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In principio erat Bern-Dixon-Smirnov ansatz ...
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Brief history of BDS ansatz

BDS ansatz checked through 3-loop 4-pt amplitude
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BDS ansatz and Regge limit
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4-pt amplitude                          in the Regge limit

Because the Regge limit is exponential in the Regge trajectory,
one can use (the logarithm of) the BDS ansatz to obtain 

the Regge trajectory to all loops
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High-energy factorisation is valid also for amplitudes with 5 or more points
in generalised Regge limits.

The general strategy is to use the modular form
of the amplitudes dictated by high-energy factorisation,

to obtain information on n-point amplitudes in terms of building blocks derived 
from m-point amplitudes, with m < n

the BDS ansatz can also be used to compute
(or to derive relations between) the coefficient functions



Because high-energy factorisation is used in the derivation
in QCD of the BFKL equation at LL and NLL accuracy,

I will start from there
with a few slides of a few years ago ...
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maximal trascendentality Kotikov Lipatov 02





contributes to NNLL BFKL kernel

More tree coefficient functions ...
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contributes to NNLO impact factor
(boundary condition to NNLL kernel)

used to compute DGLAP splitting amplitudes for all parton species
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(boundary condition to NNNLL kernel)

Frizzo Maltoni VDD 99

Tree 4-gluon coefficient function



contributes to NNNLO impact factor
(boundary condition to NNNLL kernel)
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Tree 4-gluon coefficient function

one may check several kinematic limits



Unknown 1-loop coefficient functions, which could be also computed ...

y1 ! y2 " y3

⊃ boundary condition 
to NNLL kernel
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as well as 2-loop coefficient functions ...
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The 1-loop and 2-loop coefficient functions I showed
in the last two slides have never been computed in QCD.  
Why ?  They are

building blocks of BFKL kernels or of their boundaries,
which, as of now, are unlikely to be built



⊃ boundary condition 
to NNLL kernel

as well as 2-loop coefficient functions ...

y1 ! y2

The 1-loop and 2-loop coefficient functions I showed
in the last two slides have never been computed in QCD.  
Why ?  They are

building blocks of BFKL kernels or of their boundaries,
which, as of now, are unlikely to be built

building blocks of n-point 1-loop or 2-loop amplitudes
in particular kinematics, but in QCD we have no clue
about the structure of n-point 1-loop or 2-loop amplitudes
in arbitrary kinematics (except for 1-loop MHV configurations)



Bern-Dixon-Smirnov  computed the 2-loop 4-pt amplitude M4(2) to O(ε2)
and the 3-loop 4-pt amplitude M4(3) to O(ε0).
Those amplitudes can be used to test the high-energy factorisation
of the 4-pt amplitude.
It is known that the factorisation formula for 
the QCD colour-dressed amplitude

N=4 Super Yang-Mills
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holds only up to NLL accuracy (which was fine for BFKL at NLL)
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 Im M4(1) contains leading colour structures other than the f ’s Schmidt  VDD 97

In the high-energy limit m(0)
4 (−+−+) = −m(0)

4 (−−++)

which are connected under s ↔ u channel crossing.

Clearly, the coefficients of the colour-stripped amplitudes must be the same for the 
formula above to hold.  At n loops, that occurs for the n-th log and for the real part of
the (n-1)-th log: that suffices for BFKL at NLL  

at tree level 

Bern Dixon Smirnov 05



natural to use a high-energy factorisation for the colour-stripped amplitude
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in the s-channel physical region

in the u-channel physical region

The formulae above contain the same info: they are related by s ↔ u channel crossing
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in the s-channel physical region
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Using the high-energy limit of BDS’s 2-loop 4-pt amplitude M4(2) to O(ε2) 
and 3-loop 4-pt amplitude M4(3) to O(ε0),
one can check that the formulae above hold at 3-loop accuracy

Instructive to implement the factorisation formulae with channel-
dependent coefficient functions. If the test amplitudes are not in 
the ``right’’ kinematics, the coefficient functions are indeed 
channel dependent → factorisation is broken

The formulae above contain the same info: they are related by s ↔ u channel crossing

Glover  VDD 08
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by direct calculation from
BDS’s 2-loop 4-pt amplitude M4(2) to O(ε2)
we get 2-loop trajectory
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BDS ansatz and high-energy factorisation
The BDS ansatz implies the 2-loop recursive formula
for the 2-loop 4-pt amplitude m4(2) (rescaled by the tree amplitude)

f (2)(ε) = −ζ2 − ζ3ε− ζ4ε
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one needs C(1)
MSY M

O(ε2)through but we know it to all orders of ε, in QCD
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from BDS’s recursive formula for the 3-loop 4-point amplitude and high-energy factorisation,
we get a recursive formula for the 3-loop coefficient function
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BDS ansatz and 3-loop high-energy factorisation



Conclusions

what’s next ?
once the 2-loop 5-point amplitude
in the (quasi)-multi-Regge kinematics is known,
we can derive the corresponding coefficient functions 
 ...  work in progress Duhr Glover  VDD

A bootstrap approach:
once we know the coefficient functions from
the 2-loop 4-point and 5-point amplitudes,
we can use them to build 2-loop amplitudes
with 6 or more points, in the multi-Regge and
quasi-multi-Regge kinematics, and thus obtain
(hopefully useful) info on the analytic form of
2-loop amplitudes with 6 or more points in
arbitrary kinematics


