problem to the case N = 1

⇓

In order to obtain expansion in (d − 4) we must perform many repeated
integrations by quadrature!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

We can do better → Canonical Basis [A.Kotikov ’10, J.Henn ’13]

(see talk by J.Henn)

Suppose we are able to find a basis of Master Intergrals such that the system
of differential equations takes the following form:

∂

∂p2

 m1

...
mN

 = (d − 4)


c11(p2) ... c1N(p2)
c21(p2) ... c2N(p2)
... ... ...

cN1(p2) ... cNN(p2)


 m1

...
mN



Such that:

a) The dependence from the kinematics is factorised from d .

b) The functions cjk(p2) must be in d-log form, i.e.
∫ p2

dt cjk(t) ∝ ln (f (p2))
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Schouten identities for the solution of systems of differential equations for Feynman integrals

If the differential equations are in canonical form we can trivially integrate
them order-by-order in (d − 4)

⇓

a) Solution can be expressed in terms of Multiple polylogarithms (MPLs)
[Remiddi,Vermaseren; Gehrmann,Remiddi; Goncharov]

G(a1, a2, ..., an; x) =

∫ x

0

dt

t − a1
G(a2, ..., an; x) , G(0, ..., 0︸ ︷︷ ︸

n

; x) =
1

n!
lnn x .

(See talk by E. Panzer)

b) No rational factors, and uniform transcendental weight!

Compact and “beautiful” results!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

How to find such basis?

1. Henn’s criteria [J.Henn ’13]

2. Magnus expansion for linear dependence on ε
[Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Schubert, Tancredi ’14]

3. R. Lee algorithm if there is only one non-trivial ratio. [R. Lee ’14]
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Schouten identities for the solution of systems of differential equations for Feynman integrals

x) Can we know a priori if with these methods, we will get anywhere?

xx) What is the reason behind the possibility of finding such a basis?

⇓

1. If the DE can be put in triangular form → canonical basis is often
obtainable with limited effort
[Gehrmann, Manteuffel, Tancredi, Weihs ’13].

2. All known cases where DE can be put in triangular form, can be
integrated in terms of multiple polylogaritms.

3. Central question: how do we know whether the equations can be put in
triangular form as d → 4?
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Schouten identities for the solution of systems of differential equations for Feynman integrals

A possible path to an answer

1) Now very naively take two coupled diff. equations

∂

∂p2

(
m1

m2

)
=

(
c11 c12

c21 c22

) (
m1

m2

)

2) What if we could say m2 = f (p2)m1 +O(d − n)?

Then we would naively expect that

∂

∂ p2

(
m2 − f (p2)m1

)
= O(d − n)!

Idea developed for the first time in [Remiddi, Tancredi ’13] for the
two-loop sunrise with three different masses.
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Let’s look at something simpler (but somehow more interesting!)

-��
��

p
= I(p2,m2;α1, α2, α3, α4, α5)

=

∫
Dd kDd l

(k · p)α4 (l · p)α5

(k2)α1 (l2)α2 ((k − l + p)2 −m2)α3

1. Using IBPs we can reduce all these integrals to only 2 Master Integrals.

S1 = I(p2,m2; 1, 1, 1, 0, 0) , S2 = I(p2,m2; 1, 1, 2, 0, 0) .

2. Derive now DE for these two integrals, we find:

d

d p2
S1 =

(d − 3)

p2
S1 −

m2

p2
S2

d

d p2
S2 =

(d − 3)(3d − 8)

2 p2 (p2 −m2)
S1 +

(
2(d − 3)

p2 −m2
− (3 d − 8)

2 p2

)
S2
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Schouten identities for the solution of systems of differential equations for Feynman integrals

We know that they can be put in canonical form as d → 4, and therefore also
simply decoupled. Where does the right basis come from?

1. Schouten Identities say that in d = 2 dimensions there can be only 2
vectors that are linearly independent.

2. The Sunrise depends on 3 vectors → k, l , p!

3. In d = 2 → ε(k, l , p) = kµ lν pρ εµνρ = 0 .

4. Now square it and contract the epsilon tensors in d = 3

ε2(k, l , p) = k2l2p2 − k2(l · p)2 − l2(k · p)2 − p2(k · l)2 + 2(k · l)(l · p)(k · p)

5. Does not depend on d anymore! Build a d-dimensional polynomial

P(d ; k, l , p) = k2l2p2 − k2(l · p)2 − l2(k · p)2 − p2(k · l)2 + 2(k · l)(l · p)(k · p)

where now
P(1; k, l , p) = P(2; k, l , p) = 0 .
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Schouten identities for the solution of systems of differential equations for Feynman integrals

What do I do with this polynomial that is zero in d = 2?

1. As k, l →∞, in the UV limit, P(d ; k, l , p) ≈ k2 l2

2. As k, l → 0, in the IR soft limit, P(d ; k, l , p) ≈ k2 l2 → 0

3. As k, l ‖ p, with p2 = 0, in the IR collinear limit P(d ; k, l , p)→ 0 .

We know UV and IR properties of these polynomials → they can partly cure
IR divergences!

We can use it to find relations between the first order(s) of the master
integrals as d → 2 (or d → 2 n in case)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

1) The two masters S1 and S2 have at most a double pole

Sj (d ; p2) =
1

(d − 2)2
S

(−2)
j (p2) +

1

(d − 2)
S

(−1)
j (p2) + S

(0)
j (p2) + ...

2) Consider, for example, the quantity

Z(d ; 1, 1, 1) =

∫
Dd kDd l

P(d ; k, l , p)

(k2) (l2) ((k − l + p)2 −m2)

3) One can show that Z(d ; 1, 1, 1) has only a single pole in (d − 2)!

Z(d ; 1, 1, 1) = O
(

1

d − 2

)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

4) Use IBPs to reduce Z(d ; 1, 1, 1) to MIs,

Z(d ; 1, 1, 1) = C1(d ; p2)S1(d ; p2) + C2(d ; p2) S2(d ; p2) ,

5) Expand this relation for d → 2 (and keeping only double pole!)

O
(

1

d − 2

)
=

1

(d − 2)2

(m2)2 p2

6

(
S

(−2)
1 (p2)− (p2 −m2)S

(−2)
2 (p2)

)
+O

(
1

d − 2

)

6) For consistency we find precisely what we were looking for

S
(−2)
1 (p2) = (p2 −m2)S

(−2)
2 (p2)

This relation can be verified explicitly numerically (or analytically)!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

What happens if I start from different Z (d ; n1, n2, n3)?

- Starting from Z(d ; 2, 1, 2) = Z(d ; 1, 2, 2) and with the same argument

O
(

1

d − 2

)
= −

1

(d − 2)2

m2

12

(
S

(−2)
1 (p2)− (p2 −m2)S

(−2)
2 (p2)

)
+O

(
1

d − 2

)

- Starting from Z(d ; 2, 2, 1) again same argument

O
(

1

d − 2

)
=

1

(d − 2)2

m2

6

(
S

(−2)
1 (p2)− (p2 −m2)S

(−2)
2 (p2)

)
+O

(
1

d − 2

)

We find either this relation, or the trivial identity 0 = 0 (no information...).

Note that this is a relation between the first orders of the series expansion of
the two masters!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Now introduce new Master Integral defined in d dimensions:

I1(d ; p2) = S1(d ; p2)− (p2 −m2)S2(d ; p2) ,

Take as new basis

I1(d ; p2) = S1(d ; p2)− (p2 −m2)S2(d ; p2) , I2(d ; p2) = S1(d ; p2)

The equations become triangular!!!

dI1

dp2
= (d − 2)

[
I1

(
2

p2 −m2
−

3

2 p2

)
− I2

(
2

p2 −m2

)]
+ (d − 2)2 I2

3

2 p2

dI2

dp2
= (d − 2)

I2

p2
+ I1

(
1

p2 −m2
−

1

p2

)
− I2

(
1

p2 −m2

)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

If we make the masters start at the same order in the expansion

I1(d ; p2) = S1(d ; p2)− (p2 −m2)S2(d ; p2) , I2(d ; p2) = (d − 2) S1(d ; p2)

The equations become

dI1

dp2
= (d − 2)

[(
2

p2 −m2
−

3

2 p2

)
I1 +

3

2 p2
I2

]
−
(

2

p2 −m2

)
I2

dI2

dp2
= (d − 2)

[(
1

p2 −m2
−

1

p2

)
I1 +

1

p2
I2

]
−
(

1

p2 −m2

)
I2

REMARK: Problem is solved also for d ≈ 4! It is enough to shift the basis
from d → d − 2, for example with Tarasov-Lee identities [Tarasov ’97, Lee ’10]
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Schouten identities for the solution of systems of differential equations for Feynman integrals

This can be attempted in principle for any topology

One is tempted to say:

Given a sector with N coupled MIs, if I can find n relations as d → 2, 4, 6, ...
then I can decouple at most n masters as d → 2, 4, 6, ...

1) Do reduction and identify MIs

2) Use Schouten identities to study relations between first order of the series
expansion of the MIs. → it works for many less trivial examples!

Problems and obscure points:

a) Schouten identities can become tedious to implement

b) I need enough momenta! → for sunrise I can do it only in d = 2! But if
this is true, then a relation must exist in d = 4, since I know I can
decouple equations also in d = 4 (And even find a canonical basis!)

c) More importantly, would any relation among the poles do the job?
Finding one is trivial if poles are just numbers or rational functions!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Start from the last point, example two-loop massive sunrise

-��
��

p
= I(p2,m2;α1, α2, α3, α4, α5)

=

∫
Dd kDd l

(k · p)α4 (l · p)α5

(k2 −m2)α1 (l2 −m2)α2 ((k − l + p)2 −m2)α3

1. Using IBPs we we find again only 2 Master Integrals

S1 = I(p2,m2; 1, 1, 1, 0, 0) , S2 = I(p2,m2; 1, 1, 2, 0, 0) .

2. If we try same game with Schouten identities we do not find any further
relation in d = 2. Equations cannot be decoupled! Elliptic polylogaritms
and so on... (See C. Bogner’s Talk)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Let’s look at the two masters in d ≈ 4

S1(d ; p2,m2) =
1

(d − 4)2

(
3m2

8

)
+O

(
1

(d − 4)

)
S2(d ; p2,m2) =

1

(d − 4)2

(
1

8

)
+O

(
1

(d − 4)

)

Such that of course we have

S
(−2)
1 (p2,m2)− 3m2 S

(−2)
2 (p2,m2) = 0 .

What happens if we use as new masters:

I1 = S1 , I2 = S1 − 3m2 S2 ?

The differential equations do not decouple in d = 4 ! What’s going wrong?
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Schouten identities for the solution of systems of differential equations for Feynman integrals

The differential equations know only about the IBPs!

a) If the differential equations triangularise for a given basis this information
has to be inside the IBPs!

b) Schouten identities are just a tool to extract information from the IBPs.
Can we read it directly from the IBPs?

⇓

Can we then bypass the Schoutens completely and read this from the IBPs?
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Go back to easy sunrise with only one mass

-��
��

p
= I(p2,m2;α1, α2, α3, α4, α5)

=

∫
Dd kDd l

(k · p)α4 (l · p)α5

(k2)α1 (l2)α2 ((k − l + p)2 −m2)α3

S1 = I(d ; 1, 1, 1, 0, 0) , S2 = I(d ; 1, 1, 2, 0, 0) .

1. The two masters have at most a double pole 1/(d − 2)2

2. Every integral in this topology can at most develop a double pole!

3. Generate the IBPs and expand them in series for d ≈ 2!

4. Obtain a chained system of IBPs, which order by order,
do not depend on d (one less variable, easier to solve algebraically!)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Now let’s try and solve the systems of IBPs bottom up in (d − 2)

a) From the first system of IBPs we find at once

I(−2)(d → 2; 1, 1, 2, 0, 0) =
1

(p2 −m2)
I(−2)(d → 2; 1, 1, 1, 0, 0)

which is precisely the relation found with the Schouten!

b) Going further with the expansion this does not happen anymore!
At order 1/(d − 2) both MIs are needed!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Can we go further?

a) For sunrise we can only use Schouten in d = 2 and then we must shift the
result to d = 4 in order to get decoupled equations in d = 4.

b) What happens if we do the same exercise with IBPs in d = 4? Repeat
same analysis

1. The two masters have at most a double pole 1/(d − 4)2

2. Every integral in this topology can at most develop a double pole!

c) Expand IBPs in d ≈ 4 and again solve the first of the chained systems.

d) Again only 1 MI is sufficient to describe the first pole at d = 4:

I(−2)(d → 4; 1, 1, 2, 0, 0) =
1

m2
I(−2)(d → 4; 1, 1, 1, 0, 0)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Looking at analytical expressions, this is again a trivial relation among the poles

I(−2)(d ; 1, 1, 1, 0, 0) =
1

(d − 4)2

(
m2

2

)
+O

(
1

(d − 4)

)

I(−2)(d ; 1, 1, 2, 0, 0) =
1

(d − 4)2

(
1

2

)
+O

(
1

(d − 4)

)

But this time it was contained inside the IBPs and in fact it can be used in
order to decouple the differential equations!

a) Introduce new masters

Ĩ1 = I(−2)(d ; 1, 1, 1, 0, 0)−m2I(−2)(d ; 1, 1, 2, 0, 0)

Ĩ2 = (d − 4) I(−2)(d ; 1, 1, 1, 0, 0)
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Schouten identities for the solution of systems of differential equations for Feynman integrals

b) Differential equations become

d Ĩ1

dp2
= (d − 4)

[(
2

p2 −m2
−

3

2 p2

)
Ĩ1 +

3

2

(
1

p2 −m2
−

1

p2

)
Ĩ2

]
−
(

2

p2 −m2
−

1

p2

)
Ĩ1 +

(
3

2(p2 −m2)
−

1

p2

)
Ĩ1

d Ĩ2

dp2
=

(d − 4)

p2

[
Ĩ1 + Ĩ2

]

again decoupled as d → 4.
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Schouten identities for the solution of systems of differential equations for Feynman integrals

What about the massive sunrise and the relation found for the poles?

a) Play the same game, generate and solve IBPs in d = 2, where MIs are
finite. One finds No Relation, both are needed!

b) Now play this game in d = 4. Expanding one finds two independent
relations. The latter can be inverted giving

S
(−2)
1 (d → 4; p2) =

3

2m2
T (−2)(d → 4)

S
(−2)
2 (d → 4; p2) =

1

2m4
T (−2)(d → 4) ,

which just gives the poles in terms of the tadpole (sub-topology)!

T (d) =

∫
Dd kDd l

(k2 −m2)(l2 −m2)
=

(m2)(d−2)

(d − 2)2(d − 4)2
.

Poles of MIs are fake! In other words, there exists a completely finite basis in

d = 2, 4, 6, ... etc, such that all poles are entirely determined by sub-topologies!
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Conclusions

1) As expected, if a topology has N MIs in d dimensions, fixing the number
of dimensions, d = n, can reduce the number of independent MIs.

2) This piece of information can be extracted using Schouten identities or
solving IBPs in fixed number of dimensions.

3) The new relations can be used to find a new basis of MIs, for which the
differential equations assume triangular form as d → n.

4) The exercise can be repeated with much less trivial topologies (already
done for some planar and non-planar two-loop three-point functions).
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Schouten identities for the solution of systems of differential equations for Feynman integrals

Outlook and open questions

a) If there is a relation in d = n, then we can decouple the diff. eq. in
d = n. Is this always true?

b) Is the other way around always true? I.e. if we can decouple the
equations, is there always such a relation?

c) This procedure seems to be suitable for automation at the level of IBPs
solution. As Input one needs information on the poles of the integrals!
(See finite basis, [Manteuffel, Panzer, Schabinger ’14])

Stay tuned!
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