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AdS5 × S5 superstring in the light-cone gauge

It is a model on a cylinder of circumference P+ = J, where
J is an angular momentum of string rotating around S5

When J →∞ the cylinder =⇒ a plane. Integrability
implies factorized scattering. Find the S-matrix and
compare with the spin chain one Staudacher ’04

In the limit J →∞ the symmetry algebra of the l.c. model

psu(2|2)⊕ psu(2|2) ∈ psu(2, 2|4)

is extended by two central charges depending on the
world-sheet momentum P Beisert ’05

Arutyunov, Frolov, Plefka, Zamaklar ’06

The world-sheet S-matrix factorises

S(p1, p2) = S0 · S(p1, p2)⊗ S(p1, p2)

each 16× 16-matrix S is psu(2|2)c.e.-invariant Beisert ’05
Arutyunov, Frolov, Zamaklar ’06
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Dispersion relation and rapidity torus

The dispersion relation Beisert, Dippel, Staudacher ’04

follows from the symmetry algebra Beisert ’05

H2 = 1 + 4g2 sin2 p
2

and can be uniformized on a torus Janik ’06

p = 2 am z , sin
p
2

= sn (z, k) , H = dn (z, k)

elliptic modulus: k = −4g2 = −λ/π2

torus real and imaginary periods: 2ω1(k) and 2ω2(k)

Constrained parameters x±

x+ +
1

x+
− x− − 1

x−
=

2i
g

,
x+

x−
= eip

On the z-torus x± are meromorphic
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S-matrix for fundamental particles

S(p1, p2) =
x−2 −x+

1
x+
2 −x−1

η1η2eη1 eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

(x−1 −x+
1 )(x−2 −x+

2 )(x−2 +x+
1 )

(x−1 −x+
2 )(x−1 x−2 −x+

1 x+
2 )

η1η2eη1 eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
−

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

(x−1 −x+
1 )(x−2 −x+

2 )(x−1 +x+
2 )

(x−1 −x+
2 )(x−1 x−2 −x+

1 x+
2 )

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x−2 −x−1
x+
2 −x−1

η1eη1

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x+
1 −x+

2
x−1 −x+

2

η2eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

(x−1 −x+
1 )(x−2 −x+

2 )(x+
1 −x+

2 )

(x−1 −x+
2 )(1−x−1 x−2 )eη1 eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x−1 x−2 (x+
1 −x+

2 )η1η2
x+
1 x+

2 (x−1 −x+
2 )(1−x−1 x−2 )

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x+
1 −x−1

x−1 −x+
2

η2eη1

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
+

x+
2 −x−2

x−1 −x+
2

η1eη2

“
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

”
≡ S(z1, z2)

η1 = η(p1) exp( i
2 p2) , η2 = η(p2) , η̃1 = η(p1) , η̃2 = η(p2) exp( i

2 p1) , η(p) = exp( i
4 p)

p
ix− − ix+
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Spectrum on a large circle

Bethe-Yang equations Beisert, Staudacher ’05

“eipk J
∏
j 6=k

S(pk , pj) = 1”

(+ additional equations with auxiliary roots encoding non-diagonal structure of S)

Given {pi}M
i=1, the energy (dimension) is given by

E =
M∑

i=1

√
1 + 4g2 sin2 pi

2
= E(g, J)

This is NOT the correct answer for finite J!
Wrapping interactions (distinguished Feynman graphs), finite-size corrections to

classical string energies, BFKL analysis, all points to this...

Lüscher’s formulae and TBA ideas were successfully used
to explain exponential corrections in string theory and
wrapping effects in fields theory Ambjorn, Janik, Kristjansen ’05
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TBA and mirror theory
Follow the TBA approach for relativistic models (Zamolodchikov ’90)

Arutyunov, Frolov ’07

 "mirror string"
   of length

string of
length =JL

R

One Euclidean theory – two Minkowski theories. One is related
to the other by the double Wick rotation:

σ̃ = −iτ , τ̃ = iσ

The Hamiltonian H̃ w.r.t. τ̃ defines the mirror theory .

Ground state energy (R →∞) is related to the free energy of its
mirror

E(L) = LF(L)

Free energy F can be found from the Bethe ansatz for the mirror
model because R →∞
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Boundary conditions for fermions

Periodicity of fermions

Fermions of the string model: periodic or anti-periodic in the
space direction, anti-periodic in time

Fermions of the mirror model: anti-periodic in the space
direction, periodic or anti-periodic in time

Ground state energy for periodic fermions is related to Witten’s
index of the mirror theory:

Tr
(
(−1)Fe−βH̃

)
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Comparison chart Arutyunov, Frolov ’07

Strings Mirrors

Dispersion relation E =

√
Q2 + 4g2 sin2 p

2
Ẽ = 2 arcsinh

(
1

2g

√
Q2 + p̃2

)
Momentum −π ≤ p < π −∞ < p̃ < ∞

Type of theory Lattice model Continuum model

Giant magnon Soliton in R× S5 Soliton in AdS5

S−matrix S(z1, z2) S(z1 + ω2
2 , z2 + ω2

2 )

Dressing factor σ(1, 2)∗ σ(1, 2) = 1 σ(1, 2)∗ σ(1, 2) =
x+

1

x−1

x−2
x+

2

Bethe− Yang eqs BS; P = 0 extra
√

x+/x−

Bound states Symmetric irrep Antisymmetric irrep
su(2) sector sl(2) sector

Physical region “Fish′′ (?) “Leaf′′ (?)
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z-torus
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Bethe-Yang equations for the mirror model Arutyunov, Frolov ’07

1 = ei epk R
K I∏

l=1
l 6=k

S11
sl(2)(xk , xl)

2∏
α=1

K II
(α)∏

l=1

x−k − y (α)
l

x+
k − y (α)

l

√
x+

k

x−k

−1 =
K I∏

l=1

y (α)
k − x−l

y (α)
k − x+

l

√
x+

l

x−l

K III
(α)∏

l=1

v (α)
k − w (α)

l − i
g

v (α)
k − w (α)

l + i
g

1 =

K II
(α)∏

l=1

w (α)
k − v (α)

l + i
g

w (α)
k − v (α)

l − i
g

K III
(α)∏

l=1
l 6=k

w (α)
k − w (α)

l − 2i
g

w (α)
k − w (α)

l + 2i
g

where the S-matrix of the sl(2)-sector enters

S11
sl(2)(x1, x2) =

x+
1 − x−2

x−1 − x+
2

1− 1
x−1 x+

2

1− 1
x+

1 x−2

σ−2
12 , v = y +

1
y
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Bound states of the mirror model

The sl(2) S-matrix

S11
sl(2)(x1, x2) =

x+
1 − x−2

x−1 − x+
2

1− 1
x−1 x+

2

1− 1
x+

1 x−2

σ−2
12

exhibits a pole for complex values of momenta

p̃1 =
p
2

+ iq , p̃2 =
p
2
− iq , Re q > 0

for which x−(p̃1)− x+(p̃2) = 0 =⇒ q = q(p)

This pole leads to the existence of a Q-particle bound state

x−1 = x+
2 , x−2 = x+

3 , . . . , x−Q−1 = x+
Q

The mirror asymptotic spectrum contains fundamental particles
and their bound states. Mirror bound states transform in the
atypical anti-symmetric irreps of su(2|2)c.e. Arutyunov, Frolov ’07
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Bethe-Yang for mirror particles and their bound states

The Bethe-Yang equations for bound states are obtained by
fusing the equations for the constituent fundamental particles:

1 = eiepk R
K I∏

l=1
l 6=k

SQk Ql
sl(2) (xk , xl)

2∏
α=1

K II
(α)∏

l=1

x−k − y (α)
l

x+
k − y (α)

l

√
x+

k

x−k

−1 =
K I∏

l=1

y (α)
k − x−l

y (α)
k − x+

l

√
x+

l

x−l

K III
(α)∏

l=1

v (α)
k − w (α)

l − i
g

v (α)
k − w (α)

l + i
g

1 =

K II
(α)∏

l=1

w (α)
k − v (α)

l + i
g

w (α)
k − v (α)

l − i
g

K III
(α)∏

l=1
l 6=k

w (α)
k − w (α)

l − 2i
g

w (α)
k − w (α)

l + 2i
g

.

SQk Ql
sl(2) is obtained by fusing the fundamental constituents S11

sl(2)
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String hypothesis

The main issue is to understand the structure of solutions to the
BY equations in the thermodynamic limit:

R →∞, K I/R = fixed, K II
(α)/R = fixed, K III

(α)/R = fixed

This is done by formulating the corresponding

string hypothesis
Arutyunov, Frolov ’09(a)

TBA equations are derived from it following a textbook route!
Essler, Frahm, Göhmann, Klümper, Korepin, “The One-Dimensional Hubbard Model”
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Essler, Frahm, Göhmann, Klümper, Korepin, “The One-Dimensional Hubbard Model”



Infinite J Large J Mirror theory Mirror BY eqs String hypothesis TBA eqs Simplified TBA eqs Ground state Conclusion

Root structure

Consider a generic term in the first BY equation

1 = eiepk R . . .
x−k − y (α)

l

x+
k − y (α)

l

√
x+

k

x−k
. . .

For physical mirror particles x±∗ = 1/x∓ , therefore,

1 = e−iepk R . . .

1
x+

k
− y (α)∗

l

1
x−k
− y (α)∗

l

√
x+

k

x−k
. . . =⇒ 1 = eiepk R . . .

x−k − 1
y (α)∗

l

x+
k − 1

y (α)∗
l

√
x+

k

x−k
. . .

A single y -root must be on the unit circle:

|y | = 1 =⇒ −2 ≤ v = y + 1/y ≤ 2

y -roots which are not on the circle come in pairs
(y1, y2 = 1/y∗1 ), and lead to the vw-string configurations
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String hypothesis for the mirror model Arutyunov, Frolov ’09(a)

In the thermodynamic limit R, K I, K II
(α), K III

(α) →∞ with K I/R and
so on fixed solutions arrange themselves into seven different
classes of Bethe strings

1 A single Q-particle with real momentum p̃k

2 A single y (α)-particle corresponding to a root y (α) with |y (α)| = 1

3 2M roots y (α) and M roots w (α) combining into a M|vw (α)-string

v (α)
j = v (α) + (M + 2− 2j)

i
g

, v (α)
−j = v (α) − (M + 2− 2j)

i
g

,

w (α)
j = v (α) + (M + 1− 2j)

i
g

, j = 1, . . . , M , v ∈ R .

4 N roots w (α) combining into a single N|w (α)-string

w (α)
j = w (α) +

i
g

(N + 1− 2j) , j = 1, . . . , N , w ∈ R
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String hypothesis for the l.c. STRING MODEL

1 A single Q-particle with real momentum pk

2 A single y (α)-particle corresponding to a root y (α) with y (α) ∈ R

3 2M roots y (α) and M roots w (α) combining into a M|vw (α)-string

v (α)
j = v (α) + (M + 2− 2j)

i
g

, v (α)
−j = v (α) − (M + 2− 2j)

i
g

,

w (α)
j = v (α) + (M + 1− 2j)

i
g

, j = 1, . . . , M , v ∈ R .

4 N roots w (α) combining into a single N|w (α)-string

w (α)
j = w (α) +

i
g

(N + 1− 2j) , j = 1, . . . , N , w ∈ R



Infinite J Large J Mirror theory Mirror BY eqs String hypothesis TBA eqs Simplified TBA eqs Ground state Conclusion

Function x(u)

Introduce the function

x(u) =
1
2

(
u − i

√
4− u2

)
, Im(x(u)) < 0 for any u ∈ C

mapping the u-plane onto the physical region of mirror model.
The cuts in the u-plane run from ±∞ to ±2 along the real lines.

|x(u)| = 1 for − 2 ≤ u ≤ 2

Compare with

xs(u) =
1
2

(
u +

√
u2 − 4

)
, |xs(u)| > 1 for any u ∈ C

that maps the u-plane onto the physical region of the string model.
The cut in the u-plane is [−2, 2].
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Function x(u)

Introduce the function

x(u) =
1
2

(
u − i

√
4− u2

)
, Im(x(u)) < 0 for any u ∈ C

mapping the u-plane onto the physical region of mirror model.
The cuts in the u-plane run from ±∞ to ±2 along the real lines.

|x(u)| = 1 for − 2 ≤ u ≤ 2

Compare with

xs(u) =
1
2

(
u +

√
u2 − 4

)
, |xs(u)| > 1 for any u ∈ C

that maps the u-plane onto the physical region of the string model.
The cut in the u-plane is [−2, 2].
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Thermodynamic limit

Densities ρ(u) of particles, and ρ̄(u) of holes; u ∈ R, α = 1, 2.

1 ρQ(u) of Q-particles, −∞ ≤ u ≤ ∞ , Q = 1, . . . ,∞

2 ρ
(α)

y− (u) of y -particles with Im(y) < 0, −2 ≤ u ≤ 2.

The y -coordinate is expressed in terms of u as y = x(u)

3 ρ
(α)

y+ (u) of y -particles with Im(y) > 0, −2 ≤ u ≤ 2.

The y -coordinate is expressed in terms of u as y = 1
x(u)

4 ρ
(α)
M|vw (u) of M|vw-strings, −∞ ≤ u ≤ ∞ , M = 1, . . . ,∞

5 ρ
(α)
M|w (u) of M|w-strings, −∞ ≤ u ≤ ∞, M = 1, . . . ,∞ ,

and the corresponding densities of holes.
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Thermodynamic limit

Integral eqs in the thermodynamic limit

ρi(u) + ρ̄i(u) =
R
2π

depi

du
+ Kij ? ρj(u)

where epi does not vanish only for Q-particles.

Star operation is defined as

Kij ? ρj(u) =

Z
du′ Kij(u, u′)ρj(u′)

Kernels K ′s are expressed via the corresponding S-matrices as

Kij(u, v) =
1

2πi
d
du

log Sij(u, v)

The right action is defined as

ρj ? Kji(u) =

Z
du′ ρj(u′)Kji(u′, u)
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Free energy and equations for pseudo-energies

To describe both sectors, we consider generalized free energy
Cecotti, Fendley, Intriligator, Vafa ’92

Fγ(L) = E − 1
L

S +
iγ
L

(N(1)
F − N(2)

F ) ,

E is the energy per unit length carried by Q-particles

E =

Z
du

∞X
Q=1

eEQ(u)ρQ(u) , eEQ(u) is Q-particle energy

S is the total entropy

iγ/L plays the role of a chemical potential

N(α)
F is the fermion number which counts the number of y (α)-particles

N(1)
F − N(2)

F =

Z
du (ρ

(1)

y−(u) + ρ
(1)

y+(u)− ρ
(2)

y−(u)− ρ
(2)

y+(u))

Minus sign between N(1)
F and N(2)

F is needed for the reality of Fγ(L)

γ = π =⇒ Witten’s index. γ = 0 =⇒ the usual free energy.
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Free energy and equations for pseudo-energies

Free energy: Fγ(L) =
R

du
P

k

h eEk ρk − iγk
L ρk − 1

L s(ρk )
i

Variations of the densities of particles and holes are subject to

δρk (u) + δρ̄k (u) = Kkj ? δρj .

Using the extremum condition δFγ(L) = 0, one derives the TBA eqs

εk = L eEk − log
“

1 + eiγj−εj
”

? Kjk ,

where the pseudo-energies εk are eiγk−εk = ρk
ρ̄k

,

At the extremum Fγ(L) = −R
L

R
du

P
k

1
2π

depk
du log

`
1 + eiγk−εk

´
The energy of the ground state of the l.c. string theory

Eγ(L) = lim
R→∞

L
R
Fγ(L) = −

Z
du

∞X
Q=1

1
2π

depQ

du
log

`
1 + e−εQ

´
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TBA equations for pseudo-energies of mirror particles

Arutyunov, Frolov ’09(b)

Q-particles εQ = L eEQ − log
“

1 + e−εQ′
”

? K Q′Q
sl(2)

− log

0@1 + e
−ε

(α)

M′|vw

1A ? K M′Q
vwx

− log

0@1 − e
ihα−ε

(α)

y−

1A ? K yQ
− − log

0@1 − e
ihα−ε

(α)

y+

1A ? K yQ
+

y -particles ε
(α)

y±
= − log

“
1 + e−εQ

”
? K Qy

± + log 1+e
−ε

(α)
M|vw

1+e
−ε

(α)
M|w

? KM

M|vw-strings ε
(α)
M|vw = − log

“
1 + e−εQ′

”
? K Q′M

xv

+ log

0@1 + e
−ε

(α)

M′|vw

1A ? KM′M − log 1−e
ihα−ε

(α)

y+

1−e
ihα−ε

(α)

y−
? KM

M|w-strings ε
(α)
M|w = log

0@1 + e
−ε

(α)

M′|w

1A ? KM′M − log 1−e
ihα−ε

(α)

y+

1−e
ihα−ε

(α)

y−
? KM

The ground state energy E(L) = −
R

du
P∞

Q=1
1

2π
depQ
du log

“
1 + e−εQ

”
Equivalent TBA eqs Bombardelli, Fioravanti, Tateo ’09

and also for sl(2) sector Gromov, Kazakov, Kozak, Vieira ’09
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Dressing Factor for the Mirror Model Arutyunov, Frolov ’09(c)

K QQ′
sl(2)(u, u′) =

1
2πi

d
du

log SQQ′
sl(2)(u, u′) ,

SQQ′
sl(2)(u, u′) = SQQ′ (u − u′)−1 ΣQQ′ (u, u′)−2 ,

SQQ′ (u − u′) =
u − u′ − i

g (Q + Q′)

u − u′ + i
g (Q + Q′)

u − u′ − i
g (Q′ − Q)

u − u′ + i
g (Q′ − Q)

Q−1Y
j=1

0@u − u′ − i
g (Q′ − Q + 2j)

u − u′ + i
g (Q′ − Q + 2j)

1A2

Here ΣQQ′ (u, u′) is related to the analytically continued
BES dressing factor as Beisert, Eden, Staudacher ’06

ΣQQ′ (u, u′) =
QY

j=1

Q′Y
k=1

σ
`
x±j (u), x±k (u′)

´1− 1
x+

j (u)x−k (u′)

1− 1
x−j (u)x+

k (u′)

,

x+
j (u) = x(u +

i
g

(Q + 2− 2j)) , x−j (u) = x(u +
i
g

(Q − 2j)) , x−j = x+
j+1

ΣQQ′ (u, u′) is holomorphic in the physical region of the mirror model.
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Simplified TBA equations

Introduce the Y-functions

YQ = e−εQ , Y (α)
M|vw = eε

(α)

M|vw , Y (α)
M|w = eε

(α)

M|w , Y (α)
± = eε

(α)

y±

and the kernels

KM(u) =
1
π

gM
M2 + g2u2 , s(u) =

g
4 cosh gπu

2
,

KQy (u, v) = K (u − i
g

Q, v)− K (u +
i
g

Q, v) , K (u, v) =
1

2πi

√
4− v2

√
4− u2

1
u − v
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Simplified TBA equations Arutyunov, Frolov ’09(b)

M|w-strings: log Y (α)
M|w = log(1 + Y (α)

M−1|w )(1 + Y (α)
M+1|w ) ? s + δM1 log

1− eihα

Y (α)
−

1− eihα

Y (α)
+

? s

M|vw-strings:

log Y (α)
M|vw = log

(1 + Y (α)
M−1|vw )(1 + Y (α)

M+1|vw )

1 + YM+1
? s + δM1 log

1− e−ihα Y (α)
−

1− e−ihα Y (α)
+

? s

y -particles: log
Y (α)

+

Y (α)
−

= log(1 + YQ) ? KQy ,

log Y (α)
+ Y (α)

− = − log (1 + YQ) ? KQ + 2 log

1+ 1

Y (α)
M|vw

1+ 1

Y (α)
M|w

? KM

Q-particles for Q ≥ 2: log YQ = log

“
1+ 1

Y (1)
Q−1|vw

”“
1+ 1

Y (2)
Q−1|vw

”
(1+ 1

YQ−1
)(1+ 1

YQ+1
)

? s

Q = 1-particle: log Y1 = log

“
1− eih1

Y (1)
−

”“
1− eih2

Y (2)
−

”
1+ 1

Y2

? s −∆ ? s
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Simplified TBA equations Arutyunov, Frolov ’09(b)

Q = 1-particle: log Y1 = log

(
1− eih1

Y (1)
−

)(
1− eih2

Y (2)
−

)
1+ 1

Y2

? s −∆ ? s

∆(u) = log

(
1− eih1

Y (1)
−

)(
1− eih2

Y (2)
−

)(
θ(−u − 2) + θ(u − 2)

)
+ L Ě − log

(
1− eih1

Y (1)
−

)(
1− eih2

Y (2)
−

)(
1− eih1

Y (1)
+

)(
1− eih2

Y (2)
+

)
? Ǩ

− log

1 +
1

Y (1)
M|vw

1 +
1

Y (2)
M|vw

 ? ǨM + 2 log (1 + YQ) ? Ǩ Σ
Q ,

∆(u) determines analytic properties of
the Y-system on the u-plane Gromov, Kazakov, Vieira ’09(a)
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TBA and Y-equations for w-strings

log Y (α)
M|w = log(1 + Y (α)

M−1|w )(1 + Y (α)
M+1|w ) ? s + δM1 log

1− eihα

Y (α)
−

1− eihα

Y (α)
+

? s

Since the functions Y α
± are defined on the interval −2 < u < 2,

the integral in the last term is taken along [−2, 2].

Define (f ? s−1)(u) = limε→0+

[
f (u + i

g − iε) + f (u − i
g + iε)

]
.

It satisfies (s ? s−1)(u) = δ(u) . In general f ? s−1 ? s 6= f .

Introduce the notation f±(u) ≡ f (u ± i
g ∓ i0), and get the Y-equations

Y (α)+
M|w Y (α)−

M|w =
(

1 + Y (α)
M−1|w

)(
1 + Y (α)

M+1|w

)
if M ≥ 2 ,

Y (α)+
1|w Y (α)−

1|w =
(

1 + Y (α)
2|w

) 1− eihα

Y (α)
−

1− eihα

Y (α)
+

, |u| ≤ 2 ,

Y (α)+
1|w Y (α)−

1|w = 1 + Y (α)
2|w , |u| > 2 .

Y-system requires Y (α)
+ = Y (α)

− for |u| > 2.
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Ground state energy: any L, small h Frolov, Suzuki ’09

Naively, for h = 0 the TBA equations are solved by

YQ = 0, Y (α)
+ = Y (α)

− = 1, Y (α)
M|vw = Y (α)

M|w 6= 0, eihα = 1 .

A subtle point is that the TBA equation for Q-particles is singular at YQ = 0

− log YQ = L eEQ − log
“

1 + YQ′
”

? K Q′Q
sl(2) − log

“
1 +

1

Y (α)
M|vw

”
? K MQ

vwx

−
1
2

log
1− eihα

Y (α)
−

1− eihα

Y (α)
+

? KQ −
1
2

log
“

1−
eihα

Y (α)
−

”“
1−

eihα

Y (α)
+

”
? KyQ .

Consider h 6= 0 and take h → 0. For small h, the functions Y (α)
± have expansion

Y (α)
± = 1 + hA(α)

± + · · · .

The last term behaves as log h, and we get

− log YQ = −2 log h ? KyQ + finite terms .
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Ground state energy: any L, small h

− log YQ = −2 log h ? KyQ + finite terms .

Taking into account that 1 ? KyQ = 1, we conclude

YQ = h2BQ + · · · ,

and the ground state energy expands as

Eh(L) = −h2
∫

du
2π

∞∑
Q=1

dp̃Q

du
BQ + · · · .

The leading order solution of the TBA eqs

YQ = 4h2 Q2 e−L eEQ , Y (α)
± = 1+O(h2) , Y (α)

M−1|vw = Y (α)
M−1|w = M2−1
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Ground state energy: any L, small h

Since eEQ = log xQ−

xQ+ , xQ±(u) = x(u ± i
g Q) , the YQ-functions acquire the form

YQ = 4 h2 Q2

 
xQ+

xQ−

!L

+O(h3) .

YQ-functions are NOT analytic on the u-plane.

In terms of the z-torus rapidity variable xQ+/xQ− = (cn z + i sn z)2.
Thus, the YQ-functions ARE meromorphic on the z-torus if

L =
1
T

is integer or half-integer.

L is quantized!!! if YQ is analytic on z-torus.
The ground state energy at the leading order in h and arbitrary L is given by

Eh(L) = −h2
Z

du
2π

∞X
Q=1

depQ

du
4 Q2 e−L eEQ = −h2

∞X
Q=1

Z
depQ

2π
4 Q2 e−L eEQ .

For L = 2 the series in Q diverges?! as 1
Q
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Ground state energy: any h, large L

Generalized Lüscher formula Janik, Lukowski ’07

EgL(L) = −
Z

du
2π

∞X
Q=1

depQ

du
e−L eEQ trQei(π+h)F + · · · .

The trace runs through all 16 Q2 polarizations of a Q-particle state. We obtain

EgL(L) = −
Z

du
2π

∞X
Q=1

depQ

du
16 Q2 sin2 h

2
e−L eEQ + · · · .

At small values of h it agrees with the previous one.

Expansion of Y-functions in terms of e−L eEQ is similar to the small h one

YQ ≈ 16 Q2 sin2 h
2

e−L eEQ , Y (α)
± ≈ 1, Y (α)

M|w ≈ Y (α)
M|vw ≈ M(M + 2) ,

and the energy of the ground state agrees with the Lüscher formula.

For h = π it should give the energy of the non-BPS
ground state in the sector with anti-periodic fermions.
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Analyticity of Y-system Frolov, Suzuki ’09

Q = 1-particle: log Y1 = log

“
1− eih1

Y (1)
−

”“
1− eih2

Y (2)
−

”
1+ 1

Y2

? s −∆ ? s

∆(u) = log

0@1−
eih1

Y (1)
−

1A0@1−
eih2

Y (2)
−

1A`θ(−u − 2) + θ(u − 2)
´

+ L Ě − log

0@1−
eih1

Y (1)
−

1A0@1−
eih2

Y (2)
−

1A 1−
eih1

Y (1)
+

! 
1−

eih2

Y (2)
+

!
? Ǩ

− log

0@1 +
1

Y (1)
M|vw

1A0@1 +
1

Y (2)
M|vw

1A ? ǨM + 2 log (1 + YQ) ? Ǩ Σ
Q ,

in the both small h and large L cases we get

∆ = L Ě = L log
x(u + i0)

x(u − i0)
6= 0 for u ∈ (−∞,−2) ∪ (2,∞) .

Since ∆ does not vanish, the TBA equations do NOT lead to an analytic Y-system.
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Analyticity of Y-system

Y-system on an infinite genus surface? Y-equations valid on its particular sheet?
The Y-equation is obtained from the TBA one by applying the operator s−1

e∆(u)Y1(u +
i
g
− i0)Y1(u −

i
g

+ i0) =

`
1− eih1

Y (1)
−

´`
1− eih2

Y (2)
−

´
1 + 1

Y2

.

From the explicit ground state solution we find that the jump discontinuity of
log Y1(u ± i

g ) across the real u-line is given by ±∆(u), and, therefore,

Y1(u +
i
g
± i0)Y1(u −

i
g
± i0) =

`
1− eih1

Y (1)
−

´`
1− eih2

Y (2)
−

´
1 + 1

Y2

.

Y1-equation might hold on the u-plane with the cuts from ±2± i
g to ±∞ if the

shifts upward and downward have the infinitesimal parts of the same sign.
The equations for YQ (Q ≥ 2) would then induce infinitely many cuts on the
u-plane with the branch points located at ±2± i

g Q.
Y-system equations can have the canonical form only on a particular sheet of the
infinite genus Riemann surface, and would take different forms on other sheets.
Understand the corresponding transformation properties of the Y-system.
This is in contrast to relativistic models.
Understand how such a Y-system can be used for analyzing the spectrum.
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Conclusion

Find TBA eqs to account for excited state energies P. Dorey, Tateo ’96

Reproduce known string and field theory results by using the
TBA eqs

Classical and one-loop spinning string energies Frolov, Tseytlin ’03

Finite-gap integral equations Kazakov, Marshakov, Minahan, Zarembo ’04

Finite-size giant magnon energy Arutynov, Frolov, Zamaklar ’06

Bethe-Yang equations Beisert, Staudacher ’05

5-loop Konishi and twist two Bajnok, Hegedus, Janik, Lukowski ’09

Compute analytically anomalous dimension of Konishi and twist
two operators up to 12 (any?) loops

Compute numerically Konishi for any λ Gromov, Kazakov, Vieira ’09(b)

Prove PSU(2, 2|4) invariance of the string spectrum

Prove the gauge independence of the string spectrum

Understand the Y-system on the infinite genus Riemann surface
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