The dilatation operator of N=4 SYM, amplitudes and Yangian symmetry

> Gabriele Travaglini Queen Mary University of London

(+ Humboldt University, Berlin + Durham University + University of Rome "Tor Vergata")

with

Andi Brandhuber, Paul Heslop, Brenda Penante, Donovan Young

Brandhuber, Penante, GT, Young 1412.1019 [hep-th] & 1502.06626 [hep-th] + in progress Brandhuber, Heslop, GT, Young, to appear tomorrow

Amplitudes 2015, ETH Zürich, 6th July 2015

- Calculation of one-loop dilatation operator from two-point correlators with on-shell methods (Brandhuber, Penante, GT, Young)
 - from MHV diagrams
 - from generalised unitarity applied to two-point functions
 - single-scale problem, unitarity particularly simple
- Derive the action of the Yangian on the dilatation operator from the Yangian symmetry of amplitudes (Brandhuber, Heslop, GT, Young)
 - substantiate the idea that there exists a Yangian symmetry in N=4 SYM with different manifestations

Dilatation operator

• General form of two-point functions of primary operators in a conformal theory:

$$\langle 0|\mathcal{O}(x_1)\bar{\mathcal{O}}(x_2)|\rangle \sim \frac{1}{((x_{12})^2)^{\Delta_0 + \gamma}} \qquad x_{12} := x_1 - x_2$$

- Δ_0 = classical dimension, γ = anomalous dimension (assume momentarily no mixing)
- expanding in g: $\langle 0 | \mathcal{O}(x_1) \overline{\mathcal{O}}(x_2) | 0 \rangle \sim \frac{1}{((x_{12})^2)^{\Delta_0}} (1 \gamma \log(x_{12}^2 \Lambda^2))$
- anomalous dimension extracted from log divergence
- pole in $1/\epsilon$ in dimensional regularisation
- Definition of the dilatation operator

$$H_{AB} = \mu \frac{\partial}{\partial \mu} \log \mathbf{Z}_{AB}$$

• Z_{AB} = renormalisation constants for the operators { O_A }

The SO(6) sector

• Scalar operators:

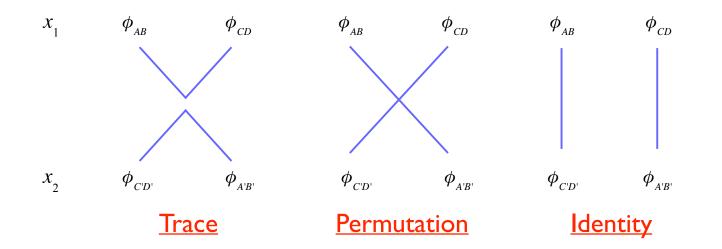
 $\mathcal{O}_{A_1B_1, A_2B_2, \dots, A_LB_L}(x) = \text{Tr}(\phi_{A_1B_1}\phi_{A_2B_2}\cdots\phi_{A_LB_L})(x)$

- $A_1, \ldots, B_L = 1, \ldots, 4$ fundamental R-symmetry indices

- This sector is closed at one loop
- calculation of anomalous dimension mapped to that of the eigenvalues of an integrable Hamiltonian (Minahan & Zarembo)
- Perturbative calculation
 - At one loop in the planar limit only nearest neighbours interact. Effectively the calculation is equivalent to that of the two-point correlator ⟨(φ_{AB}φ_{CD})(x₁)(φ_{A'B'}φ_{C'D'})(x₂)⟩

• General structure of $\langle (\phi_{AB}\phi_{CD})(x_1)(\phi_{A'B'}\phi_{C'D'})(x_2) \rangle$

 $= A \epsilon_{ABCD} \epsilon_{A'B'C'D'} + B \epsilon_{ABA'B'} \epsilon_{C'D'CD} + C \epsilon_{ABC'D'} \epsilon_{A'B'CD}$



From Minahan & Zarembo: $A_{\rm UV} = 1/2$, $B_{\rm UV} = -1$, $C_{\rm UV} = 1$ (more accurately: $A = A_{\rm UV} \times [\lambda/(8\pi^2)] \times (1/(4\pi^2 x_{12}^2))^2 \times (1/\epsilon) + \text{finite}$)

 $\mathbb{H} = \sum_{i=1}^{L} (\mathbb{I} - \mathbb{P} + \frac{1}{2}\mathbb{T})_{ii+1} \quad \text{Hamiltonian of an integrable spin chain}$

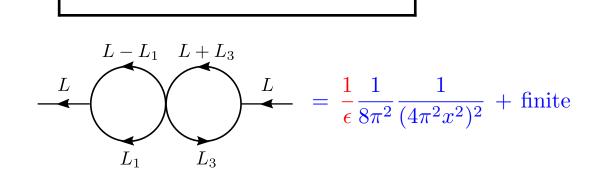
• In x space, prototypical UV divergence from

$$x_{1} = I(x_{12}) := \int^{1/\Lambda} d^{4}x \ \frac{1}{[(x-x_{1})^{2}]^{2}[(x-x_{2})^{2}]^{2}} \sim \frac{2\pi^{2}}{(x_{12}^{2})^{2}}\log(x_{12}^{2}\Lambda^{2})$$

for later applications, go to momentum space:

$$I(x_{12}) := \int \frac{d^D L}{(2\pi)^D} e^{iLx_{12}} \int \frac{d^D L_1}{(2\pi)^D} \frac{1}{L_1^2(L_1 - L)^2} \int \frac{d^D L_3}{(2\pi)^D} \frac{1}{L_3^2(L_3 + L)^2}$$

FT of Double bubble



Calculation from MHV diagrams

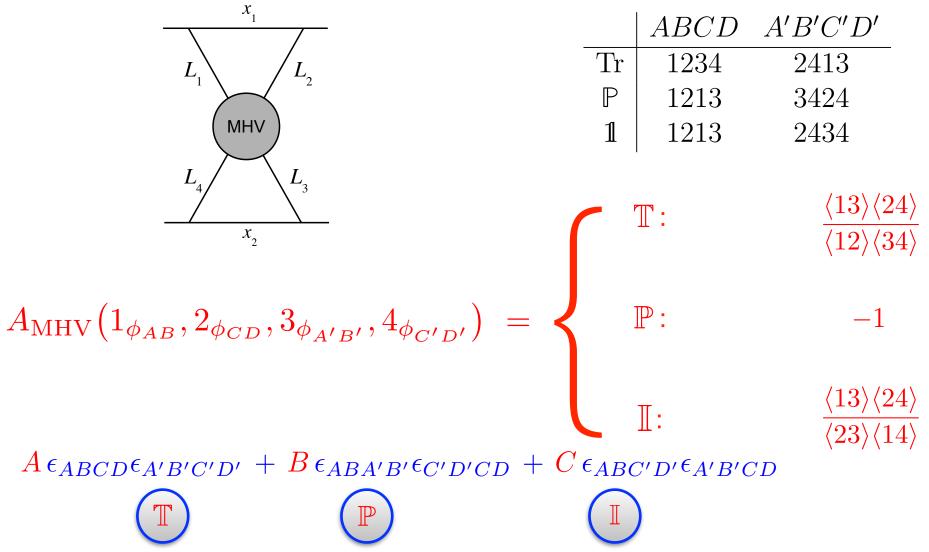
(Brandhuber, Penante, GT, Young)

- Back to 2004!
 - MHV diagrams: new perturbative expansion of Yang-Mills theory (Cachazo, Svrcek, Witten 2004)
 - vertices are off-shell continuation of the MHV amplitudes, to each internal leg with momentum L one associates the spinor

 $\lambda_{lpha} o L_{lpha \dot{lpha}} \, \xi^{\dot{lpha}} \qquad \xi^{\dot{lpha}}$ = reference spinor

- connect vertices using scalar propagators
- derivation from lightcone quantisation of YM + change of variables in the path integral with Jacobian = 1 (Mansfield; Gorsky, Rosly)
- also works for loops, and without supersymmetry (cut-constructible parts) (Brandhuber, Spence, GT 2004)

- Only one MHV diagram!
 - choose three R-symmetry assignments contributing to one structure at a time



• New integral to compute:

$$I(x_{12}) := \int \frac{d^D L}{(2\pi)^D} e^{iLx_{12}} \int \frac{d^D L_1}{(2\pi)^D} \frac{1}{L_1^2(L_1 - L)^2} \int \frac{d^D L_3}{(2\pi)^D} \frac{1}{L_3^2(L_3 + L)^2} A_{\rm MHV}(1_{\phi_{AB}}, 2_{\phi_{CD}}, 3_{\phi_{A'B'}}, 4_{\phi_{C'D'}})$$

- Double bubble x one MHV vertex
- Work out the integrands:
 - ▶ for P: nothing to be done! (-1 x double bubble, or (-1)
 - for I: $\frac{\langle 13 \rangle \langle 24 \rangle}{\langle 23 \rangle \langle 14 \rangle} = 1 + \frac{\langle 12 \rangle \langle 34 \rangle}{\langle 23 \rangle \langle 14 \rangle}$

$$1 + \frac{[\zeta|L_1L_2|\zeta][\zeta|L_3L_4|\zeta]}{[\xi|L_2L_3|\xi][\xi|L_1L_4|\xi]} = 1 + \frac{[\zeta|L_1L|\zeta|][\xi|L_2L_3|\xi]}{[\xi|(L-L_1)L_3|\xi][\xi|L_1(L+L_3)|\xi]}$$

UV divergent

manifestly finite DROP!

Summarising: $B_{\rm UV} = -1$, $C_{\rm UV} = 1$

• Summary: $A_{\rm UV} = 1/2$, $B_{\rm UV} = -1$, $C_{\rm UV} = 1$

(after similar manipulations on Tr)

• Comments:

- ξ -dependence: drops out at the end of the calculation
 - similar to lightcone gauge...
 - explicitly: by Lorentz invariance, final result can depend only on the combination $[\xi|L^2|\xi] = 0$
 - note that the result cannot depend on $L \cdot \xi$ as we have NOT introduced a spinor ξ_{α} !
- self-energies: vanish with MHV diagrams (Brandhuber, Spence, GT 04)
 - in lightcone gauge self-energies are finite and do not contribute to anomalous dimension (Belitsky, Derkachov, Korchemsky, Manashov)
- nice derivation from MHV rules in twistor space (Koster, Mitev, Staudacher)

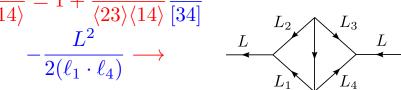
Once again, with generalised unitarity

(Brandhuber, Penante, GT, Young)

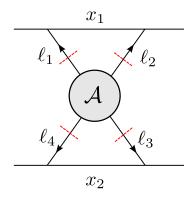
- Compute correlator from cuts
 - Earlier applications (Engelund & Roiban)
 - Ingredients:
 - on-shell amplitudes (no off-shell continuations) & cut propagators
 - Quickly reconstruct the nontrivial cases:

- for I:
$$\frac{\langle 13 \rangle \langle 24 \rangle}{\langle 23 \rangle \langle 14 \rangle} = 1 + \frac{\langle 12 \rangle \langle 34 \rangle}{\langle 23 \rangle \langle 14 \rangle} = 1 + \frac{\langle 12 \rangle \langle 34 \rangle}{\langle 23 \rangle \langle 14 \rangle} \frac{[34]}{[34]}$$

- second term:



- Kite integral, UV finite in four dimensions
- Keep just the 1, drop the rest, or $C_{\rm UV} = 1$.
- Similarly for the Tr structure



- Several generalisation/extensions possible
 - ► SU(2|3) sector, higher loops....

Amplitude Yangian & Dilatation Operator Yangian

(Brandhuber, Heslop, GT, Young, to appear)

- Yangian symmetry is thought to be a fundamental property of N=4 super Yang-Mills
- Two slightly different manifestations on
 - amplitudes
 - dilatation operator
- Goal: derive the action of the Yangian on the dilatation operator from the Yangian of amplitudes

Amplitude Yangian

- Fact I: Tree-level amplitudes in N=4 SYM are Yangian invariant (covariant) (Drummond, Henn, Plefka)
 - level-zero generators $J^A \rightarrow$ ordinary superconformal group
 - level-one generators $Q^A = \sum Q^A_{ij}$
 - $Q_{ij}^A := f_{CB}^A J_i^B J_j^C$ are non-local densities acting on particles i and j
 - level-one generators \rightarrow dual superconformal group
 - level-one generator $p^{(1)}$ associated to momentum p is (related to) dual conformal K
 - level-one generator $q^{(1)}$ associated to q-supersymmetry is (related to) dual superconformal generator S
 - amplitudes are covariant under dual superconformal transformations (Drummond, Henn, Korchemsky, Sokatchev)

Dilatation operator Yangian

• Fact 2: The complete one-loop dilatation operator is Yangian invariant up to boundary terms (Dolan, Nappi, Witten)

$$[Q^A, H] \sim J_1^A - J_L^A$$

- Equivalent to showing $[Q_{12}^A, H_{12}] \sim J_1^A J_2^A$
 - $H = \sum_{i=1}^{L} H_{ii+1}$, where H_{12} acts on sites 1 and 2
- proof is based on acting on irreps of PSU(2,2|4)
- LHS ~ one loop, RHS ~ tree level. Proof relies on identity $[h(j) - h(j-1)]/j = 1 \qquad h(j) = j^{\text{th}} \text{ harmonic number}$
- Next: derive Fact 2 from Fact I

- Main tool: an intriguing formula relating the dilatation operator to four-point superamplitudes found by Zwiebel (+ unpublished work of Beisert)
- Building blocks of this formula:
 - tree-level four-point superamplitude
 - recall: at one-loop, only two fields interact, $2 \rightarrow 2$ structure
 - tree-level minimal form factors $\langle 0 | (\Phi_1 \cdots \Phi_L)(0) | \Phi_1 \cdots \Phi_L \rangle$
 - represent the states on which the dilatation operator acts
 - effectively computes two-particle cuts of one-loop minimal form factors of (non-protected) operators (Wilhelm)
- Idea: use known action of Yangian generators on amplitudes to derive action on the dilatation operator

- States & single-trace operators
 - A state corresponds to a single-trace operator $Tr(\Phi_1 \cdots \Phi_L)(x)$
 - The letters Φ_i : $F^{\alpha\beta}$, $\psi^{\alpha ABC}$, $\phi^{[AB]}$, $\bar{\psi}^{\dot{\alpha}A}$, $\bar{F}^{\dot{\alpha}\dot{\beta}}$ (and symmetrised covariant derivatives D acting on them)
 - oscillator representation of the states (Gunaydin & Marcus)

 $[a_{\alpha}, a^{\dagger\beta}] = \delta^{\beta}_{\alpha}, \quad [b_{\dot{\alpha}}, b^{\dagger\dot{\beta}}] = \delta^{\dot{\beta}}_{\dot{\alpha}}, \quad \{d_A, d^{\dagger B}\} = \delta^B_A, \quad \alpha, \beta = 1, 2, \quad \dot{\alpha}, \dot{\beta} = 1, 2, \quad A = 1, \dots, 4$

- *a*, *b* bosonic oscillators, *d* fermionic oscillators
- map to the states:

 $\bar{F} \leftrightarrow b^{\dagger} b^{\dagger} \,, \quad \bar{\psi} \leftrightarrow b^{\dagger} d^{\dagger} \,, \quad \phi \leftrightarrow d^{\dagger} d^{\dagger} \,, \quad \psi \leftrightarrow a^{\dagger} d^{\dagger} d^{\dagger} d^{\dagger} \,, \quad F \leftrightarrow a^{\dagger} a^{\dagger} d^{\dagger} d^{\dagger} d^{\dagger} d^{\dagger} \,, \quad D \leftrightarrow a^{\dagger} b^{\dagger}$

• Spinor-helicity translation:

$$\begin{array}{ccc} a^{\dagger\alpha} \leftrightarrow \lambda^{\alpha} \,, & b^{\dagger\dot{\alpha}} \leftrightarrow \tilde{\lambda}^{\dot{\alpha}} \,, & d^{\dagger A} \leftrightarrow \eta^{A} \\ a_{\alpha} \leftrightarrow \partial_{\alpha} \,, & b_{\dot{\alpha}} \leftrightarrow \partial_{\dot{\alpha}} \,, & d_{A} \leftrightarrow \partial_{A} \end{array}$$

- States in spinor-helicity language:
 - combine $\Lambda^a := (\lambda^{\alpha}, \tilde{\lambda}^{\dot{\alpha}}, \eta^A)$
 - a state is a polynomial $P(\Lambda_1, \ldots, \Lambda_L)$ in the Λ 's satisfying the physical state condition (vanishing central charge)
- Examples:

 - Konishi $\cdots \epsilon_{ABCD} \phi^{AB} \phi^{CD} \cdots \leftrightarrow \epsilon_{ABCD} (\eta_1^A \eta_1^B) (\eta_2^C \eta_2^D)$
- $P(\Lambda_1, ..., \Lambda_L)$ = tree-level minimal form factor of the corresponding operator (Wilhelm)
 - E.g. half-BPS

 $\cdots (\eta_1^1 \eta_1^2) (\eta_2^1 \eta_2^2) \cdots = \left\langle \mathbf{0} \left| \left(\cdots \phi^{12} \phi^{12} \cdots \right) (\mathbf{0}) \right| \cdots \phi^{12} \phi^{12} \cdots \right\rangle$

• Zwiebel's formula: (second term slightly rewritten)

$$H_{12}|1,2\rangle = \int d\Lambda_3 d\Lambda_4 A(1,2,3,4) \left[P(-4,-3) - \left(\frac{\langle 12 \rangle}{\langle 34 \rangle}\right)^2 P(1,2) \right]$$

"un-integrated form"

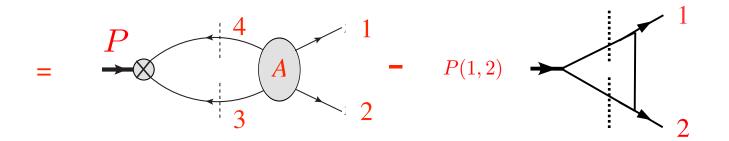
- phase-space measure $d\Lambda_i := d^2 \lambda_i d^2 \tilde{\lambda}_i d^4 \eta_i$ (mod little group)
- superamplitude $A(1,2,3,4) = \frac{\delta^{(4)} \left(\sum_i \lambda_i \tilde{\lambda}_i\right) \delta^{(8)} \left(\sum_i \lambda_i \eta_i\right)}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$
- P(1,2) represents the operator/state $|\cdots 1, 2, \cdots \rangle$
- Connection to dilatation operator
 - integrating out the momentum delta function one gets: (Zwiebel) $H_{12}|1,2\rangle = -\frac{1}{\pi} \int_{0}^{2\pi} d\phi \int_{0}^{\frac{\pi}{2}} d\theta \left[e^{2i\phi} P(1',2') - P(1,2) \right]$ "integrated form"

 $\lambda_1' = \lambda_1 \cos \theta - e^{i\phi} \lambda_2 \sin \theta , \quad \lambda_2' = \lambda_1 \sin \theta + e^{i\phi} \lambda_2 \cos \theta \quad \text{(similarly for } \tilde{\lambda}', \eta'\text{)}$

 Neatly reproduces Beisert's harmonic action form of the complete dilatation operator at one loop

• Connection to form factors (Wilhelm)

$$H_{12}|1,2\rangle = \int d\Lambda_3 d\Lambda_4 A(1,2,3,4) \left[P(-4,-3) - \left(\frac{\langle 12 \rangle}{\langle 34 \rangle}\right)^2 P(1,2) \right] =$$



- first term is the two-particle cut of the one-loop form factor of the operator represented by *P*
 - contains IR divergences (triangle) and also UV divergences (bubbles)
- second term subtracts the IR divergence of the same cut
- Leftover = discontinuity of a (UV-divergent) bubble, whose coefficient is ~ the dilatation operator
 - note: the discontinuity of a bubble if finite

• Summarising:

Unintegrated form:

$$H_{12}|1,2\rangle = \int d\Lambda_3 d\Lambda_4 A(1,2,3,4) \Big[P(-4,-3) - \left(\frac{\langle 12 \rangle}{\langle 34 \rangle}\right)^2 P(1,2) \Big]$$

integrated form:

$$H_{12}|1,2\rangle = -\frac{1}{\pi} \int_0^{2\pi} d\phi \int_0^{\frac{\pi}{2}} d\theta \left[e^{2i\phi} P(1',2') - P(1,2) \right]$$

• It is not at all obvious to see how the relation

$$[Q_{12}^A, H_{12}] \sim J_1^A - J_2^A$$

is realised when acting on the integrated form

Amplitudes to the rescue!

• Act with level-one generator $p^{(1)}$ on un-integrated form:

$$[\mathbf{Q}_{12}, H_{12}]|1, 2\rangle = \mathbf{Q}_{12} \int d\Lambda_3 d\Lambda_4 \ A(1, 2, 3, 4) \left[P(-4, -3) - r P(1, 2) \right] \\ - \int d\Lambda_3 d\Lambda_4 \ A(1, 2, 3, 4) \left[\mathbf{Q}_{-4, -3} P(-4, -3) - r \mathbf{Q}_{12} P(1, 2) \right]$$

$$r := \left(\frac{\langle 12 \rangle}{\langle 34 \rangle}\right)^2$$

$$\bullet \quad Q_{ij} = \left(m_{j\ \alpha}^{\gamma} \delta^{\dot{\gamma}}_{\dot{\alpha}} + \bar{m}^{\dot{\gamma}}_{j\ \dot{\alpha}} \delta^{\gamma}_{\alpha} - d_{j} \delta^{\gamma}_{\alpha} \delta^{\dot{\gamma}}_{\dot{\alpha}} \right) p_{i\ \gamma\dot{\gamma}} + \bar{q}_{j\dot{\alpha}C} q^{C}_{i\alpha} - (i \leftrightarrow j) \qquad \text{from DHP}$$

- Preliminary check: half-BPS operators, e.g. Tr ($\phi^{12} \phi^{12}$)
 - First line vanishes since $P^{\phi^{12}\phi^{12}}(-4,-3) = r P^{\phi^{12}\phi^{12}}(1,2)$ (Brandhuber, Spence, GT, Yang)
 - Second line: only constant part of d survives

 $[Q_{12}, H_{12}] |\phi^{12} \phi^{12} \rangle = P^{\phi^{12} \phi^{12}} (1, 2) \int d\Lambda_3 d\Lambda_4 A(1, 2, 3, 4) \cdot r \left[p_3 - p_4 - (p_1 - p_2) \right]$

• Result of explicit integration of RHS:

$$[Q_{12}, H_{12}]|1, 2\rangle = 2(p_1 - p_2)|1, 2\rangle$$

- Ingredients of the general proof (for arbitrary states):
 - after IBP, combination of generators acting on amplitude is

$$Q_{12} + Q_{34} = \sum_{i < j} Q_{ij} - (Q_{13} + Q_{14} + Q_{23} + Q_{24})$$

- \$\sum_{i < j} Q_{ij}\$ related to dual conformal \$K\$, which annihilates amplitude
 \$(Q_{13} + Q_{14} + Q_{23} + Q_{24}) A = 0\$ since

$$(Q_{13} + Q_{14} + Q_{23} + Q_{24})^A = f^A_{CB}(J_1 + J_2)^B J^C - \frac{1}{2} f^A_{CB} f^{BC}_D (J_1 + J_2)^D$$

- J^C is a symmetry of the amplitude
- $f_{CB}^{A} f_{D}^{BC}$ proportional to the (vanishing) dual Coxeter number of PSU(2,2|4)
- alternative proof: use that Yangian on amplitudes is compatible with cyclicity!
- thus $[Q_{12}, H_{12}]|1, 2\rangle = P(1, 2) \int d\Lambda_3 d\Lambda_4 A(1, 2, 3, 4) \cdot r \left[p_3 p_4 (p_1 p_2)\right]$
 - remaining term already computed in half-BPS case...

$$[Q_{12}, H_{12}]|1, 2\rangle = 2(p_1 - p_2)|1, 2\rangle$$

• Comments:

1. very simple extension to show that a similar formula holds if Q is the level-one generator associated to supersymmetry q:

$$[Q_{12}, H_{12}]|1, 2\rangle = 2(q_1 - q_2)|1, 2\rangle$$

2. not obvious to see this result on the "integrated form" of Zwiebel's formula (without amplitudes)!

- 3. RHS looks like a tree-level quantity!
- 4. can check other commutators