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Introduction

Goal: comparison of (known) high energy behavior of SYM with BDS formula: discrepancy

Restrict to leading logarithmic approximation: no distinction between (pure) SU(Nc)

and SYM Yang Mills (N=4, SU(Nc), dual to AdS5 String theory).

Simplest high energy limits: multiregge limit (→ total cross section).

Simple ordering in rapidity. Analytic structure relatively simple. Also: triple Regge limit.

This talk: first high energy behavior in Yang-Mills, then comparison with BDS.

Notation: scattering amplitude An, after removal of Born approximation Mn.



High energy behavior

Leading logarithmic approximation is real, e.g.:
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Simple factorization (exponentiation):

lnM7 = ln Γ(t1) + ω(t1) ln s12 + ln Γ(t1, t2, η) + ω(t2) ln s23 + ... ln Γ(t4)

What about imaginary parts - energy discontinuities (belong still to leading log):

independent energy variables?



Steinmann relations: ’no simultaneous discontinuities in overlapping channels‘

Example:

2 → 3, in double Regge limit, in physical region s ≫ s12, s23 > 0, color octet exchange:

Singularities decouple at high energies.

History:

Axiomatic field theory; B5 Veneziano amplitudes, scalar field theory, proper partial wave

decomposition

(Steinmann; Brower et al, Gribov, W.Zakrzewski et al, A.White,....).



Analytic representation for positive energies:
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Decomposition into sum of double discontinuties . All vertex functions are real-valued.

Can also be written in a factorized form:
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In this representation there are phases inside the production vertex function V .



Second example: 2 → 4, physical region (all energies positive)

Again: sum of double discontinuties .

Analytic representation: all phases are in energy and signature factors.

Similarly 3 → 3: 5 terms.

Number of terms grows: 2 → 5: 14 terms etc.

Systematics: hexagraphs (A.White).



Analytic representation can be used to compute all terms from (multiple) discontinuities.

(JB, Nucl.Phys.B 151 and B 175; Fadin,Lipatov, Nucl.Phys.406). Example:

Bootstrap relations: known from BFKL. Hold for inelastic amplitudes.

Bootstrap relations are valid beyond leading order.

High degree of selfconsistency.



Results for QCD: five partial waves, e.g. the first term
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Belongs to Regge pole picture:



New feature appears for terms 3 and 4:
contains not only gluon Regge pole but also Regge cut:

Combine the two contributions:
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Note: only the one-loop approximation is singular (important for comparison with BDS)



Exact solution of the octet BFKL equation:
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Leading eigenvalue (at ν = 0): ω(0, n = 1) = 4 ln 2 − 2 > 0 (→ Odderon).

(Singular term: leading eigenvalue ω(0, 0) =0.)

Möbius invariance in dual variables (→ dual conformal symmetry?).

Comments:

• Regge cut piece violates factorization

• Regge cut piece is present in several discontinuities, e.g. in total energy s,

but not in all discontinuities.

• Regge cut piece present in all An with n > 5, e.g. 3 → 3.



Sum the 5 different pieces and obtain the full scattering amplitudes An:

Leading order: many cancellations, real-valued expression factorizes (see above).

Sum of all imaginary parts (= sum of discontinuities in different variables):

again substantial cancellations:

• in physical region (where all energies are positive),

the Regge cut piece cancels, simple factorizing structure is valid .

• But: in another physical region s > 0, s2 > 0, s123 < 0, s234 < 0

the cancellation of all imaginary parts is incomplete,

Regge cut piece appears, factorization is violated .



Planar approximation: has only right hand cuts.

But still allows different physical regions:



Comparison with BDS formula

After removal of color factors from the scattering amplitude

tr(T a1...T an)An + noncycl.perm,

factor out the tree amplitude:
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(based upon universality of IR singularities (=poles in ǫ) and unitarity, verified in 1-loop).



General strategy:

our analysis has been done for lnM , discarding terms which vanish as ǫ → 0.

Start from region where all invariants are negative, take multiregge limit.

Then, by analytic continuation, compare with previous result in different physical regions
(all at large-Nc, MHV).

All our results for the scattering amplitude Mn are valid up to a factor

Mn = ..... (1 + O(ǫ))

(important for comparison with fixed order NLO calculations).



The four point amplitude: (Korchemsky,...)

lnM4 = 2 lnΓ(t) + ω(t) ln(−s)/µ
2
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• No squares of ln s

• one loop expression for Γ

and two-loop expression for ω(t) agree with explicit calculations

• exact: can also be written in ’dual’ t-channel form (no high energy approximation).



The five point amplitude:

In lnM5: terms with squares of logarithms cancel. New production vertex:
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Analytic continuation to positive energies:
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2

Amplitude can be written in the analytic form:
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with real-valued functions c1, c2. Consistency check: the region s12, s23 < 0.



The six point amplitude: T2→4

In the unphysical region (all energies negative):
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The same functions Γ(t) and Γ(t1, t2, κ) as before.

Analytic continuation: inconsistency appears .

Can be seen in several different ways:

(a) attempt to write as a sum of five terms with real-valued functions ci (use also

the other physical region: s > 0, s2 > 0, s123 < 0, s234 < 0): no solution for the ci.



(b) comparison with the earlier QCD results: in the region s > 0, s2 > 0, s123 <

0, s234 < 0, one should see the Regge cut piece. The BDS formula yields:
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agrees with the one loop approximation to the Regge cut piece,

but BDS cannot reproduce the full Regge cut structure

Important: the higher order terms in the Regge cut are not singular in ǫ

and are not in conflict with the infrared structure of the BDS formula.



Outlook: results and tasks

What has been achieved, by comparison with explicit QCD calculations:

• BDS ok for 4 and 5 point amplitude. Regge limit is even exact.

• subtle disagreement for Mn for n ≥ 6 beyond one loop.

• in general, expect no simple exponential form. What instead?

Can we correct the formula? Reasons for being optimistic:

• many features of the BDS formula seem already to be correct (infrared and beyond)

• structure seen in the Regge limit may not be too far from general kinematics

• experience from analyzing QCD in Regge limit: structures seen in leading log (bootstrap,

unitarity properties) may survive in higher order


