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Outline   

• MHV amplitudes in N=4 SYM & Wilson loops

‣ iterative structures in the perturbative expansion

‣ one-loop n-point amplitudes and Wilson loops           
(Brandhuber, Heslop, GT)      

• 4-point MHV amplitude in N=8 supergravity 

(Brandhuber, Heslop, Nasti, Spence, GT)      

‣ iterative structures 

‣ Wilson loops                                                             



• Scattering amplitudes in gauge theory are 
simple 
‣ geometry in Twistor Space (Witten)

‣ recursive structures in the perturbative S-matrix of gauge theories

• Simplicity hidden by Feynman diagrams
‣ diagrams not not separately gauge invariant

‣ unphysical singularities

• Unitarity-based & twistor-inspired methods
‣ gauge-invariant, on-shell data at each intermediate step of calculation

‣ also in non-supersymmetric theories 

Motivations



• Amplitudes in N=4 super Yang-Mills are even 
simpler (and more mysterious...)

‣ All one-loop amplitudes expressed in terms of             
box functions (Bern, Dixon, Dunbar, Kosower)  

‣ Iterative structures in splitting amplitudes and  planar 
MHV amplitudes (Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)           
Lance Dixon’s talk

- planar: leading in 1/N



‣ Intriguing connection between MHV amplitudes in                  
N=4 super Yang-Mills and Wilson loops                                       
(Drummond, Korchemsky, Sokatchev + Henn;   Brandhuber, Heslop, GT)

‣ Dual (super)conformal symmetry:                               
Emery Sokatchev & Gregory Korchemsky talks tomorrow

- integral functions in planar amplitudes are pseudo-conformal 
(Drummond, Henn, Smirnov, Sokatchev)

- Wilson loops satisfy dual conformal Ward identities         
(Drummond, Henn, Korchemsky, Sokatchev)

‣ Maximal transcendentality              



• Novel motivation: explore the new duality              
N=4 MHV amplitudes/Wilson loops in      
other theories

‣ Wilson loop calculation does not produce spinor 
prefactors

‣ Look at amplitudes which are proportional to the      
tree-level amplitude to all loops,                        ...

- ... where        is a scalar, helicity-blind function

- Q:  can we calculate it using Wilson loops ? 

‣ First, we need to find some examples ...      

A = AtreeM

M



• We will consider N=8 supergravity amplitudes
‣ four-point MHV amplitude is of the form 

‣ maximally supersymmetric

‣ nonplanar

• Our goals: 
‣ look for iterative relations in MHV amplitudes

‣ try to relate amplitudes to Wilson loops

‣ idea: find more similarities between the two maximally 
supersymmetric theories

A = AtreeM



• Common features N=4/N=8:

‣ Absence of triangle and bubble subgraphs in amplitudes  
(“no-triangle hypothesis”) (Bern, Dixon, Perelstein, Rozowsky; Bern, Bjerrum-
Bohr, Dunbar; Bjerrum-Bohr, Dunbar, Ita; Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager; Bjerrum-Bohr, 
Vanhove)

‣ N=8 conjectured to be perturbatively finite (Bjerrum-Bohr, Dunbar, 
Ita, Perkins, Risager; Chalmers; Bern, Dixon, Roiban; Green, Russo, Vanhove; Bern, Carrasco, Dixon, 
Johansson, Kosower, Roiban)        Zvi Bern and David Dunbar talks today

• Gauge theory/gravity: 

‣ KLT relations (Kawai, Lewellen, Tye)

‣ UV behaviour of tree amplitudes under (complex) shifts 
much softer than expected, tree-level recursion relations                         
(Bedford, Brandhuber, Spence, GT; Cachazo, Svrcek; Benincasa, Boucher-Veronneau, Cachazo; 
Arkany-Hamed, Kaplan)



• Iterative structures

‣ n-point MHV amplitudes in N=4 SYM                     
(Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

‣ 4-point MHV amplitude in N=8 supergravity          
(Brandhuber, Heslop, Nasti, Spence, GT)      

• Wilson loops      

‣ vs one-loop n-point MHV amplitudes in N=4 SYM 
(Brandhuber, Heslop, GT)

‣ vs one-loop 4-point MHV amplitude in N=8 supergravity          
(Brandhuber, Heslop, Nasti, Spence, GT)                                                         

In the rest of the talk: 



N=4  Yang-Mills



• n-point MHV amplitude in N=4 SYM at   
one loop:

A
tree

MHV
×

From Trees to Loops, cont’d

a :=
2(pq)

P2Q2− st

F2me(s, t,P2,Q2) =−c!
"2

[(−s
µ2

)−"
2F1 (1,−",1− ",as) +

(−t
µ2

)−"
2F1 (1,−",1− ",at)

−
(−P2

µ2

)−"
2F1

(
1,−",1− ",aP2

)
−

(−Q2

µ2

)−"
2F1

(
1,−",1− ",aQ2

)]

with

the all order in 
2-mass easy box function:

!

Sum of two-mass easy box functions, all with coefficient 1 

Simplest one-loop amplitude

A1−loop
MHV = A tree

MHV∑

Diagrammatic 
interpretation 

Q

· Colour-ordered partial amplitude, leading term in 1/N

·



• Computed in 1994 by Bern, Dixon, Dunbar and 
Kosower using unitarity 

• Rederived in 2004 with loop MHV diagrams...       
(Brandhuber, Spence, GT) 

• ...and, more recently, with a weakly-coupled Wilson 
loop calculation, with the Alday-Maldacena polygonal 
contour (Brandhuber, Heslop, GT)



• n-point MHV amplitude in N=4 SYM

‣  

is the all-orders in    one-loop amplitude, 

anomalous dimension of twist-two operators at large spin,
☝

a ∼ g2N/(8π2)

  ☞   Higher-loop amplitudes expressed in terms of lower loop amplitudes 

γ(L)
K /4

Surprising regularities at higher loops
(Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

An,MHV = Atree
n,MHVMn

M(1)
n (ε)

f (L)(ε) =f (L)
0 + εf (L)

1 + ε2f (L)
2

ε‣  

‣  

Mn := 1 +
∞∑

L=1

aLM(L)
n = exp

[ ∞∑

L=1

aL
(
f (L)(ε)M(1)

n (Lε) + C(L) +O(ε)
)]?

D = 4− 2ε

(Bern, Dixon, Smirnov)



• Signature of two-loop iteration: 

‣ Requires knowledge of lower-loop amplitude to higher 
orders in 

‣ Go up by one loop only

First few terms of BDS conjecture:

and so on... 

(take Log of the Ansatz)

M(2)
n = 1

2

(
M(1)

n (ε)
)2

+ f (2)(ε)M(1)
n (2ε) + O(ε)

M(3)
n = − 1

3

(
M(1)

n (ε)
)3

+ M(2)
n (ε)M(1)

n (ε) + f (3)(ε)M(1)
n (3ε) + O(ε)

ε

M(2)
n − 1

2

(
M(1)

n (ε)
)2

= f (2)(ε)M(1)
n (2ε) + O(ε)

One-loop amplitude
☝



• Motivates BDS Ansatz (Anastasiou, Bern, Dixon, Kosower) 

• Universal resummation of IR divergences

• BDS: exponentiation of finite parts

‣ Exponentiated finite remainders approach constants 
(independent of kinematics and # of particles) 

IR behaviour of Yang-Mills amplitudes

(Catani; Magnea, Sterman; Sterman, Tejeda-Yeomans)

(for colour-ordered amplitudes) A|IR =
n∏

i=1

Adiv(sij)

Adiv(s) = exp

[
− 1

8ε2

∞∑

L=1

aL

(
−s

µ2

)−Lε γ(L)
K

L2
− 1

4ε

∞∑

L=1

aL

(
−s

µ2

)−Lε g(L)

L

]



‣ Two and three loops at four points (Anastasiou, Bern, Dixon, Kosower; 

Bern, Dixon, Smirnov).  Confirmed result for three-loop cusp 
anomalous dimension obtained assuming                    
maximal transcendentality (Kotikov, Lipatov, Onishcenko, Velizhanin)

‣ Two loops at five points (Bern, Czakon, Kosower, Roiban, Smirnov)

- Parity odd terms cancel in the iteration

‣ Problems begin at six points (Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, 
Volovich)    Several talks at this workshop

‣ Exponent requires an additional finite remainder 

Checks of BDS conjecture 



N=8  Supergravity



• At four points

‣ tree-level amplitude factors out as in N=4 thanks to 
supersymmetric Ward identities 

• Write  

• Goal: compute the quantity                            

N=8 supergravity MHV amplitudes

AN=8
4,MHV = Atree

4,MHVMN=8
4

MN=8
4 = 1 +

∞∑

L=1

M(L)
4 = exp

[ ∞∑

L=1

m(L)
4

]

m(1)
4 =M(1)

4 , m(2)
4 =M(2)

4 − 1
2
(
M(1)

4

)2

M(2)
n − 1

2

(
M(1)

n (ε)
)2

M(2)
YM − 1

2

(
M(1)

YM(ε)
)2

= f (2)(ε)M(1)
YM(2ε) + O(ε)In YM:

and so on 



• One loop: 

• No colour ordering for gravity                                                        

‣ sum over permutations (1234), (1342), (1423)

One- and two-loop MHV amplitude

M(1)
4 = −i s t u

(κ

2

)2[
I(1)

4 (s, t) + I(1)
4 (s, u) + I(1)

4 (u, t)
]

I(1)
4 (s, t) :=

∫
dDl

(2π)D

1
l2(l − p1)2(l − p1 − p2)2(l + p4)2

zero-mass box

(Green, Schwarz, Brink; Dunbar, Norridge) 

1 2

3 4



• Two loops:

•                  are the planar and non-planar boxes

‣ Laurent expansion explicitly evaluated by Smirnov and Tausk 

‣ use it to study possible iterations

I(2),P
4 , I(2),NP

4

M(2)
4 =

(κ

2

)4
stu

[
s2 I(2),P

4 (s, t) + s2 I(2),P
4 (s, u) + s2 I(2),NP

4 (s, t) + s2 I(2),NP
4 (s, u) + cyclic

]

(Bern, Dunbar, Dixon, Perelstein, Rozowsky) 

s := (p1 + p2)2, t := (p2 + p3)2, u := (p1 + p3)2

I(2),P
4 (s, t) =

∫
dDl

(2π)D
dDk

(2π)D
1

l2 (l−p1)2 (l−p1−p2)2 (l+k)2k2 (k−p4)2 (k−p3−p4)2

I(2),NP
4 (s, t) =

∫
dDl

(2π)D
dDk

(2π)D
1

l2 (l−p2)2 (l+k)2 (l+k+p1)2 k2 (k−p3)2 (k−p3−p4)2



• Main result: 

• Finite remainder has uniform transcendentality 

‣          have transcendentality 1;              have transcendentality n ...

‣ Soft anomalous dimensions in N=4 obtained as leading transcendentality 
contribution of QCD result  (Kotikov, Lipatov, Onishcenko, Velizhanin)

• Transcendentality appears after sum over perm’s

‣ Planar one- and two-loop box are transcendental; specific combination 
of nonplanar double-boxes is transcendental

M(2)
n − 1

2

(
M(1)

n (ε)
)2

= finite + O(ε)

ζn,Linπ, log

Iterative structure

 ☞ Q:   What about higher loops? Is transcendentality a property of  N=8 theory ? 



+ t2
[
k(y/(y − 1)) + k(1− 1/y)

]]
+O(ε)
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4 − 1

2
(M(1)

4 )2 = −
( κ

8π

)4 [
u2

[
k(y) + k(1/y)

]
+ s2

[
k(1− y) + k(1/(1− y)

]

y = −s/t , L := log(s/t)

k(y) :=
L4

6
+

π2L2

2
− 4S1,2(y)L +

1
6

log4(1− y) + 4 S2,2(y)− 19π4

90

+i

(
−2

3
π log3(1− y)− 4

3
π3 log(1− y)− 4Lπ Li2(y) + 4πLi3(y)− 4πζ(3)

)

 

where

• Remainder is “simpler” compared to full  M(2)
4

Disclaimer:  analytic continuations needed !



• Result for amplitudes should agree with the 
expected IR divergence structure  

• IR behaviour of gravity amplitudes studied by 
Weinberg in 1965 !

‣ Not in dimensional regularisation...

•  Much simpler than Yang-Mills amplitudes 

What about IR divergences ? 



Steven Weinberg, Phys. Rev. 140: B516 (1965)

☜

☜



• Exponentiation of one-loop divergences (Weinberg)

‣ Similar to QED 

‣ Soft and collinear amplitudes unrenormalised               
(Bern, Dunbar, Dixon, Perelstein, Rozowsky)   

•  No colour ordering: 

•  4 pts, one loop,

‣      IR divergence, softer than in YM

IR behaviour of (super)gravity amplitudes

ε−1

M(1)
∣∣∣
IR

= cΓ

(κ

2

)2 2
ε

[
s log(−s) + t log(−t) + u log(−u)

]

M|IR =
∏

i<j

Mdiv(sij)



• Our result is in agreement with the expected 
IR singularities

‣ Cancellation of leading and subleading singularities in the 
difference 

‣ No new divergent contribution introduced at two loops

• Agreement with the results of Naculich, 
Nastase, Schnitzer; Dixon (unpublished)

M(2)
4 − 1

2 (M(1)
4 )2



• One-loop amplitudes no longer proportional to 
the tree-level amplitude

• Requires more thinking / more  ☕ ...

Beyond four points 



Wilson Loops



   Amplitudes in N=4 and Wilson Loops

• MHV amplitudes in N=4 super Yang-Mills 
appear in a completely different calculation:

                      < W[C] >

• Contour C is determined by the momenta of 
the scattered particles 

• Strong coupling calculation of Alday and 
Maldacena

(Drummond, Korchemsky, Sokatchev; Brandhuber, Heslop, GT; Drummond, Henn, Korchemsky, Sokatchev) 



• The contour of the Wilson loop:

‣ this contour corresponds to a seven-point amplitude

‣ colour ordering 

‣ at strong coupling, boundary of worldsheet tends to 
boundary of dual AdS space as IR cutoff is removed

‣ momentum conservation               ➡ closed contour

‣ dual conformal symmetry acts on the T-dual momenta
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pi = ki− ki+1

n

∑
i=1

pi = 0

k’s are T-dual (region) momenta

lightlike momenta

Tr(T 1T 2 · · · T 7)



• Result:    < W[C] > is the n-point MHV 
amplitude in N=4 SYM  (modulo tree-level prefactor)

• Unexpected !

‣ Eikonal approximation usually only reproduces IR behaviour; we also get 
finite parts

• Conjecture:    (Log) < W[C] > = (Log) M 
persists at higher loops 

‣ Recently checked at two loops by Drummond, Henn, Korchemsky, 
Sokatchev for the four-, five-, and six-point case

‣ Gregory Korchemsky’s talk tomorrow 



  < W[C] >  at one loop,  n points 

• Calculation done (almost) instantly.                        
Two classes of diagrams:

The four-particle case was recently addressed in [8], where it was found that the
result of a one-loop Wilson loop calculation reproduces the four-point MHV amplitude
in N =4 SYM. Here we extend this result in two directions. First, we derive the four-
point MHV amplitude to all-orders in the dimensional regularisation parameter ε.
Secondly, we show that this striking agreement persists for an MHV amplitude with
an arbitrary number of external particles.
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Figure 2: A one-loop correction to the Wilson loop, where the gluon stretches between
two lightlike momenta meeting at a cusp. Diagrams in this class provide the infrared-
divergent terms in the n-point scattering amplitudes, given in (2.6).

Three different classes of diagrams give one-loop corrections to the Wilson loop.4

In the first one, a gluon stretches between points belonging to the same segment.
It is immediately seen [8] that these diagrams give a vanishing contribution. In the
second class of diagrams, a gluon stretches between two adjacent segments meeting at
a cusp. Such diagrams are ultraviolet divergent and were calculated long ago [32–39],
specifically in [38,39] for the case of gluons attached to lightlike segments.

In order to compute these diagrams, we will use the gluon propagator in the dual
configuration space, which in D = 4− 2εUV dimensions is

∆µν(z) := −π2−D
2

4π2
Γ
(D

2
− 1

) ηµν

(−z2 + iε)
D
2 −1

(3.2)

= −πεUV

4π2
Γ(1− εUV)

ηµν

(−z2 + iε)1−εUV
.

4Notice that, for a Wilson loop bounded by gluons, we can only exchange gluons at one loop.
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Figure 3: Diagrams in this class – where a gluon connects two non-adjacent segments
– are finite, and give a contribution equal to the finite part of a two mass easy box
function F 2me(p, q, P,Q), second line of (2.3). p and q are the massless legs of the
two-mass easy box, and correspond to the segments which are connected by the gluon.
The diagram depends on the other gluon momenta only through the combinations P
and Q.

The integral is finite in four dimensions. We begin by calculating it in four dimensions
setting ε = 0 (and will come back later to the calculation for ε != 0). In this case, the
result is

Fε=0(s, t, P,Q) = Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) (3.8)

+ log s log
(P 2 − s)(Q2 − s)

P 2Q2 − st
+ log t log

(P 2 − t)(Q2 − t)

P 2Q2 − st

− log P 2 log
−(P 2 − s)(P 2 − t)

P 2Q2 − st
− log Q2 log

−(Q2 − s)(Q2 − t)

P 2Q2 − st
,

where a is defined in (2.4). Using Euler’s identity

Li2(z) = −Li2(1− z)− log z log(1− z) +
π2

6
, (3.9)

and noticing that [10] (1− as)(1− at)/[(1− aP 2)(1− aQ2)] = 1, we can rewrite

Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) = (3.10)

− Li2(1− as)− Li2(1− at) + Li2(1− aP 2) + Li2(1− aQ2)

− log s log(1− as)− log t log(1− at) + log P 2 log(1− aP 2) + log Q2 log(1− aQ2) .

9

Gluon stretched between two 
segments meeting at a cusp 

Gluon stretched between 
two non-adjacent segments

A. Infrared divergent B. Infrared finite

(Brandhuber, Heslop, GT)



• Clean separation between infrared-divergent 
and infrared-finite terms

‣ Important advantage, as ε can be set to zero in the finite 
parts from the start 

• From diagrams in class A :

‣                            is the invariant formed with the 
momenta meeting at the cusp 
si,i+1 = (pi + pi+1)2

M (1)
n |IR = − 1

ε2

n

∑
i=1

(
−si,i+1

µ2

)−ε



• Diagram in class B, with gluon stretched 
between p and q gives a result proportional to

• Explicit evaluation shows that this is the     
finite part of a 2-mass easy box function

‣ Two-dimensional representation of a four-dimensional integral 
function

Fε(s, t,P,Q) =
Z 1

0
dτpdτq

P2 +Q2− s− t
[−

(
P2 +(s−P2)τp +(t−P2)τq +(−s− t +P2 +Q2)τpτq

)
]1+ε



‣ In the example: 

‣ One-to-one correspondence between  Wilson loop diagrams 
and finite parts of 2-mass easy box functions

‣ Explains why each box function appears with coefficient equal 
to one in the expression of the one-loop N=4 MHV 
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Figure 3: Diagrams in this class – where a gluon connects two non-adjacent segments
– are finite, and give a contribution equal to the finite part of a two mass easy box
function F 2me(p, q, P,Q), second line of (2.3). p and q are the massless legs of the
two-mass easy box, and correspond to the segments which are connected by the gluon.
The diagram depends on the other gluon momenta only through the combinations P
and Q.

The integral is finite in four dimensions. We begin by calculating it in four dimensions
setting ε = 0 (and will come back later to the calculation for ε != 0). In this case, the
result is

Fε=0(s, t, P,Q) = Li2(as) + Li2(at)− Li2(aP 2)− Li2(aQ2) (3.8)
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A
tree

MHV
×

From Trees to Loops, cont’d

a :=
2(pq)

P2Q2− st

F2me(s, t,P2,Q2) =−c!
"2

[(−s
µ2

)−"
2F1 (1,−",1− ",as) +

(−t
µ2

)−"
2F1 (1,−",1− ",at)

−
(−P2

µ2

)−"
2F1

(
1,−",1− ",aP2

)
−

(−Q2

µ2

)−"
2F1

(
1,−",1− ",aQ2

)]

with

the all order in 
2-mass easy box function:

!

P = p3 + p4 , Q = p6 + p7 + p1

p = p2 q = p5

s := (p+P)2

t := (q+P)2

Q

⃡



“Conformal” gauge

                   

• A gauge where cusp diagrams vanish

• Motivation: reduce # of diagrams

‣ Wilson loop is gauge invariant

‣ special case of a Feynman-’t Hooft gauge

(Brandhuber, Heslop, Nasti, Spence, GT) 

‣ α-gauge fixing 

‣ α = 1 usual Feynman gauge

‣                 conformal gauge

L(gf) =
α

2
(∂µAµ)2

α = ε
2−ε



                   

• Propagator is

• Full box function from a single diagram !

∆conf
µν (x) ∼ ε+1

ε
1

(−x2+iε)1+ε

[
ηµν − 2xµxν

x2

]

Jµν(x) := ηµν − 2xµxν

x2 Inversion tensor



  Gravity Wilson Loops

                   

• Requirements for candidate Wilson loop:

‣ invariance under coordinate transformations

‣ contour dictated by particle momenta

‣ has the same symmetries as the scattering amplitude

(Brandhuber, Heslop, Nasti, Spence, GT) 

Should agree with amplitude ! 



                   

• Obvious choice:              where 

‣ Γ  is the Christoffel connection

‣ invariant under coordinate transformations

‣ already studied in perturbation theory (Modanese)

• Result has nothing to do with amplitude !

Uα
β(C) := P exp

[
iκ

∮

C
dyµΓα

µβ(y)
]

〈Tr U(C)〉

‣ (quadratically) divergent expression, reminiscent of the loop 
equation...

κ2

∮

C
dxµdyν 〈Γα

µβ(x)Γβ
να(y)〉 ∼ κ2

∮

C
dxµdyµδ(D)(x− y)



                   

• Try again 

‣ work in linearised approximation 

‣ Same expression used in gravity eikonal approximation 
(Kabat & Ortiz; Fabbrichesi, Pettorino, Veneziano, Vilkovisky) 

W [C] :=
〈

exp
[
iκ

∮

C
dτ hµν(x(τ))ẋµ(τ)ẋν(τ)

]〉

gµν(x) = ηµν + κhµν(x)



                   

• For cusped contours, gauge invariance violated 
at the cusps

‣ Exponent can be rewritten as 

• Reparametrisation invariance & cusps 

∫
dDx T µν(x)hµν(x)

T µν(x) :=
∫

dτ ẋµ(τ)ẋν(τ) δ(D)(x− x(τ))

☝
energy-momentum tensor of free particle 



                   

• Try anyway

‣ in order to have correct symmetries, we consider 

‣      is a contour obtained by joining               in this order 

‣ At one loop,                                                                 

W := W [C1234]W [C1243]W [C1324]

Cijkl pi, pj , pk, pl

W (1) = W (1)[C1234] + W (1)[C1243] + W (1)[C1324]



• Tree-level prefactor missing (as in YM)  

‣ expected                                                         

• Relative normalisation between IR singular and 
finite parts incorrect by a factor of - 2       

‣ 2 from overcounting cusp contributions in W;          
minus sign more difficult to explain                                                 

• Result gauge dependent (but very close to correct one...)  

Results



  < W >  at one loop 

• Diagrammatics identical to YM case.            
2 classes of diagrams:

Graviton stretched between two 
edges meeting at a cusp 

Graviton stretched between 
two non-adjacent edges

A. Infrared divergent B. Infrared finite

x1

x2

x3

x4

p1

p3

p2

p4 x1

x2

x3

x4

p1

p2

p3

p4



• From diagrams in class A (after summing over permutations):

‣ leading divergence cancels due to s + t + u = 0 

‣ subleading term proportional to expected      term:  

M(1)
∣∣∣
IR

= cΓ

(κ

2

)2 2
ε

[
s log(−s) + t log(−t) + u log(−u)

]

1/ε

κ2 c(ε)
ε2

[
(−s)1−ε + (−t)1−ε + (−u)1−ε

]



• From diagrams in class B:

‣ finite part of zero-mass box function

‣ sum over all permutations reproduces finite part of 
amplitude, to all orders in 

κ2 c(ε)
u

2
1
4

[
log2

(s

t

)
+ π2

]

M(1)
4 = −i s t u

(κ

2

)2[
I(1)

4 (s, t) + I(1)
4 (s, u) + I(1)

4 (u, t)
]

Q: can we entangle IR divergent and finite contributions ?

ε



Conformal gauge for Gravity

                   

• As in YM, it is the gauge where cusp diagrams 
vanish

• In this gauge, we obtain the correct N=8 
supergravity amplitude, to all orders in  

• Special case of a de Donder gauge fixing:

(Brandhuber, Heslop, Nasti, Spence, GT) 

L = − 1
2 (∂µhνρ)2 + (∂νhν

µ)2 + 1
2 (∂µhλ

λ)2 + hλ
λ∂µ∂νhµν Free Lagrangian of 

linearised gravity

L(gf) =
α

2

(
∂νhν

µ −
1
2
∂µhα

α

)2 ‣ α-gauge fixing 

‣ α = -2 usual de Donder gauge

‣                     conformal gaugeα = − 2ε
1+ε

ε



                   

• Graviton propagator in configuration space: 

• Cfr. gluon propagator in configuration space:

∆conf
µν,µ′ν′(x) ∼ ε+1

ε

[
1

(−x2)1+ε

(
ηµ′(µην)ν′ + ε

2(ε+1)2 ηµνηµ′ν′

)
+ 2 1

(−x2)2+ε x(µην)(ν′xµ′)

]

∆conf
µν (x) ∼ ε+1

ε
1

(−x2+iε)1+ε

[
ηµν − 2xµxν

x2

]

Jµν(x) := ηµν − 2xµxν

x2 Inversion tensor



• Not quite same iterative structure in               
N=8 supergravity as in N=4 super Yang-Mills

‣ uniform transcendentality of the result

‣ finite remainder is relatively simple                                                 

‣ IR divergences cancel

• Wilson loop almost reproduces amplitude

‣ Gauge-dependent expression 

‣ Result closely related to correct answer

‣ Conformal gauge 

Summary

Can we do better ?



• Wilson loop calculation in N=4 super Yang-Mills

‣ Agreement with MHV amplitudes in N=4

‣ Can we understand why MHV amplitudes and         
Wilson loops are related ? 

‣ Can we extend this to non-MHV amplitudes ? 


