MSYM
 amplitudes in the

 high-energy limit

 high-energy limit
 Vittorio Del Duca
 INFN LNF

Gauge theory and String theory
Zürich 2 July 2008

In principio erat Bern-Dixon-Smirnov ansatz ...

an ansatz for MHV amplitudes in N=4 SUSY

$$
\begin{aligned}
& \begin{aligned}
m_{n}= & m_{n}^{(0)}\left[1+\sum_{L=1}^{\infty} a^{L} M_{n}^{(L)}(\epsilon)\right] \\
= & m_{n}^{(0)} \exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) M_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]
\end{aligned} \\
\text { coupling } & a=\frac{\lambda}{8 \pi^{2}}\left(4 \pi e^{-\gamma}\right)^{\epsilon} \quad \lambda=g_{s}^{2} N_{c} \\
& f^{(l)}(\epsilon)=\frac{\hat{\gamma}_{K}^{(l)}}{4}+\frac{l}{2} \hat{G}^{(l)} \epsilon+f_{2}^{(l)} \epsilon^{2} \quad E_{n}^{(l)}(\epsilon)=O(\epsilon)
\end{aligned}
$$

$\hat{\gamma}_{K}^{(l)} \quad$ cusp anomalous dimension, known to all orders of a
$\hat{G}^{(l)} \quad$ IR function, known through $\mathrm{O}\left(a^{4}\right)$

Korchemsky Radyuskin 86
Beisert Eden Staudacher 06

Bern Dixon Smirnov 05
Cachazo Spradlin Volovich 07

Brief history of BDS ansatz

BDS ansatz checked through 3-loop 4-pt amplitude
Bern Dixon Smirnov 05
2-loop 5-pt amplitude
Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

BDS ansatz shown to fail on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Hints of break-up also from strong-coupling expansion
hexagon Wilson loop multi-Regge limit

Alday Maldacena 07
Drummond Henn Korchemsky Sokatchev 07 Bartels Lipatov Sabio-Vera 08

BDS ansatz and Regge limit

4-pt amplitude $p_{a} p_{b} \rightarrow p_{a^{\prime}} p_{b^{\prime}}$ in the Regge limit $\quad s \gg-t$

$$
\begin{gathered}
m_{4}=s\left[g_{s} C\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{1}{t}\left(\frac{s}{-t}\right)^{\alpha(t)}\left[g_{s} C\left(p_{b}, p_{b^{\prime}}\right)\right] \\
\alpha(t) \quad \text { Regge trajectory } \quad C\left(p_{a}, p_{a^{\prime}}\right) \quad \text { coefficient function } \\
\alpha(t, \epsilon)=\sum_{l=1}^{\infty} \bar{g}_{s}^{2 l}(t, \epsilon) \alpha^{(l)}(\epsilon) \\
\bar{g}_{s}^{2}(t, \epsilon)=\frac{a}{2 G(\epsilon)}\left(\frac{\mu^{2}}{-t}\right)^{\epsilon} \quad G(\epsilon)=\frac{e^{-\gamma \epsilon} \Gamma(1-2 \epsilon)}{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}=1+O\left(\epsilon^{2}\right)
\end{gathered}
$$

Because the Regge limit is exponential in the Regge trajectory, one can use (the logarithm of) the BDS ansatz to obtain the Regge trajectory to all loops

Naculich Schnitzer 07
Bartels Lipatov Sabio-Vera 08 Glover VDD 08

I-loop Regge trajectory

$$
\alpha^{(l)}(\epsilon)=2^{l-1} \alpha^{(1)}(l \epsilon)\left(\frac{\hat{\gamma}_{K}^{(l)}}{4}+\frac{l}{2} \hat{G}^{(l)} \epsilon\right)+O(\epsilon) \quad \alpha^{(1)}(\epsilon)=\frac{2}{\epsilon}
$$

the BDS ansatz can also be used to compute (or to derive relations between) the coefficient functions

High-energy factorisation is valid also for amplitudes with 5 or more points in generalised Regge limits.
The general strategy is to use the modular form of the amplitudes dictated by high-energy factorisation, to obtain information on n-point amplitudes in terms of building blocks derived from m-point amplitudes, with $m<n$
the BDS ansatz can also be used to compute (or to derive relations between) the coefficient functions

High-energy factorisation is valid also for amplitudes with 5 or more points in generalised Regge limits.
The general strategy is to use the modular form of the amplitudes dictated by high-energy factorisation, to obtain information on n-point amplitudes in terms of building blocks derived from m-point amplitudes, with $m<n$

Because high-energy factorisation is used in the derivation in QCD of the BFKL equation at LL and NLL accuracy,

I will start from there
with a few slides of a few years ago ...

FORWARD SCATTERING

PARTON-PARTON SCATTERING In the c.m. frame, $t=-s(1-\cos \theta) / 2$, with θ the scattering angle. $s \gg|t|$:
forward, i.e. small angle, scattering: $d \sigma / d t \sim 1 / t^{2}$
\Rightarrow the scattering process is dominated by sub-processes with gluon exchange in the t channel: $q Q \rightarrow q Q, q g \rightarrow q g, g g \rightarrow g g$

FORWARD SCATTERING

PARTON-PARTON SCATTERING In the $\mathrm{c} . \mathrm{m}$. frame, $t=-s(1-\cos \theta) / 2$, with θ the scattering angle. $s \gg|t|$:
$\boldsymbol{\epsilon}$ forward, i.e. small angle, scattering: $d \sigma / d t \sim 1 / t^{2}$
\Rightarrow the scattering process is dominated by sub-processes with gluon exchange in the t channel: $q Q \rightarrow q Q, q g \rightarrow q g, g g \rightarrow g g$
$q g \rightarrow q g$ scattering amplitude in the $s \gg|t|$ limit:

$$
\begin{aligned}
& \mathcal{A}_{q g \rightarrow q g}^{\text {tree }}\left(p_{a}, p_{a^{\prime}} \mid p_{b^{\prime}}, p_{b}\right) \\
& \quad=2 s\left[g T_{a^{\prime} \bar{a}}^{c} C^{q: q}\left(p_{a} ; p_{a^{\prime}}\right)\right] \frac{1}{t}\left[i g f^{b b^{\prime} c} C^{g: g}\left(p_{b} ; p_{b^{\prime}}\right)\right]
\end{aligned}
$$

$\Rightarrow C^{g: g}\left(C^{q: q}\right)$: gluon (quark) high energy effective vertices
\Rightarrow high energy factorisation: to obtain $q Q \rightarrow q Q$ or $g g \rightarrow g g$ replace

$$
i g f^{b b^{\prime} c} C^{g: g}\left(p_{b} ; p_{b^{\prime}}\right) \leftrightarrow g T_{b^{\prime} \bar{b}}^{c} C^{q: q}\left(p_{b} ; p_{b^{\prime}}\right)
$$

BFKL RESUMMATION

(in any scattering process with $s \gg|t|$ gluon exchange in the t channel dominates

BFKL is a resummation of multiple gluon radiation out of the gluon exchanged in the t channel

(for $s \gg|t|$ BFKL resums the Leading Log (and Next-to-Leading Log) contributions, in $\log (s / t)$, of the radiative corrections to the gluon propagator in the t channel, to all orders in α_{s}
(he LL terms are obtained in the approximation of strong rapidity ordering $\left(y_{1} \gg y_{2} \gg \ldots \gg y_{n}\right)$ and no k_{t} ordering of the emitted gluons
(he NLL terms are universal
(the resummation yields a 2-dim integral equation for the evolution of the gluon propagator in the t channel

LL BFKL RESUMMATION

* the universal building blocks of the LL BFKL resummation are:
- the real term: the emission of a gluon along the gluon ladder

$$
\begin{aligned}
& \mathcal{A}_{g g \rightarrow 3 g}^{\text {tree }}\left(p_{a}, p_{a^{\prime}}|k| p_{b^{\prime}}, p_{b}\right) \\
& \quad=s\left[i g f^{a a^{\prime} c} C^{g: g}\left(p_{a} ; p_{a^{\prime}}\right)\right] \\
& \quad \times \frac{1}{t_{1}}\left[i g f^{c d c^{\prime}} C^{g}\left(q_{1}, k, q_{2}\right)\right] \\
& \quad \times \frac{1}{t_{2}}\left[i g f^{b b^{\prime} c^{\prime}} C^{g: g}\left(p_{b} ; p_{b^{\prime}}\right)\right]
\end{aligned}
$$

$\Rightarrow C^{g}\left(q_{1}, k, q_{2}\right)$ is the gluon emission (Lipatov) vertex

LL BFKL RESUMMATION

* the universal building blocks of the LL BFKL resummation are:
© the real term: the emission of a gluon along the gluon ladder

$$
\begin{aligned}
& \mathcal{A}_{g g \rightarrow 3 g}^{\text {tree }}\left(p_{a}, p_{a^{\prime}}|k| p_{b^{\prime}}, p_{b}\right) \\
& \quad=s\left[i g f^{a a^{\prime} c} C^{g: g}\left(p_{a} ; p_{a^{\prime}}\right)\right] \\
& \quad \times \frac{1}{t_{1}}\left[i g f^{c d c^{\prime}} C^{g}\left(q_{1}, k, q_{2}\right)\right] \\
& \quad \times \frac{1}{t_{2}}\left[i g f^{b b^{\prime} c^{\prime}} C^{g: g}\left(p_{b} ; p_{b^{\prime}}\right)\right]
\end{aligned}
$$

$\Rightarrow C^{g}\left(q_{1}, k, q_{2}\right)$ is the gluon emission (Lipatov) vertex
© the virtual term: the reggeisation of the gluon exchanged in the t channel (here in $d=4-2 \epsilon$ dimensional regularisation)

$$
\begin{aligned}
& \mathcal{A}_{g g \rightarrow g g}^{1-\operatorname{loop}^{2}}=\tilde{g}^{2}(t) \alpha^{(1)} \ln \frac{s}{-t} \mathcal{A}_{g g \rightarrow g g}^{\text {tree }} \\
& \alpha^{(1)}=\frac{2 C_{A}}{\epsilon} \quad \tilde{g}^{2}(t)=g^{2} c_{\Gamma}\left(\frac{\mu^{2}}{-t}\right)^{\epsilon}
\end{aligned}
$$

$\Rightarrow \tilde{g}^{2}(t) \alpha^{(1)}$ is the 1-loop gluon Regge trajectory $\quad\left(C_{A}=N_{c}\right)$

NLL BFKL RESUMMATION

* the building blocks of the NLL BFKL resummation are:
\leftrightarrow corrections to the Lipatov vertex

Fadin, Lipatov 1989-96
VDD 1996

Fadin, Lipatov 1993
Fadin, Fiore, Quartarolo 1994
Fadin, Fiore, Kotsky 1996
Bern, Schmidt, VDD 1998
© 2-loop gluon reggeisation

Fadin, Fiore, Kotsky 1995-96
Fadin, Fiore, Quartarolo 1995
Glover, VDD 2001

GLUON REGGEISATION

ANSATZ in HEL the gluon-gluon scattering amplitude for the exchange of a colour octet of negative signature in the t channel is

$$
\begin{aligned}
& \mathcal{A}_{g g \rightarrow g}\left(p_{a}, p_{a^{\prime}}\left(p_{b^{\prime}}, p_{b}\right)\right. \\
& \quad=s\left[i g f^{a a^{\prime} c} C^{g: g}\left(p_{a} ; p_{a^{\prime}}\right)\right] \frac{1}{t}\left[\left(\frac{-s}{-t}\right)^{\alpha(t)}+\left(\frac{s}{-t}\right)^{\alpha(t)}\right]\left[i g f^{b b^{\prime} c} C^{g: g}\left(p_{b} ; p_{b^{\prime}}\right)\right]
\end{aligned}
$$

* the effective vertex $C^{g: g}$ and the gluon Regge trajectory have the perturbative expansion

$$
\begin{aligned}
C^{g: g} & =C^{g: g(0)}\left(1+\tilde{g}^{2}(t) C^{g: g(1)}+\tilde{g}^{4}(t) C^{g: g(2)}\right)+\mathcal{O}\left(\tilde{g}^{6}\right) \\
\alpha(t) & =\tilde{g}^{2}(t) \alpha^{(1)}+\tilde{g}^{4}(t) \alpha^{(2)}+\mathcal{O}\left(\tilde{g}^{6}\right)
\end{aligned}
$$

* the 2-loop gluon Regge trajectory is

$$
\begin{aligned}
\alpha^{(2)}=C_{A}\left[\beta_{0} \frac{1}{\epsilon^{2}}+K \frac{2}{\epsilon}\right. & \left.+C_{A}\left(\frac{404}{27}-2 \zeta_{3}\right)+N_{F}\left(-\frac{56}{27}\right)\right] \\
\beta_{0}=\frac{\left(11 C_{A}-2 N_{F}\right)}{3} \quad K & =\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right) C_{A} \backslash-\frac{5}{9} N_{F} \\
& \text { maximal trascendentality Kotikov Lipatov } 02
\end{aligned}
$$

IMPACT FACTORS

LO IMPACT FACTOR

$$
g g^{*} \rightarrow g:
$$

at LO the impact factors are known for all the processes of interest (see next Table)

NLO IMPACT FACTOR

at NLO the impact factors are known for $q g^{*} \rightarrow q, g g^{*} \rightarrow g$ and $\gamma^{*} g^{*} \rightarrow q \bar{q}$
Bartels, Colferai, Gieseke, Vacca 2001-02

More tree coefficient functions ...

contributes to NNLL BFKL kernel

Frizzo Maltoni VDD 99
Antonov Lipatov Kuraev Cherednikov 05

More tree coefficient functions ...

More tree coefficient functions ...

contributes to NNLL BFKL kernel

Frizzo Maltoni VDD 99

Antonov Lipatov Kuraev Cherednikov 05
contributes to NNLO impact factor (boundary condition to NNLL kernel)

Frizzo Maltoni VDD 99

used to compute DGLAP splitting amplitudes for all parton species

Frizzo Maltoni VDD 99

Tree 4-gluon coefficient function

contributes to NNNLO impact factor (boundary condition to NNNLL kernel)

Frizzo Maltoni VDD 99

Tree 4-gluon coefficient function

contributes to NNNLO impact factor (boundary condition to NNNLL kernel)

Frizzo Maltoni VDD 99
one may check several kinematic limits

Unknown I-loop coefficient functions, which could be also computed ...

boundary condition to NNLL kernel

Unknown I-loop coefficient functions, which could be also computed ...

boundary condition to NNLL kernel
boundary condition to NNNLL kernel
contributes to NNLL kernel

as well as 2-loop coefficient functions ...

as well as 2-loop coefficient functions ...

The I-loop and 2-loop coefficient functions I showed in the last two slides have never been computed in QCD.
Why ? They are
Q building blocks of BFKL kernels or of their boundaries, which, as of now, are unlikely to be built
as well as 2-loop coefficient functions ...

The I-loop and 2-loop coefficient functions I showed in the last two slides have never been computed in QCD. Why ? They are

Q building blocks of BFKL kernels or of their boundaries, which, as of now, are unlikely to be built

Q building blocks of n-point I-loop or 2-loop amplitudes in particular kinematics, but in QCD we have no clue about the structure of n-point I-loop or 2-loop amplitudes in arbitrary kinematics (except for I-loop MHV configurations)

N=4 Super Yang-Mills

Bern-Dixon-Smirnov computed the 2-loop 4-pt amplitude $M_{4}{ }^{(2)}$ to $O\left(\varepsilon^{2}\right)$ and the 3-loop 4-pt amplitude $M_{4}{ }^{(3)}$ to $\mathrm{O}\left(\varepsilon^{0}\right)$.

Bern Dixon Smirnov 05
Those amplitudes can be used to test the high-energy factorisation of the 4 -pt amplitude.
It is known that the factorisation formula for the QCD colour-dressed amplitude

$$
M_{4}=s\left[i g_{s} f^{a c a^{\prime}} C\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{1}{t}\left[\left(\frac{-s}{-t}\right)^{\alpha(t)}+\left(\frac{s}{-t}\right)^{\alpha(t)}\right]\left[i g_{s} f^{b c b^{\prime}} C\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

holds only up to NLL accuracy (which was fine for BFKL at NLL)

N=4 Super Yang-Mills

Bern-Dixon-Smirnov computed the 2-loop 4-pt amplitude $M_{4}{ }^{(2)}$ to $\mathrm{O}\left(\varepsilon^{2}\right)$ and the 3-loop 4-pt amplitude $M_{4}^{(3)}$ to $\mathrm{O}\left(\varepsilon^{0}\right)$. Bern Dixon Smirnov 05
Those amplitudes can be used to test the high-energy factorisation of the 4-pt amplitude.
It is known that the factorisation formula for the QCD colour-dressed amplitude

$$
M_{4}=s\left[i g_{s} f^{a c a^{\prime}} C\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{1}{t}\left[\left(\frac{-s}{-t}\right)^{\alpha(t)}+\left(\frac{s}{-t}\right)^{\alpha(t)}\right]\left[i g_{s} f^{b c b^{\prime}} C\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

holds only up to NLL accuracy (which was fine for BFKL at NLL)
Im $M_{4}{ }^{(1)}$ contains leading colour structures other than the f 's
Schmidt VDD 97
In the high-energy limit $\quad m_{4}^{(0)}(-+-+)=-m_{4}^{(0)}(--++) \quad$ at tree level
which are connected under $s \leftrightarrow u$ channel crossing.
Clearly, the coefficients of the colour-stripped amplitudes must be the same for the formula above to hold. At n loops, that occurs for the n-th log and for the real part of the ($n-1$)-th log: that suffices for BFKL at NLL
natural to use a high-energy factorisation for the colour-stripped amplitude

$$
m_{4}(-,-,+,+) \equiv m_{4}^{s}=s\left[g_{s} C\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{1}{t}\left(\frac{-s}{-t}\right)^{\alpha(t)}\left[g_{s} C\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

in the s-channel physical region

$$
m_{4}(-,+,-,+) \equiv m_{4}^{u}=s\left[g_{s} C\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{1}{t}\left(\frac{s}{-t}\right)^{\alpha(t)}\left[g_{s} C\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

in the u-channel physical region
The formulae above contain the same info: they are related by $s \leftrightarrow u$ channel crossing
natural to use a high-energy factorisation for the colour-stripped amplitude

$$
m_{4}(-,-,+,+) \equiv m_{4}^{s}=s\left[g_{s} C\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{1}{t}\left(\frac{-s}{-t}\right)^{\alpha(t)}\left[g_{s} C\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

in the s-channel physical region

$$
m_{4}(-,+,-,+) \equiv m_{4}^{u}=s\left[g_{s} C\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{1}{t}\left(\frac{s}{-t}\right)^{\alpha(t)}\left[g_{s} C\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

in the u-channel physical region
The formulae above contain the same info: they are related by $s \leftrightarrow u$ channel crossing

Using the high-energy limit of BDS's 2-loop 4-pt amplitude $M_{4}{ }^{(2)}$ to $\mathrm{O}\left(\varepsilon^{2}\right)$ and 3-loop 4-pt amplitude $M_{4}^{(3)}$ to $\mathrm{O}\left(\varepsilon^{0}\right)$, one can check that the formulae above hold at 3-loop accuracy

Instructive to implement the factorisation formulae with channeldependent coefficient functions. If the test amplitudes are not in the "right" kinematics, the coefficient functions are indeed channel dependent \rightarrow factorisation is broken

Factorisation of the 2-loop amplitude

$$
\begin{aligned}
m_{4}^{u(2)}= & \frac{1}{2}\left(\alpha^{(1)}\right)^{2} L^{2} \\
+ & \left(\alpha^{(2)}+2 C^{(1)} \alpha^{(1)}\right) L \\
+ & 2 C^{(2)}+\left(C^{(1)}\right)^{2} \\
& L=\ln \left(\frac{s}{-t}\right)
\end{aligned}
$$

Factorisation of the 2-loop amplitude

$$
\begin{aligned}
m_{4}^{u(2)}= & \frac{1}{2}\left(\alpha^{(1)}\right)^{2} L^{2} \\
+ & \left(\alpha^{(2)}+2 C^{(1)} \alpha^{(1)}\right) L \\
+ & 2 C^{(2)}+\left(C^{(1)}\right)^{2} \\
& L=\ln \left(\frac{s}{-t}\right)
\end{aligned}
$$

by direct calculation from BDS's 2-loop 4-pt amplitude $M_{4}^{(2)}$ to $O\left(\varepsilon^{2}\right)$ we get 2-loop trajectory

$$
\alpha_{M S Y M}^{(2)}=-\frac{\pi^{2}}{3 \epsilon}-2 \zeta_{3}-\frac{4 \pi^{4}}{45} \epsilon+\left(6 \pi^{2} \zeta_{3}+82 \zeta_{5}\right) \epsilon^{2}+O\left(\epsilon^{3}\right)
$$

2-loop coefficient function

$$
C_{M S Y M}^{(2)}=\frac{2}{\epsilon^{4}}-\frac{5 \pi^{2}}{6} \frac{1}{\epsilon^{2}}-\frac{\zeta_{3}}{\epsilon}-\frac{11}{72} \pi^{4}+\left(\frac{\pi^{2}}{6} \zeta_{3}-41 \zeta_{5}\right) \epsilon-\left(\frac{95}{2} \zeta_{3}^{2}+\frac{113 \pi^{6}}{504}\right) \epsilon^{2}+O\left(\epsilon^{3}\right)
$$

BDS ansatz and high-energy factorisation

The BDS ansatz implies the 2-loop recursive formula
for the 2-loop 4-pt amplitude $m_{4}{ }^{(2)}$ (rescaled by the tree amplitude)

$$
m_{4}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{4}^{(1)}(\epsilon)\right]^{2}+\frac{2 G^{2}(\epsilon)}{G(2 \epsilon)} f^{(2)}(\epsilon) m_{4}^{(1)}(2 \epsilon)-2 \zeta_{2}^{2}+O(\epsilon)
$$

Anastasiou Bern Dixon Kosower 03
with $\quad f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2}$
(we use a different normalisation from BDS)

$$
G(\epsilon)=\frac{e^{-\gamma \epsilon} \Gamma(1-2 \epsilon)}{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}=1+O\left(\epsilon^{2}\right)
$$

BDS ansatz and high-energy factorisation

The BDS ansatz implies the 2-loop recursive formula for the 2-loop 4-pt amplitude $m_{4}{ }^{(2)}$ (rescaled by the tree amplitude)

$$
m_{4}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{4}^{(1)}(\epsilon)\right]^{2}+\frac{2 G^{2}(\epsilon)}{G(2 \epsilon)} f^{(2)}(\epsilon) m_{4}^{(1)}(2 \epsilon)-2 \zeta_{2}^{2}+O(\epsilon)
$$

Anastasiou Bern Dixon Kosower 03
with $\quad f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2}$
(we use a different normalisation from BDS)

$$
G(\epsilon)=\frac{e^{-\gamma \epsilon} \Gamma(1-2 \epsilon)}{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}=1+O\left(\epsilon^{2}\right)
$$

from the 2-loop recursive formula and high-energy factorisation, we get

$$
C_{M S Y M}^{(2)}(\epsilon)=\frac{1}{2}\left[C_{M S Y M}^{(1)}(\epsilon)\right]^{2}+\frac{2 G^{2}(\epsilon)}{G(2 \epsilon)} f^{(2)}(\epsilon) C_{M S Y M}^{(1)}(2 \epsilon)-\zeta_{2}^{2}+O(\epsilon)
$$

Glover VDD 08
one needs $C_{M S Y M}^{(1)}$ through $O\left(\epsilon^{2}\right)$ but we know it to all orders of ε, in QCD

$$
C_{M S Y M}^{(1)}=\frac{\psi(1+\epsilon)-2 \psi(-\epsilon)+\psi(1)}{\epsilon}
$$

BDS ansatz and 3-loop high-energy factorisation

from BDS's recursive formula for the 3-loop 4-point amplitude and high-energy factorisation, we get a recursive formula for the 3-loop coefficient function

$$
\begin{aligned}
C_{M S Y M}^{(3)}(\epsilon) & =-\frac{1}{3}\left[C_{M S Y M}^{(1)}(\epsilon)\right]^{3}+C_{M S Y M}^{(1)}(\epsilon) C_{M S Y M}^{(2)}(\epsilon) \\
& +\frac{4 G^{3}(\epsilon)}{G(3 \epsilon)} f^{(3)}(\epsilon) C_{M S Y M}^{(1)}(3 \epsilon)+4 \text { Const }^{(3)}+O(\epsilon)
\end{aligned}
$$

with $\quad f^{(3)}(\epsilon)=\frac{11}{2} \zeta_{4}+\left(6 \zeta_{5}+5 \zeta_{2} \zeta_{3}\right) \epsilon+\left(c_{1} \zeta_{6}+c_{2} \zeta_{3}^{2}\right) \epsilon^{2}$

$$
\text { Const }^{(3)}=\left(\frac{341}{216}+\frac{2}{9} c_{1}\right) \zeta_{6}+\left(-\frac{17}{9}+\frac{2}{9} c_{2}\right) \zeta_{3}^{2}
$$

one needs $C_{M S Y M}^{(2)}$ through $O\left(\epsilon^{2}\right)$ and $C_{M S Y M}^{(1)}$ through $O\left(\epsilon^{4}\right)$

Conclusions

what's next ?
once the 2-loop 5-point amplitude in the (quasi)-multi-Regge kinematics is known, we can derive the corresponding coefficient functions
... work in progress

A bootstrap approach: once we know the coefficient functions from the 2 -loop 4 -point and 5 -point amplitudes, we can use them to build 2-loop amplitudes with 6 or more points, in the multi-Regge and quasi-multi-Regge kinematics, and thus obtain (hopefully useful) info on the analytic form of 2-loop amplitudes with 6 or more points in arbitrary kinematics

