Schouten identities for the solution of systems of differential equations for Feynman integrals

Lorenzo Tancredi

TTP - KIT, Karlsruhe

Amplitudes 2015 - 7 July 2015

based on collaboration with E. Remiddi

[arXiv:1311.3342], [arXiv:15xx.xxx]

Any Feynman Diagrams is (*after some tedious but elementary algebra!*) nothing but a collection of scalar **Feynman Integrals**

$$\mathcal{I}(p_1, p_2, q_1) = \begin{array}{c} p_1 \longrightarrow q_1 \\ p_2 \longrightarrow q_2 \end{array} \quad \text{with} \quad q_2 = p_1 + p_2 - q_1$$

A (possible) representation in momentum space (massless case!)

$$\mathcal{I}(p_1, p_2, q_1) = \int \frac{\mathfrak{D}^d \, k \, \mathfrak{D}^d \, l}{k^2 \, l^2 \, (k-l)^2 \, (k-p_1)^2 \, (k-p_{12})^2 \, (l-p_{12})^2 \, (l-q_1)^2}$$

Typical **2-loop** Feynman Integral required for the computation of a $2 \rightarrow 2$ scattering process.

How do we (*tentatively*!) compute **analytically** such integrals?

- 1. Integrals are ill-defined in $d = 4 \rightarrow$ need a regularization procedure!
- 2. Use of dimensional regularization to regulate UV and IR divergences.
- 3. Dimensional regularisation turned out to be much MORE than just a regularization scheme!

₩

Dimensionally regularized Feynman integrals always converge!

This allows to derive a large number of unexpected relations...

Integration by Parts, Lorentz invariance identities, Schouten Identities,...

This large set of identities makes it *simpler* to compute **Feynman integrals** in d continuous dimensions than in d = 4!

A general scalar Feynman Integral (I-loops) can be written as

$$\mathcal{I}(\sigma_1,...,\sigma_s;\alpha_1,...,\alpha_n) = \int \prod_{j=1}^l \frac{d^d k_j}{(2\pi)^d} \frac{S_1^{\sigma_1}\dots S_s^{\sigma_s}}{D_1^{\alpha_1}\dots D_n^{\alpha_n}}$$

where

$$D_n = (q_n^2 + m_n^2)$$
, are the propagators

 $S_n = k_i \cdot p_j$, are scalar products among internal and external momenta

This introduces the concept of Topology

1. Integration By Parts Identities (IBPs)

$$\int \prod_{j=1}^{l} \frac{d^{d} k_{j}}{(2\pi)^{d}} \left(\frac{\partial}{\partial k_{j}^{\mu}} v_{\mu} \frac{S_{1}^{\sigma_{1}} \dots S_{s}^{\sigma_{s}}}{D_{1}^{\alpha_{1}} \dots D_{n}^{\alpha_{n}}} \right) = 0, \qquad v^{\mu} = k_{j}^{\mu}, p_{k}^{\mu}$$

- 2. They generate huge systems of linear equations which relates integrals with **different powers** of numerators and denominators.
- 3. The integrals always belong to the same **topology**, as defined above.

The IBPs can be solved using computer algebra (Reduze2, AIR, FIRE5...) As a result, all integrals are expressed as linear combination of a small subset of Master Integrals

Typically we go from **thousands** to **tens** of integrals \rightarrow The basis is of course **not unique**!

Dimensionally regularised Feynman Integrals fulfil differential equations! [Kotikov '90, Remiddi '99, Gehrmann-Remiddi '00,...]

Let us take a topology of integrals which depend on two external invariants

$$p^2, m^2 \rightarrow x = \frac{p^2}{m^2}.$$

$$\mathcal{I}(p^2, m^2; \alpha_1, ..., \alpha_n) = \int \prod_{j=1}^l \frac{d^d k_j}{(2\pi)^d} \frac{1}{D_1^{\alpha_1} \dots D_n^{\alpha_n}}, \quad \text{(same with scalar products)}$$

Assume IBPs reduce all integrals into this topology to N Master Integrals $m_i(p^2; d)$, with i = 1, ..., N.

- 1) All integrals depend on $x = p^2/m^2$ only.
- 2) Differentiation w.r.t to an external invariant:

$$p^{2} = p_{\mu} p^{\mu} \qquad \rightarrow \qquad \frac{\partial}{\partial p^{2}} = \frac{1}{2 p^{2}} \left(p^{\mu} \frac{\partial}{\partial p^{\mu}} \right)$$
$$\frac{\partial}{\partial p^{2}} \int \prod_{j=1}^{l} \frac{d^{d} k_{j}}{(2\pi)^{d}} \frac{1}{D_{1}^{\alpha_{1}} \dots D_{n}^{\alpha_{n}}} = \int \prod_{j=1}^{l} \frac{d^{d} k_{j}}{(2\pi)^{d}} \frac{1}{2 p^{2}} \left(p^{\mu} \frac{\partial}{\partial p^{\mu}} \right) \frac{1}{D_{1}^{\alpha_{1}} \dots D_{n}^{\alpha_{n}}}$$

3) With IBPs integrals on r.h.s. can be reduced again to the MIs

$$\frac{\partial}{\partial p^2} m_i(d; p^2) = \sum_{j=1}^N c_{ij}(d; p^2) m_j(d; p^2).$$

System of N coupled differential equations for $m_i(d; p^2)$

Schouten identities for the solution of systems of differential equations for Feynman integrals

How does this help in practise?

What if N = 1? (*There is only 1 MI*!)

If there is only 1 master integral the situation is *in principle* trivial:

$$\frac{\partial}{\partial p^2} m(d; p^2) = c(d; p^2) m(d; p^2)$$

First order linear equation, can be solved by quadrature

$$m(d;p^2) = C_0 \exp\left(\int_0^{p^2} dt \, c(d;t)\right)$$

What if N > 1? (Life is not that easy anymore!)

If the system is coupled, it corresponds to a *N*-**th order** differential equation for any of the MIs. No general strategy for a solution is known.

Observations

∜

- 1. We are free of choosing our basis of MIs!
- 2. We are interested in the expansion for $d \rightarrow 4!$

∜

Changing the basis can simplify the structure of the differential equations!

At least in the limit for $d \rightarrow 4!$

We can very often find a basis of MIs where the equations become triangular as $d \rightarrow 4$ [Gehrmann, Remiddi '00, '01]

$$\frac{\partial}{\partial p^2} \begin{pmatrix} m_1 \\ \dots \\ m_N \end{pmatrix} = \begin{pmatrix} c_{11}^{(0)} & c_{12}^{(0)} & \dots & c_{1N}^{(0)} \\ 0 & c_{22}^{(0)} & \dots & c_{2N}^{(0)} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & c_{NN}^{(0)} \end{pmatrix} \begin{pmatrix} m_1 \\ \dots \\ m_N \end{pmatrix} + \mathcal{O}(d-4)$$

This reduces, in principle, the problem to the case N = 1

₩

In order to obtain expansion in (d-4) we must perform many repeated integrations by quadrature!

We can do better \rightarrow Canonical Basis [A.Kotikov '10, J.Henn '13] (see talk by J.Henn)

Suppose we are able to find a **basis of Master Intergrals** such that the system of differential equations takes the following form:

$$\frac{\partial}{\partial p^2} \begin{pmatrix} m_1 \\ \dots \\ m_N \end{pmatrix} = (d-4) \begin{pmatrix} c_{11}(p^2) & \dots & c_{1N}(p^2) \\ c_{21}(p^2) & \dots & c_{2N}(p^2) \\ \dots & \dots & \dots \\ c_{N1}(p^2) & \dots & c_{NN}(p^2) \end{pmatrix} \begin{pmatrix} m_1 \\ \dots \\ m_N \end{pmatrix}$$

Such that:

- a) The dependence from the kinematics is **factorised** from d.
- b) The functions $c_{jk}(p^2)$ must be in d-log form, i.e. $\int^{p^2} dt c_{jk}(t) \propto \ln(f(p^2))$

If the differential equations are in canonical form we can trivially integrate them order-by-order in (d - 4)

∜

a) Solution can be expressed in terms of **Multiple polylogarithms** (MPLs) [Remiddi,Vermaseren; Gehrmann,Remiddi; Goncharov]

$$G(a_1, a_2, ..., a_n; x) = \int_0^x \frac{dt}{t - a_1} G(a_2, ..., a_n; x), \qquad G(\underbrace{0, ..., 0}_n; x) = \frac{1}{n!} \ln^n x.$$
(See talk by E. Panzer)

b) No rational factors, and uniform transcendental weight!

Compact and "beautiful" results!

How to find such basis?

- 1. Henn's criteria [J.Henn '13]
- 2. Magnus expansion for linear dependence on ϵ [Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Schubert, Tancredi '14]
- 3. R. Lee algorithm if there is only one non-trivial ratio. [R. Lee '14]

- x) Can we know a priori if with these methods, we will get anywhere?
- xx) What is the reason behind the possibility of finding such a basis?

₩

- If the DE can be put in triangular form → canonical basis is often obtainable with limited effort [Gehrmann, Manteuffel, Tancredi, Weihs '13].
- 2. All **known cases** where DE can be put in triangular form, can be integrated in terms of multiple polylogaritms.
- 3. Central question: how do we know whether the equations can be put in triangular form as $d \rightarrow 4$?

A possible path to an answer

1) Now very naively take two coupled diff. equations

$$\frac{\partial}{\partial p^2} \left(\begin{array}{c} m_1 \\ m_2 \end{array}\right) = \left(\begin{array}{cc} c_{11} & c_{12} \\ c_{21} & c_{22} \end{array}\right) \left(\begin{array}{c} m_1 \\ m_2 \end{array}\right)$$

2) What if we could say $m_2 = f(p^2) m_1 + O(d - n)$?

Then we would naively expect that

$$\frac{\partial}{\partial p^2} \left(m_2 - f(p^2)m_1 \right) = \mathcal{O}(d-n)!$$

Idea developed for the first time in [Remiddi, Tancredi '13] for the two-loop sunrise with three different masses.

Let's look at something simpler (but somehow more interesting!)

$$\begin{array}{c} \begin{array}{c} p \\ \hline \end{array} \\ \end{array} = \mathcal{I}(p^2, m^2; \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) \\ = \int \mathfrak{D}^d k \mathfrak{D}^d l \frac{(k \cdot p)^{\alpha_4} (l \cdot p)^{\alpha_5}}{(k^2)^{\alpha_1} (l^2)^{\alpha_2} ((k - l + p)^2 - m^2)^{\alpha_3}} \end{array}$$

1. Using IBPs we can reduce all these integrals to only 2 Master Integrals.

$$S_1 = \mathcal{I}(p^2, m^2; 1, 1, 1, 0, 0), \qquad S_2 = \mathcal{I}(p^2, m^2; 1, 1, 2, 0, 0)$$

2. Derive now DE for these two integrals, we find:

$$\frac{d}{d p^2} \mathbf{S_1} = \frac{(d-3)}{p^2} \mathbf{S_1} - \frac{m^2}{p^2} \mathbf{S_2}$$
$$\frac{d}{d p^2} \mathbf{S_2} = \frac{(d-3)(3d-8)}{2 p^2 (p^2 - m^2)} \mathbf{S_1} + \left(\frac{2(d-3)}{p^2 - m^2} - \frac{(3 d-8)}{2 p^2}\right) \mathbf{S_2}$$

We know that they can be put in canonical form as $d \rightarrow 4$, and therefore also simply decoupled. Where does the **right basis** come from?

- 1. Schouten Identities say that in d = 2 dimensions there can be only 2 vectors that are **linearly independent**.
- 2. The Sunrise depends on 3 vectors $\rightarrow k, l, p!$

3. In
$$d = 2 \rightarrow \epsilon(k, l, p) = k^{\mu} l^{\nu} p^{\rho} \epsilon_{\mu\nu\rho} = 0$$
.

- 4. Now square it and contract the epsilon tensors in d = 3 $\epsilon^2(k, l, p) = k^2 l^2 p^2 - k^2 (l \cdot p)^2 - l^2 (k \cdot p)^2 - p^2 (k \cdot l)^2 + 2(k \cdot l)(l \cdot p)(k \cdot p)$
- 5. Does not depend on d anymore! Build a *d*-dimensional polynomial $P(d; k, l, p) = k^2 l^2 p^2 - k^2 (l \cdot p)^2 - l^2 (k \cdot p)^2 - p^2 (k \cdot l)^2 + 2(k \cdot l)(l \cdot p)(k \cdot p)$

where now

$$P(1; k, l, p) = P(2; k, l, p) = 0.$$

What do I do with this polynomial that is zero in d = 2?

1. As $k, l \to \infty$, in the **UV limit**, $P(d; k, l, p) \approx k^2 l^2$

2. As $k, l \rightarrow 0$, in the **IR soft limit**, $P(d; k, l, p) \approx k^2 l^2 \rightarrow 0$

3. As $k, l \parallel p$, with $p^2 = 0$, in the IR collinear limit $P(d; k, l, p) \rightarrow 0$.

We know UV and IR properties of these polynomials \rightarrow they can partly cure IR divergences!

We can use it to find relations between the first order(s) of the master integrals as $d \rightarrow 2$ (or $d \rightarrow 2 n$ in case)

1) The two masters S_1 and S_2 have at most a double pole

$$S_j(d;p^2) = rac{1}{(d-2)^2}\,S_j^{(-2)}(p^2) + rac{1}{(d-2)}\,S_j^{(-1)}(p^2) + S_j^{(0)}(p^2) + ...$$

2) Consider, for example, the quantity

$$Z(d;1,1,1) = \int \mathfrak{D}^d \, k \mathfrak{D}^d \, l \, \frac{P(d;k,l,p)}{(k^2) \, (l^2) \, ((k-l+p)^2 - m^2)}$$

3) One can show that Z(d; 1, 1, 1) has only a single pole in (d - 2)!

$$Z(d;1,1,1)=\mathcal{O}\left(\frac{1}{d-2}\right)$$

4) Use IBPs to reduce Z(d; 1, 1, 1) to MIs,

$$Z(d; 1, 1, 1) = C_1(d; p^2) S_1(d; p^2) + C_2(d; p^2) S_2(d; p^2),$$

5) **Expand** this relation for $d \rightarrow 2$ (and keeping only double pole!)

$$\mathcal{O}\left(\frac{1}{d-2}\right) = \frac{1}{(d-2)^2} \frac{(m^2)^2 p^2}{6} \left(S_1^{(-2)}(p^2) - (p^2 - m^2)S_2^{(-2)}(p^2)\right) + \mathcal{O}\left(\frac{1}{d-2}\right)$$

6) For consistency we find precisely what we were looking for

$$S_1^{(-2)}(p^2) = (p^2 - m^2)S_2^{(-2)}(p^2)$$

This relation can be verified explicitly numerically (or analytically)!

What happens if I start from different $Z(d; n_1, n_2, n_3)$?

- Starting from Z(d; 2, 1, 2) = Z(d; 1, 2, 2) and with the same argument

$$\mathcal{O}\left(\frac{1}{d-2}\right) = -\frac{1}{(d-2)^2} \frac{m^2}{12} \left(S_1^{(-2)}(p^2) - (p^2 - m^2)S_2^{(-2)}(p^2)\right) + \mathcal{O}\left(\frac{1}{d-2}\right)$$

- Starting from Z(d; 2, 2, 1) again same argument

$$\mathcal{O}\left(\frac{1}{d-2}\right) = \frac{1}{(d-2)^2} \frac{m^2}{6} \left(S_1^{(-2)}(p^2) - (p^2 - m^2)S_2^{(-2)}(p^2)\right) + \mathcal{O}\left(\frac{1}{d-2}\right)$$

We find either this relation, or the trivial identity 0 = 0 (no information...).

Note that this is a relation between the first orders of the series expansion of the two masters!

Now introduce new Master Integral defined in d dimensions:

$$\mathcal{I}_1(d; p^2) = S_1(d; p^2) - (p^2 - m^2)S_2(d; p^2),$$

Take as new basis

$$\mathcal{I}_1(d; p^2) = S_1(d; p^2) - (p^2 - m^2)S_2(d; p^2), \quad \mathcal{I}_2(d; p^2) = S_1(d; p^2)$$

The equations become triangular!!!

$$\frac{d\mathcal{I}_1}{dp^2} = (d-2) \left[\mathcal{I}_1 \left(\frac{2}{p^2 - m^2} - \frac{3}{2p^2} \right) - \mathcal{I}_2 \left(\frac{2}{p^2 - m^2} \right) \right] + (d-2)^2 \mathcal{I}_2 \frac{3}{2p^2}$$

$$\frac{d\mathcal{I}_2}{dp^2} = (d-2)\frac{\mathcal{I}_2}{p^2} + \mathcal{I}_1\left(\frac{1}{p^2 - m^2} - \frac{1}{p^2}\right) - \mathcal{I}_2\left(\frac{1}{p^2 - m^2}\right)$$

If we make the masters start at the same order in the expansion

$$\mathcal{I}_1(d;p^2) = S_1(d;p^2) - (p^2 - m^2)S_2(d;p^2), \quad \mathcal{I}_2(d;p^2) = (d-2)S_1(d;p^2)$$

The equations become

$$\frac{d\mathcal{I}_1}{dp^2} = (d-2) \left[\left(\frac{2}{p^2 - m^2} - \frac{3}{2p^2} \right) \mathcal{I}_1 + \frac{3}{2p^2} \mathcal{I}_2 \right] - \left(\frac{2}{p^2 - m^2} \right) \mathcal{I}_2$$
$$\frac{d\mathcal{I}_2}{dp^2} = (d-2) \left[\left(\frac{1}{p^2 - m^2} - \frac{1}{p^2} \right) \mathcal{I}_1 + \frac{1}{p^2} \mathcal{I}_2 \right] - \left(\frac{1}{p^2 - m^2} \right) \mathcal{I}_2$$

REMARK: Problem is solved also for $d \approx 4$! It is enough to shift the basis from $d \rightarrow d - 2$, for example with Tarasov-Lee identities [Tarasov '97, Lee '10]

This can be attempted in principle for any topology

One is tempted to say:

Given a sector with N coupled MIs, if I can find n relations as $d \rightarrow 2, 4, 6, ...$ then I can **decouple** at most n masters as $d \rightarrow 2, 4, 6, ...$

- 1) Do reduction and identify MIs
- 2) Use Schouten identities to study relations between first order of the series expansion of the MIs. \rightarrow it works for many less trivial examples!

Problems and obscure points:

- a) Schouten identities can become tedious to implement
- b) I need **enough momenta**! \rightarrow for sunrise I can do it only in d = 2! But if this is true, then a relation **must exist** in d = 4, since I know I can decouple equations also in d = 4 (And even find a canonical basis!)
- c) More importantly, would any relation among the poles do the job? Finding one is trivial if poles are just numbers or rational functions!

Start from the last point, example two-loop massive sunrise

$$\begin{array}{c} p \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} = \mathcal{I}(p^2, m^2; \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) \\ = \int \mathfrak{D}^d \ k \mathfrak{D}^d \ l \frac{(k \cdot p)^{\alpha_4} \ (l \cdot p)^{\alpha_5}}{(k^2 - m^2)^{\alpha_1} \ (l^2 - m^2)^{\alpha_2} \ ((k - l + p)^2 - m^2)^{\alpha_3}} \end{array}$$

1. Using IBPs we we find again only 2 Master Integrals

$$S_1 = \mathcal{I}(p^2, m^2; 1, 1, 1, 0, 0), \qquad S_2 = \mathcal{I}(p^2, m^2; 1, 1, 2, 0, 0).$$

 If we try same game with Schouten identities we do not find any further relation in d = 2. Equations cannot be decoupled! Elliptic polylogaritms and so on... (See C. Bogner's Talk) Let's look at the two masters in $d \approx 4$

$$\begin{split} S_1(d;p^2,m^2) &= \frac{1}{(d-4)^2} \left(\frac{3 m^2}{8}\right) + \mathcal{O}\left(\frac{1}{(d-4)}\right) \\ S_2(d;p^2,m^2) &= \frac{1}{(d-4)^2} \left(\frac{1}{8}\right) + \mathcal{O}\left(\frac{1}{(d-4)}\right) \end{split}$$

Such that of course we have

$$S_1^{(-2)}(p^2,m^2) - 3 m^2 S_2^{(-2)}(p^2,m^2) = 0.$$

What happens if we use as new masters:

$$\mathcal{I}_1 = S_1, \qquad \mathcal{I}_2 = S_1 - 3 \, m^2 \, S_2$$
?

The differential equations **do not decouple** in d = 4! What's going wrong?

The differential equations know only about the IBPs!

- a) If the differential equations triangularise for a given basis this information has to be **inside the IBPs**!
- b) Schouten identities are just a tool to extract information from the IBPs. Can we read it directly from the IBPs?

∜

Can we then bypass the Schoutens completely and read this from the IBPs?

Go back to easy sunrise with only one mass

- 1. The two masters have at most a double pole $1/(d-2)^2$
- 2. Every integral in this topology can at most develop a double pole!
- 3. Generate the IBPs and expand them in series for $d \approx 2!$
- Obtain a chained system of IBPs, which order by order, do not depend on d (one less variable, easier to solve algebraically!)

Now let's try and solve the systems of IBPs **bottom up** in (d-2)

a) From the first system of IBPs we find at once

$$\mathcal{I}^{(-2)}(d \to 2; 1, 1, 2, 0, 0) = rac{1}{(p^2 - m^2)} \mathcal{I}^{(-2)}(d \to 2; 1, 1, 1, 0, 0)$$

which is precisely the relation found with the Schouten!

b) Going further with the expansion this does not happen anymore! At order 1/(d-2) both MIs are needed! Can we go further?

- a) For sunrise we can only use Schouten in d = 2 and then we must shift the result to d = 4 in order to get decoupled equations in d = 4.
- b) What happens if we do the same exercise with IBPs in d = 4? Repeat same analysis
 - 1. The two masters have at most a double pole $1/(d-4)^2$
 - 2. Every integral in this topology can at most develop a double pole!
- c) Expand IBPs in *d* ≈ 4 and again solve the first of the chained systems.
 d) Again only 1 MI is sufficient to describe the first pole at *d* = 4:

$$\mathcal{I}^{(-2)}(d \to 4; 1, 1, 2, 0, 0) = rac{1}{m^2} \mathcal{I}^{(-2)}(d \to 4; 1, 1, 1, 0, 0)$$

Looking at analytical expressions, this is again a trivial relation among the poles

$$\mathcal{I}^{(-2)}(d; 1, 1, 1, 0, 0) = rac{1}{(d-4)^2} \left(rac{m^2}{2}
ight) + \mathcal{O}\left(rac{1}{(d-4)}
ight)$$

$$\mathcal{I}^{(-2)}(d; 1, 1, 2, 0, 0) = rac{1}{(d-4)^2} \left(rac{1}{2}\right) + \mathcal{O}\left(rac{1}{(d-4)}\right)$$

But this time it was contained inside the IBPs and in fact it can be used in order to decouple the differential equations!

a) Introduce new masters

$$\begin{split} \widetilde{\mathcal{I}}_1 &= \mathcal{I}^{(-2)}(d;1,1,1,0,0) - m^2 \mathcal{I}^{(-2)}(d;1,1,2,0,0) \ &\\ \widetilde{\mathcal{I}}_2 &= (d-4) \, \mathcal{I}^{(-2)}(d;1,1,1,0,0) \end{split}$$

b) Differential equations become

$$\begin{aligned} \frac{d\widetilde{\mathcal{I}}_1}{dp^2} &= (d-4) \left[\left(\frac{2}{p^2 - m^2} - \frac{3}{2p^2} \right) \widetilde{\mathcal{I}}_1 + \frac{3}{2} \left(\frac{1}{p^2 - m^2} - \frac{1}{p^2} \right) \widetilde{\mathcal{I}}_2 \right] \\ &- \left(\frac{2}{p^2 - m^2} - \frac{1}{p^2} \right) \widetilde{\mathcal{I}}_1 + \left(\frac{3}{2(p^2 - m^2)} - \frac{1}{p^2} \right) \widetilde{\mathcal{I}}_1 \\ \\ &\frac{d\widetilde{\mathcal{I}}_2}{dp^2} = \frac{(d-4)}{p^2} \left[\widetilde{\mathcal{I}}_1 + \widetilde{\mathcal{I}}_2 \right] \end{aligned}$$

again decoupled as $d \rightarrow 4$.

What about the massive sunrise and the relation found for the poles?

- a) Play the same game, generate and solve IBPs in d = 2, where MIs are **finite**. One finds **No Relation**, both are needed!
- b) Now play this game in d = 4. Expanding one finds two independent relations. The latter can be inverted giving

$$\begin{split} S_1^{(-2)}(d \to 4; p^2) &= \frac{3}{2 \, m^2} \, T^{(-2)}(d \to 4) \\ S_2^{(-2)}(d \to 4; p^2) &= \frac{1}{2 \, m^4} \, T^{(-2)}(d \to 4) \,, \end{split}$$

which just gives the poles in terms of the tadpole (sub-topology)!

$$T(d) = \int \frac{\mathfrak{D}^d \, k \mathfrak{D}^d \, l}{(k^2 - m^2)(l^2 - m^2)} = \frac{(m^2)^{(d-2)}}{(d-2)^2(d-4)^2} \, .$$

Poles of MIs are fake! In other words, there exists a completely finite basis in $d = 2, 4, 6, \dots$ etc, such that all poles are entirely determined by sub-topologies!

Conclusions

- 1) As expected, if a topology has N MIs in d dimensions, fixing the number of dimensions, d = n, can reduce the number of independent MIs.
- 2) This piece of information can be **extracted** using Schouten identities or solving IBPs in fixed number of dimensions.
- 3) The new relations can be used to find a **new basis of MIs**, for which the differential equations assume triangular form as $d \rightarrow n$.
- The exercise can be repeated with much less trivial topologies (already done for some planar and non-planar two-loop three-point functions).

Outlook and open questions

- a) If there is a relation in d = n, then we can decouple the diff. eq. in d = n. Is this always true?
- b) Is the other way around always true? I.e. if we can **decouple** the equations, is there always such a relation?
- c) This procedure seems to be suitable for automation at the level of IBPs solution. As Input one needs information on the poles of the integrals! (See finite basis, [Manteuffel, Panzer, Schabinger '14])

Stay tuned!