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N = 4 Super Yang-Mills Theory, |

Quantum Field Theory with gauge symmetry SU(N). Fields:

The covariant gauge field A4, with 4 =1,...,4, encoded into
the invariant field strength F,,.

Six real scalars @, with m =1,...,6. In complex notation:
X — (I)l—l—i(I)Q, y = (I)3+’i(1)4, Z — (I)5+Z(I)6 and X,y,Z.

Four four-component fermions ¥4, ¥4 with A =1,...,4 and
a,a=1,2.

Lastly, infinitely many further fields are obtained by acting with
covariant derivatives D, = 0, + i A, on the above. In complex
notation: D = Dy + 1Dy, D' = D3+ 1D, and D, D’.

All fields are massless and adjoint, i.e. N X N matrices.



N = 4 Super Yang-Mills Theory, Il

The action:

2N
Sy = T/d% Tr (i(;fw)%%(z)ucbm)t (@, B )7+ )

=

The action is unique due to the maximal number of N/ = 4
supersymmetries, i.e. it does not renormalize.

The only adjustable parameters are

e The coupling constant gy, written in form of the 't Hooft

coupling A = N g2,,. Parameter, does not “run”.
e The number of colors N of the gauge algebra su(V).

e A topological angle 6. Believed irrelevant in the planar N —
oo theory.

However, there is wavefunction renormalization, see below.



N = 4 Super Yang-Mills Theory, 11l

In perturbation theory N' = 4 is a close relative of QCD.
Many Feynman diagrams are identical!

Extremely similar structures for gluon amplitudes and
anomalous operator scaling dimensions.

Physically the theory is very different from QCD. It is quantum
mechanically exactly scale-invariant, and thus conformal:

The theory is “finite” and the beta function vanishes:

B = 0.

Conformality combines with supersymmetry to superconformal
symmetry psu(2,2|4).



N = 4 Super Yang-Mills Theory, IV

Conformal invariance strongly restricts the structure of
correlation functions. For e.g. two-point functions:

Here A,, is the anomalous scaling dimension of the operator
O,,. “Good” operators are, in a complicated way, composed of

the elementary fields. This leads to the mixing problem of

N =4
O=Tr (XVZF,Pa(DL2) .. )Tr(.....) ot ...

The cleanest way to formulate and solve the mixing problem
leads to an eigenvalue problem for a linear operator: The

dilatation operator D :




Twist Operators in A/ = 4 and Spin Chains, |

So anomalous scaling dimensions in a conformal gauge theory
such as A/ = 4 are defined as the eigenvalues of a linear
operator, the dilatation operator D :

D-O=A0.

An important special case of this mixing problem are the
model’s twist operators:

O=Tr(DZ7)+....

Here D =Dy 4+ 1 D> is a light-cone covariant derivative, where
D,=0,+1A,, and s is the space-time spin.

The dilatation operator is related to the Hamiltonian of a
quantum “spin chain”. In the present example length=twist=.J
and the states are

p <(D312)(D32Z) . (DSL—lz)(DSJZ)> |

where s1 + so+ ...+ s, _1 + s = s. Leading twist is J = 2.



Twist Operators in A/ = 4 and Spin Chains, Il

At one loop, this is an integrable XXX Heisenberg chain with

spin = —%. [ Beisert, MS 03]. | he Hamiltonian gives infinitely many

rules for shifting spins from each site £ to the adjacent sites
¢+ 1.

H — 2521 Hﬁ,ﬂ—l—l .

Hip- (DL2)(D*22) = ($(s1+1)+ W(sy+1) - 29(1)) (DL 2) (D*22)

. Z (’Dsl s 2) (D32+s 2)
{S’}

The anomalous dimension A of these operators is related to the
“energy” E(s,g) = Eo(s) + g° E2(s) + g* E4(s) + ... of the
spin chain through

N
A(s,g) =s+L+g>E(s,g) with g¢° ggM :
2
For complex values of spin s related to the the pomeron
(Cf. Polchinski's talk) [ Lipatov et.al.; Brower, Polchinski, Strassler, Tan, ‘06 |.



Magnons are Particles

Z-particle = hole D-particle = magnon
ZZDZZDZZZ)=|..D..D...).

One-magnon States: ,

1
) =S, per ¥(0) | ZDE.),

Schrodinger equation H - |¥) = E |U):
EV/)=2T/) - YL —-1)—T(L+1).
Fourier transforming, magnons start to “move”,
U (l) =e'Pt,

with the dispersion law E = 2 — e'? — e 'P, j.e.

This solves the one-magnon problem. What about many?



Magnon Scattering: The Bethe Ansatz

¢ ¢
Two-magnon states: f f

) =Yg cer, V(b1 o) .. Z(DZ)..Z(DZ)...).

First guess nearly works (even at /5 = /1 + 1):

\Ij(glafz) = eipl £1+ip2£2’ E = 2481112 pk

except when the magnons collide at /5 = ¢;, where:
E\I!(Kl,ﬁg) — %\I/(El,eg) — \I!(£1 — 1,62) — %\I!(ﬁl — 1,62 — ].) —|—
+% \11(617 562) - \11(617£2 + ]-) - %\Il(el + 1762 + ]-) .

Problem fixed by Bethe's ansatz: [ Bethe 31 ]

\Ij(gl,gz) — etP1litip2lo + S(pg,pl) etP2litipr by

Elementary algebra gives:

e!P1tip2 _ 92 +1

S(p1ap2) — _eipl—l—in — 2ew1 4+ 1] '

We can think of S(p1,p2) as an S-matrix. [ Yang ‘67 ]



Bethe’s Equations and Factorized Scattering

Periodic boundary conditions W ({1, /05) = ({5, ¢, + L) yield
the spectrum :

1p1 L

€ — S(p17p2> and eisz — S(p27pl) .

The magic properties of this integrable Heisenberg magnet are
verified when we try the Bethe ansatz for s > 2 magnons.

It still works! The multi-magnon terms in the Hamiltonian are
crucial.

Periodic boundary conditions yield Bethe's equations:

e'Prl — H S(pk,p;) E = 2481112 Pk

J#k

The S-matrix is factorized, and the spin chain is integrable.



Algebraic Bethe Ansatz

The reason for the exact solvability is, similar to the hydrogen

atom, the existence of hidden conserved charges.

Among these are

()1 = exp P = translation, P = ) pi = momentum,

Q2 = E = energy.

These may be used to understand why the Bethe ansatz works,
and the Bethe equations may be systematically deduced in an
algebraic form:

S

j=1
J7#k

” 1
: E =
Uk — Uj + 1 ];

2
1U’k+

N

They are identical to the trigonometric version we had before

after changing variables uj, = £ cot £k .
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A Message to our Condensed Matter Friends

‘ All states are important. I

That is, irrespectively of whether they are ferromagnetic or
antiferromagnetic, of whether the length is large or small |
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The Full Set of 8 + 8 Magnons

The most natural vacuum of the full psu(2,2|4) spin chain is
the “ferromagnetic” BPS state

Tr Z%

Apart from the magnon D we just discussed, there are many
more, in fact 8 + 8, corresponding to the transverse fluctuations
of strings in the light-cone gauge. These should be: Four
complex adjoint scalars X', X', ), and four light-cone

covariant derivatives D, D, D', D’ as well as 8 adjoint fermions
Ty ... g,

Doping the BPS vacuum with the other kinds of magnons leads
to further simple subsectors:

o su(2) sector: Tr XYMzl 4 .

This is the usual spin —I—% Heisenberg magnet.

e su(1|1) sector: Tr gMZL=M

This is a deformed XY model.

12



The S-matrix

It turns out that the S-matrix idea works beyond one loop, and
the other types of magnons. It is a powerful tool to compare
and relate the respective spectra of gauge theory and string
theory via the AdS/CFT corrrespondence. [ MS 04 ]

It allows, assuming integrability, to obtain spectral information
in the absence of detailed knowledge of the underlying exact
dilatation operator/Hamiltonian.

And indeed, the full S-matrix for all 16 magnons may be found,
up to an unknown global phase, by symmetry considerations
(cf. next talk by Niklas Beisert).

13



String Predictions for N/ = 4

A key proposal for AdS/CFT [ Maldacena ‘97; Gubser,Klebanov, Polyakov; Witten ‘98 |

string energy <+ conformal dimension
E = A

Simplifications occur in certain limits involving states with large
angular momentum J on the five-sphere S°, or large spin s on
AdS. In the case of twist operators we may study both:

TrDsZ/
e BMN Ilimit or “plane wave limat” [ Berenstein,Maldacena,Nastase ‘02 ]
J>1, s=2,3,... Here, an effective, analytic expansion

parameter seems to emerge:

/I A
N =7

In a moment we'll also look at the opposite limit:

o GKP limit [ Gubser, Klebanov, Polyakov ‘02 ]

s>1, J=23,...

14



The BMN Limit

In the BMN [imit [ Berenstein, Maldacena, Nastase ‘'02] ONE Slmpllfles the
AdS/CFT correspondence and focuses on the geometry seen by
a “tiny” string moving along a great circle on S°:

P
It effectively sees a plane wave background with metric

ds? = —4datdz™ — p? (29)%(dz™)? + (da*)?

The worldsheet theory becomes free, albeit massive: [ Metsaev ‘01]
2

Sy, = /dea(% Oux' 0%x" — - 2' ')

So quantization may be performed in a “textbook fashion”, the
spectrum is found explicitly, and yields predictions for conformal
dimensions in N/ = 4 gauge theory.

15



BMN Scaling

This leads to the following prediction in the twist operator
sector of the gauge theory, consisting of the complex scalars Z
and the derivative D:

D2/ +... = A:J+Z\/1+Xni.
k=1

ni are a mode numbers counting the various mixed states.
Recall N = \/J? with J > 1.

This is an all-loop prediction! It requires "BMN scaling”. This
means that at a given loop order ¢ the sum over all O(\%)
Feynman diagrams has to scale at large R-charge J as 1/J2‘!.

This is not true for individual Feynman diagrams.

Thus, a highly non-trivial property of gauge theory. Indirectly
proven to 3-loop order. Is it true?

There are known counter examples such as the plane-wave
matrix model where BMN scaling breaks down at four loops
[ Fischbacher,Klose,Plefka ‘04 ]. However, that model is not fU”y integrab|e

[ Beisert, Klose ‘05 ].

16



Deforming One-Loop Bethe Equations

| just told you about the one-loop Bethe equations for the twist
operator sector:

_|_£ J S . S 1
_ o — w41 o 2 4 1°
j#k

Recall also that this Bethe ansatz should yield the one-loop
anomalous dimensions A(g) = J + s + g° Ey of operators of

the form
D27 + ... .

The all-loop “deformation” involves the (string-inspired
[ Kazakov, Marshakov, Minahan, Zarembo ‘04 ] ) MAapP [ Beisert, Dippel, MS ‘04 |.

17



Higher-Loop Bethe Ansatze

Applying this Zhukovsky map

we proposed, with 2% := z(u £ £), [ eisert, M5 05 ]

J _ _
w: ST, —:1:7L1—g2/2:13251:.
e\ _ J i 2 |
T, Ty —wy 1—yg /2wy T
j#k
with
_|_ S . .
: T 0 7
ezpk:_]i’ E = (+_ _).
Ly, r—1 \Lg Tk

Restriction: A priori only valid up to O(g?/~=%)! “Wrapping

problem” .

o?(ug, u;) is the dressing factor. It is known to be one in gauge
theory up to at least three loops: 02 = 1 + O(¢°). It is also
known not to be one in string theory! Many workers in the field
suspect/hope that it will differ from one at four loops ...

18



The Dispersion Law

This ansatz leads, via e*Pk = x;/x,:, to the dispersion law

E(g):———l- 22\/ + 8¢2 sin” ?

e |t follows from basic structural properties of the long-range
spin chain picture of perturbative gauge theory, in conjunction
with the BMN result. [ Beisert, Dippel, MS ‘04 ].

e It maybe derived, up to an unknown function g* <+ f(g°)
by combining the spin chain picture with supersymmetric
representation theory. [ Beisert ‘06].

e It also may be derived as an effective dispersion law from the
Hubbard model. There the square roots are expressing the fact
that this is an “effective” Bethe ansatz, not a fundamental
one. [ Rej, Serban, MS 05 |

19



Transcendentality and Bethe Ansatz

In the case of twist-two operators wrapping is not a problem up
to three loops. One can therefore find their anomalous
dimensions from the Bethe ansatz. The result is reproduced by
the expressions

EO(S) — 451,
Ey(s) = —4 (53 + S 3—-25214+25 (S2+ 5—2)) :
E4(S) = —8(2 S_g SQ — S5 — 2 S_2 Sg — 3 S_5 —|— 24 S_2,1,1,1

+6 (S_41+ S—32+ S_23) —12(S_31,1+ S_212+ S_221)
—(Sz + 2 Sf) (3 S_3+S3—2 5—2,1) — 51 (8 S_4+ 532

44558 2+282 438, —125 351 — 105 55+ 16 5_2,1,1)) ,

initially guessed by [ Kotikov,Lipatov,Onishchenko, Velizhanin ‘04 ], and expressed
in terms of recursively defined harmonic sums (a, b, c > 0)

Sia(s) = Z
Stape(8) = >

(il)m

20



Kotikov-Lipatov Transcendentality and N = 4

Kotikov and Lipatov obtained the corresponding two-loop result
for N' = 4 gauge theory [ kotikov, Lipatov 03]. They noticed that the
answer may be extracted from the QCD result by focusing on
the “most complicated terms”. These are the ones of highest
degree of transcendentality.

Based on this experience with “translating” scaling dimensions
at one and two loops from QCD to N = 4, the above
conjecture for the three-loop dimensions of the analog of these
operators in (planar) A/ = 4 was put forward by KLOV

[ Kotikov,Lipatov,Onishchenko,Velizhanin ‘04 ].

Two years ago a many-year effort to compute three-loop
(NNLO) anomalous dimensions A of leading twist-two
operators at finite spin s in QCD was completed.

[ Moch,Vermaseren,Vogt ‘04 |
The result fills pages ...

... and the “most complicated terms,” i.e. the ones of highest
degree of transcendentality, agree with the Bethe ansatz.

21



1 Resultsin Méllin space

Here we present the anomal ous dimensions ﬁs’s(N) in the MS-scheme up to the third order in the
running coupling constant o.s, expanded in powers of ais/(4n). These quantities can be expressed
in terms of harmonic sums[6,7,59,60]. Following the notation of [59], these sums are recursively
defined by

M m
Sim(M) = ; (ﬁ) (L1)
and M m
Semymy,.m (M) = Y (ﬁ)l Sm,...me(i) - (1.2)

i=1
The sum of the absolute values of the indices my defines the weight of the harmonic sum. In the
n-loop anomal ous dimensions written down below one encounters sums up to weight 2n— 1.

In order to arrive at a reasonably compact representation of our results, we employ the abbre-
viation Sy, = Sy(N) in what follows, together with the notation

NiSn=Sn(N+1),  NiiSn= Sn(N=£i) (13)

for arguments shifted by +1 or a larger integer i. In this notation the well-known one-loop (LO)
anomalous dimension [1,2] reads

e (N) = Ce(2(N +N;)$-3) (1.4)
and the corresponding two second-order (NLO) non-singlet quantities [4,6] are given by
151
T (N) —4CAC,:<2N+S3—— 25 3——Sl+(N N[ ol (s, z——SzD
+4CF”f<12+381 (N +N+)[§S“§SZD+4CF (4&“28”282*@
N [S+2%] — (N +N,)[S1+4S, 242512+ 251+ 5] ) (L5)

YT(N) = 9 (N) +26Ce (Ce — 2) ((N-—N)) [ -S| ~2N-+N, -283)
(16)

Thethree-loop (NNLO, N2LO) contribution to the anomal ous dimension Yis(N) corresponding
to the upper sign in Eq. (2.3) reads

5 10 1 2
YT (N) = 16cAanf( -2+ gSa— gty sl 2= 5S4+ 25— Sz
257
—sl——&gl N+[821——531——s4]—(N+—1)[Ess—sz]—(N_+N+)[sl,1
1237 1 1 1 1
+2716$1 *53*@524- 51 2**51 21*§51,73*531,3*552,1*532,724—51@3-

22



1 ,/1657 15 31 67
+—Sg,1D+16CFCA <%_ZC +28 5+ S 4-4841- S 3+25 32

3 1883
+ 331+ =S 2-6S203—25 5 3+3S, 2—4S 5 21+8S 51 2——31

3 2
176
—10S; 3— 3317,2+ 12S) 21+4S513-4S - ESH —35 —Sz+ Ss

9737

+(N=+N. —2) 3813+ 11511~ 4511, 2| + (N +Ny) [ S5 81-381 a2 sl 3

91 29
+851731+—51—2—6817272—_517214‘851173—16511721—45113——SELB

1967
+4531+354+8S, 21+293-S 2+ 531—341—452 3+ = Sz =S

216
121
S3 ( *N+)[3522;34-7521*3821,24—282,21*—82737233772f€5371

28 2376

+ S41~|— 52 3—S, 2}+N+[9S3—E52 34——55,D+16Can2(%
2 151

= —Sl+ —Sz+ (N_+N.) [§sl— R —83}) +160F2(:A( G- oy —10Ss
5

134 31 9
- 33_4-1-208_414- 75_3— 2S 3 _o— 35_314—25_32— ES_Z+ 188_2C3+ 108, _3

185
—6S 5 2+8S 5 21—285 71 »+465 3+ 31 _2—485 21+ 312——53

133 209 242
~8513+25, 2 45— (N +N; - 2)[9slc37—sl+—sll—14sn 2 5o

33 107
+9sz,2+—&—3s31+—821}+(N,+N+)[17sl 4= S13- 3251 a1

173 103
_—SJ. 2+16S o 2+—Sl —21—251,22—36S11-3+56S121+8513

109
——312—4312 2+ — 313—83131—11314+ 322-1-2152 3—30, 21-4S1, 2

5SSt 1S 2 S| (N -N,) [9szc3+ 2% 3+4% 211251 2

1 11 33 50 127 1153
72523+13&1+—8272+—S47—831+—83 + oS SQ}+N+[8&,2
151 23 3 59
+z ssl—zssz+14ss+ s4+ 53+—52D+16CF nf(16—§c3+ 31— 2%
4 20 8 % 4
+§&4—3&3+331—§Sl,72—§s‘1,1—551,2+N+[—%—§S&l—584]

67 4 4 325 2
SN D[S 2t S| N AN [Sil S - oS st s
4 4 16 4 11 2 8
T T R R )
@ 15
32
— 12&2@3 — 12&27,34- 24572717,2 — 5231_’,34—4517,2 +48317,271 — 4837,24- ?Sz - 17

+ 16cF3(1zs,5— 503 +95.4- 24541453 »+65 31— 45 32 +35 2+ 255
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31
+(N=+N. —2)[6SiLs — 'S+ 35511~ 128112+ St2+ 1082+ Spa + 252~ 2501

38|+ (N +N,)[238, 5228, 4+38251 3125, 2~ 85, 2 2~ IS, 216513
+4S, _224+40S1,3—-48S11,21+8S122+4522+8531+454+285 _21+4S12

3
+4$21+4511-4$2+851, 2265 3—-2$3-453 -3 -3+ 554}
8l
F(N- =Ny 128 2~ 65,5~ 25 3+ 3520+ 25 2 5 Sp1+ 14531~ 55 2
1 15 1 265
St DS 5% 138 HAS| N (1S S S 4%y 4s)).

The third-order result for the anomalous dimension y,5(N) corresponding to the lower sign in
Eq. (2.3) isgiven by

Y& (N) = i (N) +16CACr (Cr — C—ZA) ((N-+Ny-2) [%Sﬁ 128103+ 251, 2
£4SL 5485 21t e Sy 1651 2 S 8%y S (N N[4S 1250
48 8% 21— D1 41651 2445 28BSt TSt 28 15
+28 o 1%233] +4(Ny —1)[4S, o~ 85— Sy ) +16Cen; (Cr - %)

(NN [ Ss Js] e N [SSs TS e 2 o8]
+16C, (C,:—%) ((N +N.—2) [881 »— 158 — 128,03 — 125 _3—60S;1

+24Sy, 248512+ 408~ 125 2+ 851+ 7S+ 12551+ 655] + (N —N.)[1250s
—285+125 3+8S 2+3091—-24S 1 2— 452 — 155 - 38531 +432 + 2451
—128] - (N, —1)[8S; 2+265) ) .

Finally the quantity y5s(N) corresponding to the last term in Eq. (2.5) starts at three loops with

2 d2Cdy, 25 11 5 1
YS(N) = 160 — 5 ((N_+Ny) [ S+ 5813 - 38121 — 55112

C
13 91 3 1 91 3 5
FN-HNy - 2)[ S8 2+ 5,81 28ia Sz oSt 1oS+ 25

é(NJr N.2) [344-82,—2—83,1} - %(N72+N+2) [51 —3—31—21—31,1,—2}
PN D)8 58] (N N[ 3139 0 09 mSit oSy

1 1 3
- 553,1 -1, 2+ Zsz,3+ 553772 - 231,1} - 351 - 531,73 + 251,72,1 - 51,1,72) .
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Transcendentality, Solvability and Integrability

This structural beauty, and (relative) simplicity, when
comparing N' = 4 to QCD, is one of many hints on a hidden
solvable structure in planar N' = 4 gauge theory!

So we can say that at least a part of a real world QCD answer
(a four-dimensional gauge theory!) may be explained by
two-dimensional integrable structures!

Also, recall that this Bethe ansatz was found by comparing
gauge and string theory via the AdS/CFT correspondence!

Good ... but not all is well with AdS/CFT just yet ...

25



The Dressing Factor, |

The dressing factor o [ Arutyunov, Frolov, Ms ‘04 ] Was proposed as a
way to repair the infamous discrepancies between certain
semi-classical string states (near-BMN, Frolov-Tseytlin) and
“long” gauge theory states [ calian,Lee McLoughlin,Schwarz,Swanson,Wu ‘03 ],
[serban,Ms ‘04 1. VWe have, to leading semi-classical order,

o) = T exp [i (%) (@) @) — () g2 )

r—=2

Here the charges ¢.(u) are the eigenvalues of the hidden set of
conserved charges (), of the deformed integrable model, which

mutually commute: (@, Q,/| = 0.
Open Problem:

Where does this interesting analytical structure come from?

26



The Dressing Factor, 1l

This ansatz is only believed to be valid at leading semi-classical
order, and we expect quantum corrections.

[ Arutyunov, Frolov, MS ‘04, Beisert, Tseytlin ‘05, Schafer-Nameki, Zamaklar ‘05 ]

The next-order, one-loop string theory corrections were indeed
recently derived [ Hermindez, Lopez ‘061, and independently checked in
[ Freyhult, Kristjansen ‘06 . 1 hey read

©.@) o0
o (1, 15) = H H et Crrtl+2n (ar(ur) ar1420(ug)—ar(ug) gryit2n(ur))

r=2n=0

where

e () (e B2 )

How to find the exact expression?

Maybe using crossing symmetry? [ Janik ‘06 |
The quantum-corrected o satisfies this equation

[ Arutyunov, Frolov ‘06 ].

And does the exact result correctly reproduce the gauge theory
result 0 =1+ O(g%) ?

27



Features if 02 # 1

It allows to explain everything that is currently known
about the string spectrum: Semiclassical strings (Frolov-
Tseytlin, Gubser-Klebanov-Polyakov, )\%—behavior, near-BMN
limit, Hofman-Maldacena giant magnons, ...)

It necessarily leads to a breakdown of perturbative BMN-
scaling at weak coupling at four loops or beyond.

It necessarily leads to a breakdown of Lipatov's transcenden-
tality conjecture at four loops or beyond.

It is only known approximately. Currently little indication, but
not excluded, that it is able to reproduce reasonable weak
coupling behavior.

It is however indicative of a non-trivial vacuum structure
of the BPS-states. Vacuum appears to be polarized with
partiCIQ-antipartiCIQ pairS. [ Minahan ‘05, Beisert ‘06, Janik ‘06 ].
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Features if 02 = 1

It leads to all-order perturbative BMN-scaling at weak coup-
ling.

It reproduces Lipatov's transcendentality conjecture to all
orders in perturbation theory.

In the su(2) sector a microscopically well-defined model (the
Hubbard model) exists which yields the asymptotic Bethe
equations with ¢? = 1 to all orders in perturbation theory.

[ Rej, Serban, MS '05 |

It is indicative of a trivial “reference” vacuum structure of
the BPS-states. No particle-antiparticle vacuum polarization.

29



The Mystery of the Dressing Factor

Are there hidden non-perturbative effects in NV = oo gauge
theory, despite convergence of planar perturbation theory?

Is there a hidden, dynamical structure in the vacuum states,
i.e. the BPS states Tr Z”/ of A/ = 4 gauge theory?

Or, finally, is there a large N “Gross-Witten" phase transition
in AdS/CFT as one goes from weak to strong coupling?

Transcendentality might elucidate this mystery ... let's see why.
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The Large-Spin Scaling Function

The anomalous dimension of operators of low twist behaves in
a very interesting, logarithmic way at large spin s — 00 :

A =s + f(g) log(s) + O(s").

Here f(g) is the scaling function, sometimes called “cusp”
anomalous dimension, as it also controls the divergences of
cusps of light-like Wilson loops.

In QCD, f(g) can be probed experimentally for small g
in deep inelastic scattering.

This logarithmic behavior is quite a miracle, as individual
Feynman diagrams contain divergences of the type log”(s). The
KLOV result reproduces this feature:

flg)=4g° —3m%g* + Frtg®+. ..

The transcendentality principle also extends to large s, as can
be seen when writing the result in the form

flg) =4g> —4¢(2) g* + (4<(2)2 + 12<(4)> PO
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Integrability and Transcendentality

Now we can use our all-loop Bethe ansatz for twist operators
[ Beisert, M ‘05 ] and get a prediction for the scaling function beyond
three loops. Let us first assume a dressing factor 02 = 1.

While asymptotic, they should be fine for studying the large
spin s limit of twist-two operators. The reason is that the
lowest state of finite twist operators is believed to scale
independently of the twist J, as long as J < s.

The iteration of the non-singular Fredholm integral equation
derived from the Bethe equations yields at small g [ Eden,Ms ‘06 ]

f(g) =
49° —4¢(2)g" + (46(2)2 + 12((4)) g°

— (4¢2)° +24¢(2)¢(4) — 4¢(3)° +50¢(6)) ¢°
+ (4¢@)" +36¢(2)°¢(4) — 8¢(2)¢(3)°

+100¢(2)¢(6) — 40 ¢(3)C(5) +39C(4)° + 245¢(8) ) g™
+ ...

The Kotikov-Lipatov transcendentality principle is realized!
Also note that all coefficients are integers. [ Lipatov,Kotikov 03 ].
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A Novel Four-Loop Prediction

The result may be simplified, which however obscures the
integer nature of the coefficients. To four-loop order we have

flg)=4¢* =272 g* + 2 g® — (270 —4((3)?) ¢*

This agrees to three loops with [Bem, Dixon, smimov ‘05 ], and with the
earlier, finite Spin s results of [ Kotikov,Lipatov,Onishchenko,Velizhanin ‘04 ].

The four-loop prediction is new, and will hopefully be tested in
the nearest future with the iterative gluon-amplitude approach
[ Bern, Czakon, Dixon, Kosower, Smirnov, work in progress |, cf. D. Kosowers's talk.

However, if it breaks down, it will lead to a simultaneous
breakdown of BMN-scaling and transcendentality. These are
intricately linked through the structure of the Bethe ansatz.
This “simultanenous” breakdown can be detected by the
following modification of the four-loop term:

- (G - 466P +85¢@)

Here 3 is some number which is with some likelyhood rational.
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Soft Breaking of BMN-Scaling and Maximal
Transcendentality

The reason why such a statement is possible is the intricate
way the Bethe ansatz of the model links all sectors through
supersymmetry. The only way the current gauge theory
equations may get modified is through the dressing factor. The
only form that is currently consistent with what we know at
weak Coupling IS [ Beisert, Klose ‘05 ],

02(Uk:, Uuj) = elﬂgG (q2(up)gs(uj)—qs(ug)qa(uj)) +... .
leading to the above modification, while breaking BMN scaling.

Incidentally this is of AFS string dressing factor form
[ Arutyunov, Frolov, MS ‘04 ], but with 94 — g6.

Such a modified Bethe ansatz would also change the anomalous
dimensions of all “short” operators. E.g. for Tr X2 Z3 + ...

115
It would be a bit strange if the modification were non-rational,
as there also seems to be a minimal transcendentality principle

for short operators. But of course 8 ~ ((3) could appear ...
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Outlook

Can we find the full, non-asymptotic (i.e. including short
operators), perturbative spectrum of A/ = 4 gauge theory ?

Can we, exploiting integrability, quantize the string o-model,
and derive an exact Bethe ansatz for strings on AdS5 x S°7?
Exact means exact in A, and non-asymptotic!

Are there yet-to-be-discovered non-perturbative effects in pla-
nar N' = 4 gauge theory? If so, do they reconcile gauge and
string theory?

Or do perturbative BMN-scaling and maximal transcendenta-
lity break down at four loops, or beyond? Neat features, but
maybe not “fundamental”? Is this what AdS/CFT is forcing
us to conclude?

Can we relate the “worldsheet” S-matrix to the “space-time”
S-matrix (in gauge and string theory) 7 Is the planar AdS/CFT
system not only integrable (a precise but narrow notion which
only relates to the spectrum of operator dimensions) but,
more generally, solvable?
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Final Remark

e It is hoped that having an exactly solvable example for a
gauge/string duality will lead to deep insights into the fun-
damental nature of string theory and quantum gravity. Im-
portant applications of this activity to QCD and, surprisingly,
condensed matter theory are likely.
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