The dilatation operator of $\mathrm{N}=4 \mathrm{SYM}$, amplitudes and Yangian symmetry

Gabriele Travaglini
Queen Mary University of London
(+ Humboldt University, Berlin + Durham University
+ University of Rome "Tor Vergata")
with

Andi Brandhuber, Paul Heslop, Brenda Penante, Donovan Young

Brandhuber, Penante, GT,Young I4I2.IOI9 [hep-th] \& I 502.06626 [hep-th] + in progress Brandhuber, Heslop, GT,Young, to appear tomorrow

$$
\text { Amplitudes 20I5, ETH Zürich, } 6^{\text {th }} \text { July } 2015
$$

Two themes

- Calculation of one-loop dilatation operator from two-point correlators with on-shell methods
(Brandhuber, Penante, GT, Young)
- from MHV diagrams
- from generalised unitarity applied to two-point functions
- single-scale problem, unitarity particularly simple
- Derive the action of the Yangian on the dilatation operator from the Yangian symmetry of amplitudes
(Brandhuber, Heslop, GT, Young)
- substantiate the idea that there exists a Yangian symmetry in $\mathrm{N}=4 \mathrm{SYM}$ with different manifestations

Dilatation operator

- General form of two-point functions of primary operators in a conformal theory:

$$
\langle 0| \mathcal{O}\left(x_{1}\right) \overline{\mathcal{O}}\left(x_{2}\right)\left\rangle \sim \frac{1}{\left(\left(x_{12}\right)^{2}\right)^{\Delta_{0}+\gamma}} \quad x_{12}:=x_{1}-x_{2}\right.
$$

- $\Delta_{0}=$ classical dimension, $\gamma=$ anomalous dimension (assume momentarily no mixing)
- expanding in $g:\langle 0| \mathcal{O}\left(x_{1}\right) \overline{\mathcal{O}}\left(x_{2}\right)|0\rangle \sim \frac{1}{\left(\left(x_{12}\right)^{2}\right)^{\Delta_{0}}}\left(1-\gamma \log \left(x_{12}^{2} \Lambda^{2}\right)\right)$
- anomalous dimension extracted from log divergence
- pole in $1 / \epsilon$ in dimensional regularisation
- Definition of the dilatation operator $H_{A B}=\mu \frac{\partial}{\partial \mu} \log Z_{A B}$
- $Z_{A B}=$ renormalisation constants for the operators $\left\{\mathcal{O}_{A}\right\}$

The SO (6) sector

- Scalar operators:

$$
\mathcal{O}_{A_{1} B_{1}, A_{2} B_{2}, \ldots, A_{L} B_{L}}(x)=\operatorname{Tr}\left(\phi_{A_{1} B_{1}} \phi_{A_{2} B_{2}} \cdots \phi_{A_{L} B_{L}}\right)(x)
$$

- $A_{1}, \ldots, B_{L}=1, \ldots, 4$ fundamental R-symmetry indices
- This sector is closed at one loop
- calculation of anomalous dimension mapped to that of the eigenvalues of an integrable Hamiltonian (Minahan \& Zarembo)
- Perturbative calculation
- at one loop in the planar limit only nearest neighbours interact. Effectively the calculation is equivalent to that of the two-point correlator $\left\langle\left(\phi_{A B} \phi_{C D}\right)\left(x_{1}\right)\left(\phi_{A^{\prime} B^{\prime}} \phi_{C^{\prime} D^{\prime}}\right)\left(x_{2}\right)\right\rangle$
- General structure of $\left\langle\left(\phi_{A B} \phi_{C D}\right)\left(x_{1}\right)\left(\phi_{A^{\prime} B^{\prime}} \phi_{C^{\prime} D^{\prime}}\right)\left(x_{2}\right)\right\rangle$

$$
=A \epsilon_{A B C D} \epsilon_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}+B \epsilon_{A B A^{\prime} B^{\prime} \epsilon_{C^{\prime} D^{\prime} C D}}+C \epsilon_{A B C^{\prime} D^{\prime} \epsilon_{A^{\prime} B^{\prime} C D}}
$$

- from Minahan \& Zarembo: $A_{\mathrm{UV}}=1 / 2, B_{\mathrm{UV}}=-1, \quad C_{\mathrm{UV}}=1$ (more accurately: $A=A_{\mathrm{UV}} \times\left[\lambda /\left(8 \pi^{2}\right)\right] \times\left(1 /\left(4 \pi^{2} x_{12}^{2}\right)\right)^{2} \times(1 / \epsilon)+$ finite)

$$
\mathbb{H}=\sum_{i=1}^{L}\left(\mathbb{I}-\mathbb{P}+\frac{1}{2} \mathbb{T}\right)_{i i+1} \quad \text { Hamiltonian of an integrable spin chain }
$$

- In x space, prototypical UV divergence from

$$
=\quad I\left(x_{12}\right):=\int^{1 / \Lambda} d^{4} x \frac{1}{\left[\left(x-x_{1}\right)^{2}\right]^{2}\left[\left(x-x_{2}\right)^{2}\right]^{2}} \sim \frac{2 \pi^{2}}{\left(x_{12}^{2}\right)^{2}} \log \left(x_{12}^{2} \Lambda^{2}\right)
$$

- for later applications, go to momentum space:

$$
I\left(x_{12}\right):=\int \frac{d^{D} L}{(2 \pi)^{D}} e^{i L x_{12}} \int \frac{d^{D} L_{1}}{(2 \pi)^{D}} \frac{1}{L_{1}^{2}\left(L_{1}-L\right)^{2}} \int \frac{d^{D} L_{3}}{(2 \pi)^{D}} \frac{1}{L_{3}^{2}\left(L_{3}+L\right)^{2}}
$$

FT of Double bubble

Calculation from MHV diagrams

(Brandhuber, Penante, GT, Young)

- Back to 2004!
- MHV diagrams: new perturbative expansion of Yang-Mills theory (Cachazo, Svrcek, Witten 2004)
- vertices are off-shell continuation of the MHV amplitudes, to each internal leg with momentum L one associates the spinor

$$
\lambda_{\alpha} \rightarrow L_{\alpha \dot{\alpha}} \xi^{\dot{\alpha}} \quad \xi^{\dot{\alpha}}=\text { reference spinor }
$$

- connect vertices using scalar propagators
- derivation from lightcone quantisation of YM + change of variables in the path integral with Jacobian $=1$ (Mansfield; Gorsky, Rosly)
- also works for loops, and without supersymmetry (cut-constructible parts) (Brandhuber, Spence, GT 2004)

- Only one MHV diagram!

- choose three R-symmetry assignments contributing to one structure at a time

	$A B C D$	$A^{\prime} B^{\prime} C^{\prime} D^{\prime}$
Tr	1234	2413
\mathbb{P}	1213	3424
$\mathbb{1}$	1213	2434

$A_{\mathrm{MHV}}\left(1_{\phi_{A B}}, 2_{\phi_{C D}}, 3_{\phi_{A^{\prime} B^{\prime}}}, 4_{\phi_{C^{\prime} D^{\prime}}}\right)=$

II:
$A \epsilon_{A B C D} \epsilon_{A^{\prime} B^{\prime} C^{\prime} D^{\prime}}+B \epsilon_{A B A^{\prime} B^{\prime}} \epsilon_{C^{\prime} D^{\prime} C D}+C \epsilon_{A B C^{\prime} D^{\prime}} \epsilon_{A^{\prime} B^{\prime} C D}$

II

- New integral to compute:

$$
I\left(x_{12}\right):=\int \frac{d^{D} L}{(2 \pi)^{D}} e^{i L x_{12}} \int \frac{d^{D} L_{1}}{(2 \pi)^{D}} \frac{1}{L_{1}^{2}\left(L_{1}-L\right)^{2}} \int \frac{d^{D} L_{3}}{(2 \pi)^{D}} \frac{1}{L_{3}^{2}\left(L_{3}+L\right)^{2}} A_{\mathrm{MHV}\left(1_{\phi_{A B}}, 2_{\phi_{C D}}, 3_{\phi_{A^{\prime} B^{\prime}}}, 4_{\phi_{C^{\prime} D^{\prime}}}\right), ~\left({ }^{2}\right)}
$$

- Double bubble x one MHV vertex
- Work out the integrands:
- for P: nothing to be done! ($-1 \times$ double bubble, or -1)
- for I: $\quad \frac{\langle 13\rangle\langle 24\rangle}{\langle 23\rangle\langle 14\rangle}=1+\frac{\langle 12\rangle\langle 34\rangle}{\langle 23\rangle\langle 14\rangle}$
- next using CSW prescription and momentum conservation:

$$
1+\frac{\left[\xi\left|L_{1} L_{2}\right| \xi\right]\left[\xi\left|L_{3} L_{4}\right| \xi\right]}{\left[\xi\left|L_{2} L_{3}\right| \xi\right]\left[\xi\left|L_{1} L_{4}\right| \xi\right]}
$$

UV divergent
Summarising: $B_{\mathrm{UV}}=-1, \quad C_{\mathrm{UV}}=1$

- Summary: $A_{\mathrm{UV}}=1 / 2, B_{\mathrm{UV}}=-1, C_{\mathrm{UV}}=1$
(after similar manipulations on Tr)
- Comments:
- ξ-dependence: drops out at the end of the calculation
- similar to lightcone gauge...
- explicitly: by Lorentz invariance, final result can depend only on the combination $\quad\left[\xi\left|L^{2}\right| \xi\right]=0$
- note that the result cannot depend on $L \cdot \xi$ as we have NOT introduced a spinor ξ_{α} !
- self-energies: vanish with MHV diagrams (Brandhuber, Spence, GT 04)
- in lightcone gauge self-energies are finite and do not contribute to anomalous dimension (Belitsky, Derkachov, Korchemsky, Manashov)
- nice derivation from MHV rules in twistor space (Koster, Mitev, Staudacher)

Once again, with generalised unitarity

(Brandhuber, Penante, GT, Young)

- Compute correlator from cuts
- Earlier applications (Engelund \& Roiban)

- Ingredients:
- on-shell amplitudes (no off-shell continuations) \& cut propagators
- Quickly reconstruct the nontrivial cases:
- for I: $\frac{\langle 13\rangle\langle 24\rangle}{\langle 23\rangle\langle 14\rangle}=1+\frac{\langle 12\rangle\langle 34\rangle}{\langle 23\rangle\langle 14\rangle}=1+\frac{\langle 12\rangle\langle 34\rangle}{\langle 23\rangle\langle 14\rangle}[34]$
- second term:

$$
-\frac{L^{2}}{2\left(\ell_{1} \cdot \ell_{4}\right)} \longrightarrow
$$

- Kite integral, UV finite in four dimensions
- Keep just the 1 , drop the rest, or $C_{\mathrm{UV}}=1$.
- Similarly for the Tr structure
- Several generalisation/extensions possible
- $\operatorname{SU}(2 \mid 3)$ sector, higher loops....

Amplitude Yangian \& Dilatation Operator Yangian

(Brandhuber, Heslop, GT, Young, to appear)

- Yangian symmetry is thought to be a fundamental property of $\mathrm{N}=4$ super Yang-Mills
- Two slightly different manifestations on
- amplitudes
- dilatation operator
- Goal: derive the action of the Yangian on the dilatation operator from the Yangian of amplitudes

Amplitude Yangian

- Fact I: Tree-level amplitudes in N=4 SYM are Yangian invariant (covariant) (Drummond, Hem, Pelefa)
- level-zero generators $J^{A} \longrightarrow$ ordinary superconformal group
- level-one generators $Q^{A}=\sum_{i<j} Q_{i j}^{A}$
- $Q_{i j}^{A}:=f_{C B}^{A} J_{i}^{B} J_{j}^{C}$ are non-local densities acting on particles i and j
- level-one generators \rightarrow dual superconformal group
- level-one generator $p^{(1)}$ associated to momentum p is (related to) dual conformal K
- level-one generator $q^{(1)}$ associated to q-supersymmetry is (related to) dual superconformal generator S
- amplitudes are covariant under dual superconformal transformations (Drummond, Henn, Korchemsky, Sokatchev)

Dilatation operator Yangian

- Fact 2: The complete one-loop dilatation operator is Yangian invariant up to boundary terms (Dolan, Nappi,Witten)

$$
\left[Q^{A}, H\right] \sim J_{1}^{A}-J_{L}^{A}
$$

- Equivalent to showing $\left[Q_{12}^{A}, H_{12}\right] \sim J_{1}^{A}-J_{2}^{A}$
- $H=\sum_{i=1}^{L} H_{i i+1}$, where H_{12} acts on sites 1 and 2
- proof is based on acting on irreps of $\operatorname{PSU}(2,2 \mid 4)$
- LHS ~ one loop, RHS ~ tree level. Proof relies on identity

$$
[h(j)-h(j-1)] / j=1 \quad h(j)=j^{\text {th }} \text { harmonic number }
$$

- Next: derive Fact 2 from Fact I
- Main tool: an intriguing formula relating the dilatation operator to four-point superamplitudes found by Zwiebel (+ unpublished work of Beisert)
- Building blocks of this formula:
- tree-level four-point superamplitude
- recall: at one-loop, only two fields interact, $2 \rightarrow 2$ structure
- tree-level minimal form factors $\langle 0|\left(\Phi_{1} \cdots \Phi_{L}\right)(0)\left|\Phi_{1} \cdots \Phi_{L}\right\rangle$
- represent the states on which the dilatation operator acts
- effectively computes two-particle cuts of one-loop minimal form factors of (non-protected) operators (Wilhelm)
- Idea: use known action of Yangian generators on amplitudes to derive action on the dilatation operator

- States \& single-trace operators

- A state corresponds to a single-trace operator $\operatorname{Tr}\left(\Phi_{1} \cdots \Phi_{L}\right)(x)$
- The letters $\Phi_{i}: F^{\alpha \beta}, \psi^{\alpha A B C}, \phi^{[A B]}, \bar{\psi}^{\dot{\alpha} A}, \bar{F}^{\dot{\alpha} \dot{\beta}}$ (and symmetrised covariant derivatives D acting on them)
- oscillator representation of the states (Gunaydin \& Marcus)
$\left[a_{\alpha}, a^{\dagger \beta}\right]=\delta_{\alpha}^{\beta}, \quad\left[b_{\dot{\alpha}}, b^{\dagger \dot{\beta}}\right]=\delta_{\dot{\alpha}}^{\dot{\beta}}, \quad\left\{d_{A}, d^{\dagger B}\right\}=\delta_{A}^{B}, \quad \alpha, \beta=1,2, \quad \dot{\alpha}, \dot{\beta}=1,2, \quad A=1, \ldots, 4$
- a, b bosonic oscillators, d fermionic oscillators
- map to the states:
$\bar{F} \leftrightarrow b^{\dagger} b^{\dagger}, \quad \bar{\psi} \leftrightarrow b^{\dagger} d^{\dagger}, \quad \phi \leftrightarrow d^{\dagger} d^{\dagger}, \quad \psi \leftrightarrow a^{\dagger} d^{\dagger} d^{\dagger} d^{\dagger}, \quad F \leftrightarrow a^{\dagger} a^{\dagger} d^{\dagger} d^{\dagger} d^{\dagger} d^{\dagger}, \quad D \leftrightarrow a^{\dagger} b^{\dagger}$
- Spinor-helicity translation:

$$
\begin{array}{rlrlrl}
a^{\dagger \alpha} & \leftrightarrow \lambda^{\alpha}, & b^{\dagger \dot{\alpha}} & \leftrightarrow \tilde{\lambda}^{\dot{\alpha}}, & d^{\dagger A} \leftrightarrow \eta^{A} \\
a_{\alpha} & \leftrightarrow \partial_{\alpha}, & b_{\dot{\alpha}} & \leftrightarrow \partial_{\dot{\alpha}}, & d_{A} & \leftrightarrow \partial_{A}
\end{array}
$$

- States in spinor-helicity language:
- combine $\Lambda^{a}:=\left(\lambda^{\alpha}, \tilde{\lambda}^{\dot{\alpha}}, \eta^{A}\right)$
- a state is a polynomial $P\left(\Lambda_{1}, \ldots, \Lambda_{L}\right)$ in the Λ 's satisfying the physical state condition (vanishing central charge)
- Examples:
- half-BPS
$\cdots \phi^{12} \phi^{12} \cdots \leftrightarrow\left(\eta_{1}^{1} \eta_{1}^{2}\right)\left(\eta_{2}^{1} \eta_{2}^{2}\right)$
\leftarrow R-symmetry
\leftarrow position
- Konishi $\cdots \epsilon_{A B C D} \phi^{A B} \phi^{C D} \cdots \leftrightarrow \epsilon_{A B C D}\left(\eta_{1}^{A} \eta_{1}^{B}\right)\left(\eta_{2}^{C} \eta_{2}^{D}\right)$
- $P\left(\Lambda_{1}, \ldots, \Lambda_{L}\right)=$ tree-level minimal form factor of the corresponding operator (Wilhelm)
- E.g. half-BPS

$$
\cdots\left(\eta_{1}^{1} \eta_{1}^{2}\right)\left(\eta_{2}^{1} \eta_{2}^{2}\right) \cdots=\langle 0|\left(\cdots \phi^{12} \phi^{12} \cdots\right)(0)\left|\cdots \phi^{12} \phi^{12} \cdots\right\rangle
$$

- Zwiebel's formula: (second term slightly rewritten)

$$
H_{12}|1,2\rangle=\int d \Lambda_{3} d \Lambda_{4} A(1,2,3,4)\left[P(-4,-3)-\left(\frac{\langle 12\rangle}{\langle 34\rangle}\right)^{2} P(1,2)\right]
$$

- phase-space measure $d \Lambda_{i}:=d^{2} \lambda_{i} d^{2} \tilde{\lambda}_{i} d^{4} \eta_{i}$ (mod little group)
- superamplitude $A(1,2,3,4)=\frac{\delta^{(4)}\left(\sum_{i} \lambda_{i} \tilde{\lambda}_{i}\right) \delta^{(8)}\left(\sum_{i} \lambda_{i} \eta_{i}\right)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}$
- $P(1,2)$ represents the operator/state $|\cdots 1,2, \cdots\rangle$
- Connection to dilatation operator
- integrating out the momentum delta function one gets: (Zwiebel)

$$
H_{12}|1,2\rangle=-\frac{1}{\pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\frac{\pi}{2}} d \theta\left[e^{2 i \phi} P\left(1^{\prime}, 2^{\prime}\right)-P(1,2)\right]
$$

- $\lambda_{1}^{\prime}=\lambda_{1} \cos \theta-e^{i \phi} \lambda_{2} \sin \theta, \quad \lambda_{2}^{\prime}=\lambda_{1} \sin \theta+e^{i \phi} \lambda_{2} \cos \theta \quad$ (similarly for $\tilde{\lambda}^{\prime}, \eta^{\prime}$)
- Neatly reproduces Beisert's harmonic action form of the complete dilatation operator at one loop
- Connection to form factors (willem)

$$
H_{12}|1,2\rangle=\int d \Lambda_{3} d \Lambda_{4} A(1,2,3,4)\left[P(-4,-3)-\left(\frac{\langle 12\rangle}{\langle 34\rangle}\right)^{2} P(1,2)\right]=
$$

- first term is the two-particle cut of the one-loop form factor of the operator represented by P
- contains IR divergences (triangle) and also UV divergences (bubbles)
- second term subtracts the IR divergence of the same cut
- Leftover = discontinuity of a (UV-divergent) bubble, whose coefficient is \sim the dilatation operator
- note: the discontinuity of a bubble if finite
- Summarising:
- Unintegrated form:

$$
H_{12}|1,2\rangle=\int d \Lambda_{3} d \Lambda_{4} A(1,2,3,4)\left[P(-4,-3)-\left(\frac{\langle 12\rangle}{\langle 34\rangle}\right)^{2} P(1,2)\right]
$$

- integrated form:

$$
H_{12}|1,2\rangle=-\frac{1}{\pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\frac{\pi}{2}} d \theta\left[e^{2 i \phi} P\left(1^{\prime}, 2^{\prime}\right)-P(1,2)\right]
$$

- It is not at all obvious to see how the relation

$$
\left[Q_{12}^{A}, H_{12}\right] \sim J_{1}^{A}-J_{2}^{A}
$$

is realised when acting on the integrated form
Amplitudes to the rescue!

- Act with level-one generator $p^{(1)}$ on un-integrated form:

$$
\begin{aligned}
{\left[Q_{12}, H_{12}\right]|1,2\rangle } & =Q_{12} \int d \Lambda_{3} d \Lambda_{4} A(1,2,3,4)[P(-4,-3)-r P(1,2)] \\
& -\int d \Lambda_{3} d \Lambda_{4} A(1,2,3,4)\left[Q_{-4,-3} P(-4,-3)-r Q_{12} P(1,2)\right]
\end{aligned}
$$

$$
r:=\left(\frac{\langle 12\rangle}{\langle 34\rangle}\right)^{2}
$$

- $Q_{i j}=\left(m_{j}^{\gamma}{ }_{\alpha} \delta_{\dot{\alpha}}^{\dot{\gamma}}+\bar{m}_{j}^{\dot{\gamma}} \delta_{\alpha}^{\gamma}-d_{j} \delta_{\alpha}^{\gamma} \delta_{\dot{\alpha}}^{\dot{\gamma}}\right) p_{i \gamma \dot{\gamma}}+\bar{q}_{j \dot{\alpha} C} q_{i \alpha}^{C}-(i \leftrightarrow j) \quad$ from DHP
- Preliminary check: half-BPS operators, e.g. $\operatorname{Tr}\left(\phi^{12} \phi^{12}\right)$
- First line vanishes since $\quad P^{\phi^{12} \phi^{12}}(-4,-3)=r P^{\phi^{12} \phi^{12}}(1,2)$ (Brandhuber, Spence, GT, Yang)
- Second line: only constant part of d survives
$\left[Q_{12}, H_{12}\right]\left|\phi^{12} \phi^{12}\right\rangle=P^{\phi^{12} \phi^{12}}(1,2) \int d \Lambda_{3} d \Lambda_{4} A(1,2,3,4) \cdot r\left[p_{3}-p_{4}-\left(p_{1}-p_{2}\right)\right]$
- Result of explicit integration of RHS:

$$
\left[Q_{12}, H_{12}\right]|1,2\rangle=2\left(p_{1}-p_{2}\right)|1,2\rangle
$$

- Ingredients of the general proof (for arbitrary states):

- after IBP, combination of generators acting on amplitude is

$$
Q_{12}+Q_{34}=\sum_{i<j} Q_{i j}-\left(Q_{13}+Q_{14}+Q_{23}+Q_{24}\right)
$$

- $\sum_{i<j} Q_{i j}$ related to dual conformal K, which annihilates amplitude
- $\left(Q_{13}+Q_{14}+Q_{23}+Q_{24}\right) A=0$ since

$$
\left(Q_{13}+Q_{14}+Q_{23}+Q_{24}\right)^{A}=f_{C B}^{A}\left(J_{1}+J_{2}\right)^{B} J^{C}-\frac{1}{2} f_{C B}^{A} f_{D}^{B C}\left(J_{1}+J_{2}\right)^{D}
$$

- J^{C} is a symmetry of the amplitude
- $f_{C B}^{A} f_{D}^{B C}$ proportional to the (vanishing) dual Coxeter number of $\operatorname{PSU}(2,2 \mid 4)$
- alternative proof: use that Yangian on amplitudes is compatible with cyclicity!
thus $\left[Q_{12}, H_{12}\right]|1,2\rangle=P(1,2) \int d \Lambda_{3} d \Lambda_{4} A(1,2,3,4) \cdot r\left[p_{3}-p_{4}-\left(p_{1}-p_{2}\right)\right]$
- remaining term already computed in half-BPS case...
- Result:

$$
\left.\left|\left[Q_{12}, H_{12}\right]\right| 1,2\right\rangle=2\left(p_{1}-p_{2}\right)|1,2\rangle
$$

- Comments:

1. very simple extension to show that a similar formula holds if Q is the level-one generator associated to supersymmetry q :

$$
\left[Q_{12}, H_{12}\right]|1,2\rangle=2\left(q_{1}-q_{2}\right)|1,2\rangle
$$

2. not obvious to see this result on the "integrated form" of Zwiebel's formula (without amplitudes)!
3. RHS looks like a tree-level quantity!
4. can check other commutators
