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1 On the one hand...

The fundamental quantum excitations of theO(4)
sigma–model

S =

√
λ

4π

∫ 2π

0

dσ

∫

dτ (∂aXi)
2 , XiXi = 1 , (1)

are particles with dynamically generated mass, momen-
tum p(θ) = µ

2π sinh πθ andSO(4) = SU(2) × SU(2)
isotopic degree of freedom.

Fig. 1: Each particle in theσ circle carries an isotopicSO(4) de-

gree of freedom, parametrized by a four dimensional unit vector.

The many–particle wave function will depend of the
momentap(θ) conjugate toσ and on the momenta of
the spin waves of both theSU(2) isotopic degrees of
freedom (parametrized byu andv). Periodicity of the
wave function in the circle of length2π yields the Bethe
ansatz (BA) equations

e−iµ sinh πθα =

L
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β 6=α

S 2
0 (θα − θβ)

Ju
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j
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Jv
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k
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θα − vk − i/2
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L
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β

uj − θβ − i/2

uj − θβ + i/2

Ju
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uj − ui + i

uj − ui − i
,

1 =

L
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β

vk − θβ − i/2

vk − θβ + i/2

Jv
∏

l 6=k

vk − vl + i

vk − vl − i
.

The explicit form of the scalar factorS0 is known. For
large rapidities,i log S2

0(θ) ≃ 1/θ +O
(

θ−3
)

.

In the classical limit thequantum generated massµ is
very small. Taking thelog of BA eqs and rescaling

(θ, u, v)→ −log µ

2π
(θ, u, v) ,

one obtains a set of equations which resemble the equi-
librium conditions for the positionsθα, ui andvk of three
species of interacting particles. Furthermore the parti-
clesθ’s feel an external potential.

V (θ) = µ cosh

(

log µ

2
θ

)

which tends, asµ → 0, to the box potential. We can
replace it by adequate boundary conditions atθ = ±2.
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Fig. 2: We plotV (θ) for−log µ
2π = 1, 5, 9, 13 (lighter to darker gray).

For large L, Ju, Jv the particles will condense into
curves, cutsC in the complex plane, described by

2 /Gu(z)−Gθ(z) = 2πnu, z ∈ Cu
/Gθ(z)−Gv(z)−Gu(z) = −2πm, z ∈ Cθ (2)

2 /Gv(z)−Gθ(z) = 2πnv, z ∈ Cv
whereGθ(z) ≡ − 2π

log µ

∑L
β=1

1
z−θβ

(with similar defini-
tions forGu andGv) and /G is the average of the resol-
vent above and below the cut. Furthermore we consider
a single mode number for allθ’s. Let

p1 = −p2 = Gu −
1

2
Gθ , p3 = −p4 = Gv −

1

2
Gθ .

The crucial remark is that equations (2) trans-
late into the statement that the quasi-momenta
p′1(z), p′2(z), p′3(z), p′4(z) form the four sheets of the Rie-
mann surface of an analytical functionp′(z).

Fig. 3: Structure of the curve coming from the Bethe ansatz side.

2 ... on the other hand

Action (1) also describes the movement of a closed
string in a3–sphere.

Fig. 4: Each particle in figure 1 is mapped into a point of the string.

The descritised string becomes continuous in the limit of large num-

ber of particles.

Let us ensemble the string coordinates in theSU(2) el-
ementg = X1 + iσ3X2 + iσ2X3 + iσ1X4. From the pure
gauge currentj = g−1dg we construct

Jτ(x) =
x jτ + jσ

x2 − 1
, Jσ(x) =

x jσ + jτ

x2 − 1

wherex is a generic complex number called the spectral
parameter. The equations of motion and the definition
of j imply that, forall x,

[∂τ − Jτ(x), ∂σ − Jσ(x)] = 0 .

Then

cos p̃(x) ≡ T (x) ≡ 1

2
Tr

(

←
P exp

∫ 2π

0

dσ Jσ(x)

)

is τ independent. This provides us an infinite set of con-
served charges. Apart from the essential singularities at
x = ±1, T (x) is an analytical function in thex–complex
plane. Atx = ±1 the quasimomentum̃p(x) has poles
whose residues are fixed by the Virasoro constraints. Fi-
nally, since

p̃′(x) = − T ′(x)
√

1− T 2(x)

p̃′(x) will define a2–sheet Riemann surface with branch
points whereT (x) = ±1.

Fig. 5: Algebraic curve from the finite gap method.

3 Fusion

Each of the previous sections ended with a plot of a Rie-
mann surface. These encoded the positions of the roots
of the system of BA eqs. in the classical limit (figure
3) and the analytical properties of the quasimomentum
associated with each classical solution (figure 5). The
main statement of our work is that these Riemann sur-
faces are different projections of the same object.

Fig. 6: The curves appearing from the finite gap method and the

BA equations turn out to the different projection of the same curve.

The key tool is the Zhukovsky map

z = x +
1

x
.

Let us mention two properties of this map. Firstly it
maps

1√
z ± 2

←→ 1

x± 1
.

In the BA context the left hand side appears as the as-
ymptotic behavior of the resolvent (or of the density) of
theθ particles close to the walls of the box atz = ±2.
In the string context the poles atx = ±1 are present by
construction. What happens then is that poles at±1 of
figure 5 are mapped to theθ cuts of figure 3.

The second crucial property is that the interior (or ex-
terior) of the unit circle in thex–plane is mapped into
a full z–plane. Thus the Zhukovsky map doubles the
number of sheets. More precisely, the two upper sheets
of figure 3, withu-cuts, are mapped into the interior of
the unit circle in thex projection while the two lower
sheets are projected into the exterior of the unit circle.
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