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Infinite J
®00

AdSs x S° superstring in the light-cone gauge

@ Itis a model on a cylinder of circumference P, = J, where
J is an angular momentum of string rotating around S°

@ When J — o the cylinder = a plane. Integrability
implies factorized scattering. Find the S-matrix and
compare with the spin chain one Staudacher 04



Infinite J
®00

AdSs x S° superstring in the light-cone gauge

@ Itis a model on a cylinder of circumference P, = J, where
J is an angular momentum of string rotating around S°

@ When J — o the cylinder = a plane. Integrability implies
factorized scattering. Find the S-matrix and compare with
the spin chain one Staudacher 04

@ Inthe limit J — oo the symmetry algebra of the |.c. model
psu(2|2) @ psu(2|2) € psu(2,2|4)

is extended by two central charges depending on the
world-sheet momentum P Beisert '05

Arutyunov, Frolov, Plefka, Zamaklar '06

@ The world-sheet S-matrix factorises

S(p1,p2) = So - S(p1,p2) @ S(p1,P2)
each 16 x 16-matrix S is psu(2|2) e -invariant Beisert 05

Arutyunov, Frolov, Zamaklar 06



Infinite J
oceo

Dispersion relation and rapidity torus

@ The dispersion relation Beisert, Dippel, Staudacher ‘04
follows from the symmetry algebra Beisert '05
H =1+ 4gsin® 2
and can be uniformized on a torus Janik ‘06
p=2amz, sing:sn(z,k), H = dn(z, k)

o elliptic modulus: k = —4g® = —\/72
e torus real and imaginary periods: 2w (k) and 2w (k)
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Dispersion relation and rapidity torus

@ The dispersion relation Beisert, Dippel, Staudacher 04
follows from the symmetry algebra Beisert 05
H =1+ 4gsin® 2
and can be uniformized on a torus Janik ‘06
p=2amz, sing:sn(z,k), H = dn(z, k)

o elliptic modulus: k = —4g® = —\/72
e torus real and imaginary periods: 2w (k) and 2w (k)
@ Constrained parameters x*
1 1 ] + ;
RSN T
x+t X~ g X~

On the z-torus x* are meromorphic
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S-matrix for fundamental particles
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m = n(p1)exp(4p2), m2=n(p2), 71 =n(p1), iz = n(p2)exp(Lp1), n(p) = exp(4p)Vix— — ixT
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Spectrum on a large circle

@ Bethe-Yang equations Beisert, Staudacher ‘05
I I J "
P T S, py) = 1
j#k
(+ additional equations with auxiliary roots encoding non-diagonal structure of S)

@ Given {p;} ., the energy (dimension) is given by
i=1

M
E=Y /1 +4g23|n2p’ E(g.J)
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Spectrum on a large circle

@ Bethe-Yang equations Beisert, Staudacher '05
N/ J "
P[] S(pr.pj) = 1
j#k
(+ additional equations with auxiliary roots encoding non-diagonal structure of S)

@ Given {p;} ., the energy (dimension) is given by
i=1

M
E=Y /1 +4g23|n2p’ E(g.J)

@ This is NOT the correct answer for finite J!
Wrapping interactions (distinguished Feynman graphs), finite-size corrections to
classical string energies, BFKL analysis, all points to this...
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Spectrum on a large circle

@ Bethe-Yang equations Beisert, Staudacher '05

I I J "
P T S, py) = 1
J#k
(+ additional equations with auxiliary roots encoding non-diagonal structure of S)

@ Given {p;} ., the energy (dimension) is given by
i=1

M
E=Y /1 +4g23|n2p’ E(g.J)

@ This is NOT the correct answer for finite J!
Wrapping interactions (distinguished Feynman graphs), finite-size corrections to
classical string energies, BFKL analysis, all points to this...

@ Lischer’s formulae and TBA ideas were successfully used
to explain exponential corrections in string theory and
wrapping effects in fields theory Ambjorn, Janik, Kristiansen '05



Mirror theory
[ leJele]

TBA and mirror theory
Follow the TBA approach for relativistic models (Zamolodchikov 90)

Arutyunov, Frolov '07

"mirror string"
" oflengthR

string of

length L=) -

@ One Euclidean theory — two Minkowski theories. One is related
to the other by the double Wick rotation:

g =—ir, F=lo

The Hamiltonian H w.r.t. # defines the mirror theory.



Mirror theory

@000

TBA and mirror theory
Follow the TBA approach for relativistic models (Zamolodchikov 90)

Arutyunov, Frolov '07

"mirror string"
" oflengthR

string of

length L=) -

@ One Euclidean theory — two Minkowski theories. One is related
to the other by the double Wick rotation:

G =—ir, T =lo
The Hamiltonian H w.r.t. # defines the mirror theory.

@ Ground state energy (R — o) is related to the free energy of its
mirror

E(L) = LF(L)

Free energy F can be found from the Bethe ansatz for the mirror
model because R — oo



Mirror theory
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Boundary conditions for fermions

Periodicity of fermions

@ Fermions of the string model: periodic or anti-periodic in the
space direction, anti-periodic in time

@ Fermions of the mirror model: anti-periodic in the space
direction, periodic or anti-periodic in time

Ground state energy for periodic fermions is related to Witten’s
index of the mirror theory:

Tr ((—I)Fe_ﬁﬁ>



Mirror theory
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Comparison chart

Strings Mirrors
. P | = (I o
Dispersion relation | & = (/ Q2 + 492 sin® g & = 2arcsinh <2g Q2+ ,02)
Momentum —Tr<p<T —00 < P < 0
Type of theory Lattice model Continuum model

Giant magnon

Soliton in R x §°

Soliton in AdSs

S — matrix

S(Z1 N ZQ)

S(z1+ %, 22+ %)

Dressing factor

o(1,2)"0(1,2) =1

c(1,2)"0(1,2) =

+ J—
Xt X
— F
Xy X5

Bethe — Yang eqs

BS; P=0

extra \/xt/x~

Bound states

Symmetric irrep
su(2) sector

Antisymmetric irrep
sl(2) sector

Physical region

“Fish” (7)

“Leaf” (?)




Mirror theory

[e]e]e] )

IX|<1

[x|<1

IX|<1
1| >1

[x*>1
Ix]<1

X = Re(iz) , y= Re(iz
w1 wo

)



Mirror BY eqs
00

Bethe-Yang equations for the mirror model

I R ﬂ) Xk (a) le_
P HS (2) Xk,X/ H H (a)

a=1 I=1 Xk -
I;ék
K! o a) ()
—1 H ylg ) Xl H W= é
=1 y/E - X/ —1 Vk W,(a) +3
KI(I) o a) , KII (a) (a) o
1 = lLI)W’E)_V/( +9IJH w3
1 W/ECV) _ V/(a) _é piie W/((oz) /(a) +%
Ik
where the S-matrix of the sl(2)-sector enters
11— 17
X=X, X7 X5 1
S (x1, x0) = =2 2 - VR
si2) (X1, Xe) X, —x 11— +1X_ 912 y y

Xy Xo
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Bound states of the mirror model

The sl(2) S-matrix

]
PR R

X % XX 2

X*_X+1_ 1_ 12
1~ X s

S;t1(2)(x1 ,X2) =

exhibits a pole for complex values of momenta

1:g+iq, [)Z:g—iq, Req >0

for which x=(p1) —x*(p2) =0 = q=q(p)

B

This pole leads to the existence of a Q-particle bound state
— _ oyt - _ 7t - _yF
X{ =X, X =X3, ..., Xg_q=2X3

The mirror asymptotic spectrum contains fundamental particles
and their bound states. Mirror bound states transform in the
atyplca/ anti'symmetric il‘repS Of5u(2|2)c,e, Arutyunov, Frolov '07



Mirror BY eqgs
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Bethe-Yang for mirror particles and their bound states

The Bethe-Yang equations for bound states are obtained by
fusing the equations for the constituent fundamental particles:

1 — gPR H SOKQI (Xk, X H H Xk yl((y Ak
ks Al Xﬁ

a1 Xi —
l;ék
(w (o) i
_ yk _X/ X/ 7W/ 75
-1 = H (o) ¥ H i
=1y =Xt /1Vk _W/ +§
K" . K c ” .
. 1(_{) W) — v,(a)+é 1(_{) W w2
=1 W/Ea) - V/(a) - é =1 W;Ea) - W/(a) + 23/
Ik

Sg(kzo’ is obtained by fusing the fundamental constituents Sq[ )



String hypothesis
[ JeJele]

String hypothesis

The main issue is to understand the structure of solutions to the
BY equations in the thermodynamic limit:

R— oo, K'/R=fixed, K[\ /R=fixed, K[)/R = fixed



String hypothesis
[ JeJele]

String hypothesis

The main issue is to understand the structure of solutions to the
BY equations in the thermodynamic limit:

R— oo, K'/R=fixed, K,/R=fixed, K[)/R = fixed

This is done by formulating the corresponding

string hypothesis

Arutyunov, Frolov '09(a)



String hypothesis
[ JeJele]

String hypothesis

The main issue is to understand the structure of solutions to the
BY equations in the thermodynamic limit:

R— oo, K'/R=fixed, K,/R=fixed, K[)/R = fixed

This is done by formulating the corresponding

string hypothesis

Arutyunov, Frolov '09(a)

TBA equations are derived from it following a textbook route!

Essler, Frahm, Géhmann, Klimper, Korepin, “The One-Dimensional Hubbard Model”



String hypothesis
[e] Jele]

Root structure

Consider a generic term in the first BY equation

— (@) [y+
1P M TN %

pe —}/,(a) o
For physical mirror particles x** = 1/xT , therefore,

1 (a)* - _ 1
a1 T R o s
1= eilfﬁk R 7)(: y/( ) —Xk — 1= erﬁkﬂ K Y /(1) Xk
. — T S
— =Y X X~y VX

Xy



String hypothesis
[e] Jele]

Root structure

Consider a generic term in the first BY equation

— (@) [y+
1P M TN %

X _y/(a) X

For physical mirror particles x** = 1/xT , therefore,
1 () x— 1
- = + ay +

T N . SR Y S 1

= —y == = e : <L
L — y/(a) X Xe — eV Xk
X, Y
@ A single y-root must be on the unit circle:

lyl=1 = -2<v=y+1/y<2




String hypothesis
[e] Jele]

Root structure

Consider a generic term in the first BY equation

— (@) [y+
1P M TN %

x; _y/(a) Xk
For physical mirror particles x** = 1/xT , therefore,

1 (a)* X — 1
- = + ay +
f_emR % M IXC L mR KA X
= . Erilt = e ..
Falld X X ol X
@ A single y-root must be on the unit circle:

lyl=1 = -2<v=y+1/y<2

@ y-roots which are not on the circle come in pairs
(v1,y2 = 1/y5), and lead to the vw-string configurations
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String hypothesis for the mirror model

In the thermodynamic limit R, K, K('(‘l), K(‘;‘) — oo with K'/R and
so on fixed solutions arrange themselves into seven different
classes of Bethe strings



String hypothesis
[e]e] o]

String hypothesis for the mirror model

In the thermodynamic limit R, K, K('(‘l), K(‘;‘) — oo with K'/R and
so on fixed solutions arrange themselves into seven different
classes of Bethe strings

@ A single Q-particle with real momentum py

@ Assingle y(®)-particle corresponding to a root y(®) with [y(®)| = 1

© 2M roots y(®) and M roots w(®) combining into a M|vw(®)-string

(@) _ (@) _opd (@) _ o) _ _onk
v; v+ (M 42 2j)g, V=V (M+2 2/)g,
(@) _ (@) _onl

w = vit + (M +1 Zj)g’ j=1,...,M, veR.

@ N roots w(®) combining into a single N|w()-string

W) = W) (N1 -2)),

1,...,N, weR



String hypothesis
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String hypothesis for the I.c. STRING MODEL

@ A single Q-particle with real momentum py

@ A single y(®)-particle corresponding to a root y(®) with y(®) ¢ R

© 2M roots y()

and M roots w(®) combining into a M|vw(®)-string

« I [e}% a . I
vj()— +(M+2-— 2/)5 v(_j):v()f(M+2—21)§,
(@) _ o
w™ = (M—|—1—2j)§ j=1,....M, veR.
© N roots w(®) combining into a single N|w()-string

wj(“:w(awé(NH ~-2j), j=1,...,N, weR



TBA egs
®000000

Function x(u)

Introduce the function

| =

x(u) =

(u Va4 - u2) , Im(x(u)) <0 forany u e C J

mapping the u-plane onto the physical region of mirror model.
The cuts in the u-plane run from +oo to +2 along the real lines.

x(u)) =1 for —2<u<2
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®000000

Function x(u)

Introduce the function

| =

x(u) =

(u Va4 - u2> , Im(x(u)) <0 forany u e C J

mapping the u-plane onto the physical region of mirror model.
The cuts in the u-plane run from +oo to +2 along the real lines.

x(u)) =1 for —2<u<2

Compare with

1
Xs(U) = E(u+ \/u2—4) . Ixs(u)| > 1 forany ueC J

that maps the u-plane onto the physical region of the string model.
The cut in the u-plane is [-2, 2].



TBA egs
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Thermodynamic limit

Densities p(u) of particles, and p(u) of holes; u € R, o =1, 2.
@ oo(u) of Q-particles, —co<u<oo,Q=1,...,00

Q p )(u) of y-particles with Im(y) < 0, —2 < u < 2.
The y-coordinate is expressed in terms of u as y = x(u)

@ 1\ (u) of y-particles with Im(y) > 0, —2 < u < 2,
The y-coordinate is expressed in terms of uas y =

(% ] pM‘VW ) of M|vw-strings, —co < u<oo,M=1,...,00

Q pmv(u) of M|w-strings, —oo < u<oco,M=1,...,00,

and the corresponding densities of holes.



TBA egs
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Thermodynamic limit

Integral eqs in the thermodynamic limit

_ R dp;
pi(U) + i(U) = 5=+ Ky x py(u)

where p; does not vanish only for Q-particles.
@ Star operation is defined as

Ky m(w) = [ au/ Kifu,0)o(w)
@ Kernels K’s are expressed via the corresponding S-matrices as

g log Sj(u, v)

1
Kl V) = ori
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Thermodynamic limit

Integral eqs in the thermodynamic limit

_ R dp;
pi(U) + i(U) = 5=+ Ky x py(u)

where p; does not vanish only for Q-particles.
@ Star operation is defined as

Ky m(w) = [ au/ Kifu,0)o(w)
@ Kernels K’s are expressed via the corresponding S-matrices as

g log Sj(u, v)

1
Kl V) = ori

The right action is defined as

oK) = [ a5 ()R 0)



TBA egs
[e]e]e] le]ele)

Free energy and equations for pseudo-energies

To describe both sectors, we consider generalized free energy
Cecotti, Fendley, Intriligator, Vafa '92

@ & is the energy per unit length carried by Q-particles

£ = /dquQ(u)pQ(u), £9u) is Q-particle energy
o=

@ Sis the total entropy



TBA egs
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Free energy and equations for pseudo-energies

To describe both sectors, we consider generalized free energy
Cecotti, Fendley, Intriligator, Vafa '92

@ & is the energy per unit length carried by Q-particles

£ = /dquQ(u)pQ(u), £9u) is Q-particle energy
o=

@ Sis the total entropy

iv/L plays the role of a chemical potential

() N,(f) is the fermion number which counts the number of y(*)-particles
1 2 1 1 2 2
N = N = [ au () (@) + 2(0) — P () ~ 2 0)

@ Minus sign between N\ and N is needed for the reality of (L)
@ y=7m — Witten’sindex. y =0 = the usual free energy.



TBA egs
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Free energy and equations for pseudo-energies

Free energy: F,(L) = [du >, [gk px — & pk — Zs(pk)}
Variations of the densities of particles and holes are subject to
6pk(U) + 0pk(u) = Kig* dp; -
Using the extremum condition § 7, (L) = 0, one derives the TBA eqgs
ex = LE — log <1 + e’”/’ei) * K ,

where the pseudo-energies ¢ are ek = Z—i ,

At the extremum  F,( —Ffdu Y, o du “log (1 + e"%ek)

The energy of the ground state of the I.c. string theory

L = 1d .
E,(L) = Jim = (L) / Zz—di 1+ e<0)
=il




TBA egs
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TBA equations for pseudo-energies of mirror particles

Arutyunov, Frolov '09(b)
()
~ — —€ /
@ Q-particles eq=LEqG —log (1 +e €0/) * KSO[,(% —log [1+e Miw | kMQ
; (o) i ()
iho,—e ihey —
— log (1 —e Y_> * K2 _log (1 —e Ey+> *K{Q
e
@ y-particles e;CjL) = —log (1 + e’EO) * Kgy + log % * Ky
1+e_EM‘W
@ M|vw-strings eﬁ)vw — log (1 + efea’) * KXC\’,/M
i (c)
(a) iho —e
<& e vt
+log <1 +e M \VW) *KM/Mflogﬁ * Ky
(3 —_
1—e y
e i, —e(®)
@ M|w-strings 65\;]341 =log (1+e MIW | « Ky —log 1_5777{()‘) * Ky
1 —€
1—e
o

The ground state energy E(L)

Q _
—[du g, ﬁfg—ulog(1+e EO)

Equivalent TBA eqgs

Bombardelli, Fioravanti, Tateo ‘09
and also for s1(2) sector

Gromov, Kazakov, Kozak, Vieira '09
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Dressing Factor for the Mirror Model

’ 1 d
QQ AN QQ’
Ksl(z)(u,u )= o dul gS (u u'y,

S92 (u,u') = Saar (u = ')~ Tagr (U, 1) 2,

u-v - L@+ Q) u-uv - L@ -Q) & (u—v - L@ -a+2)\
SQQ/(U*U/)

U—U/+§(O+O/) —U/“ra(Ol—Q) =1 U—U/+§(O,—Q+2j)

Here X qq/ (u, U') is related to the analytically continued
BES dressing factor as Beisert, Eden, Staudacher '06

, {1
e 2 X (W)

Toa (u.0) = [ [T o (6 (@) (W) -5

Jj=1 k=1 X (u) (u)

)(]f(u):x(u+é(0+2—2j)),xf(u):x(u—&-é(O—Zj)), X _XIL

¥ qqr(u, U") is holomorphic in the physical region of the mirror model.



Simplified TBA eqs
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Simplified TBA equations

Introduce the Y-functions

(a)

_ a—€a () € "
Yo=¢€ , YM‘VW—eM\ s

and the kernels

aMm

1
) =2 3 gee

Kay(u,v) = K(u - éo, V) — K(u+ éo., V), K(u,v) =

Vi) = i i
g

s(u) = ———,

W) 4 cosh 3¢




Simplified TBA eqs
[e] Jele]

Simplified TBA equations

/ha

y(a>
@ Mw-strings: log Y\ =log(1+ Y} 1‘W)(1+YM?”W)*S+5M1 l0g e+

(a)
i
@ Mjvw-strings:
() ()
o (1 Vi) (U Ve ) 1— e—hayl®)
log YM‘VW = log * S+ Op Iog ————— %S
1+ Y — e lha Yi )

@ y-particles: Iog a) =log(1 + Yq) * Kay »

14—
(@)
(c) ((’) — yM\vw
log Vi Y1) = —log (1 + Yo) x Kq + 2l0g - * Ky
Vn‘ﬁ’w
(5 —) ()
@ Q-particles for Q > 2: log Yq = log Q-1 ]vw O tw s
(+yp)0+ yQ )
- +1
s iho
(-55) (-23)
@ Q = 1-particle: log Y7 = log T *S— Axs

Y2



Simplified TBA eqs

Simplified TBA equations

Q = 1-particle: log Y; = log

eih1 eihg
A(u) = log (1 - Y(”) ( Y(Z)) (0(—u—2)+06(u—2))

5 giht gihe giht it .
Lglog<1 ><1><1 o)k
y® y® y® y®)

1 1 . -
~ log (1 av ) (1 +Y(2)> Ky +2log (1 + Yo) x K3,
Mjvw Mivw

A(u) determines analytic properties of
the Y-system on the u-plane

—
\

+

Gromov, Kazakov, Vieira '09(a)
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TBA and Y-equations for w-strings

ihey
(@)

)1+ Y/f//?ﬂw)*s-l- om1 log 17% * S
vie)

e

log Yi51, =log(1 + Vi,

Since the functions Y¢ are defined on the interval -2 < u < 2,
the integral in the last term is taken along [—2, 2].



Simplified TBA eqs
[e]e]e] )

TBA and Y-equations for w-strings

il
a e o _Y(,u)

log YWV =log(1+ Y,f,,_)1‘w)(1 + Y,f/,jzﬂw)*s#— om log Y xS
v

Since the functions Y¢ are defined on the interval -2 < u < 2,
the integral in the last term is taken along [—2, 2].

Define (s~ ")(U) = limc_o+ [f(u+ £ —ie) + f(u—  +ie)] .
ltsatisfies (SxS™')(u) = 0(u). Ingeneral fxS™' xS #f.



Simplified TBA eqs
[e]e]e] )

TBA and Y-equations for w-strings

ihe
(o)
log Y,\(/,a) =log(1 + Y,f,,“_)1‘w)(1 + Ym1lw)*s+ dmi log 17% xS

Iw (o)
v

e

Since the functions Y¢ are defined on the interval -2 < u < 2,
the integral in the last term is taken along [—2, 2].

Define (s~ ")(U) = limc_o+ [f(u+ £ —ie) + f(u—  +ie)] .
ltsatisfies (SxS™')(u) = 0(u). Ingeneral fxS™' xS #f.

Introduce the notation f+(u) = f(u + é F i0), and get the Y-equations

(a)+ )= _ () () p
YM\W YM\W - (1 + YM—HW) <1 + YM+1\W> if M> 27

()+ y(a)— () Y
VYT = () e =2,

Y((\)

yOryl)= gyl u > 2.

1|lw 1|lw 2w

Y-system requires Y™ = Y for u| > 2.



Ground state
00000

Ground state energy: any L, small h

Naively, for h = 0 the TBA equations are solved by
_ o) «) ( ) « 'ha .
Yo=0, YW=v@=1 vy vl #0, e =1

A subtle point is that the TBA equation for Q-particles is singular at Yo = 0

. 1
—log Yo = LEg — log (1 4 YQ,) « K3 —log (1 + Y(T)) * KM
M|vw
1_ e’(ha)
1 Y:l 1 eiha eih,,
7§|09W*K07 §|09<1 — W>(1 — @) *Kyq -

()
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Ground state energy: any L, small h

Naively, for h = 0 the TBA equations are solved by
_ o) «) ( ) « 'ha .
Yo=0, YW=v@=1 vy vl #0, e =1

A subtle point is that the TBA equation for Q-particles is singular at Yo = 0

- 1
—log Yo = LEg — log (1 4 YQ,) « K3 —log (1 + Y(T)) * KM
M|vw
1_ e’(ha)
1 Y:l 1 eiha eih,,
7§|09W*K07 §|09<1 — W>(1 — W) *Kyq -
yia) — +

Consider h # 0 and take h — 0. For small h, the functions Yf) have expansion
Y =14 na® ..

The last term behaves as log h, and we get

—log Yq = —2log hx K,q + finite terms .
Y
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Ground state energy: any L, small h

—log Yo = —2log h x K,q + finite terms .
Taking into account that 1 « K, = 1, we conclude
YQ:hZBQ+. ,

and the ground state energy expands as

du <= dp?
En(L) = —H? ZZWB“””
Q=1
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Ground state energy: any L, small h

—log Yo = —2log h x K,q + finite terms .
Taking into account that 1 « K, = 1, we conclude
YQ:hZBQ+. ,

and the ground state energy expands as

En(L) = —h? Z BQ+-~-

The leading order solution of the TBA eqs

Yo=4f Qe e, v{V =140(1?), Y, = Vi, = MP-1
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Ground state energy: any L, small h

e

Since £q = log X5+, x9*(u) = x(u+ } Q) , the Yq-functions acquire the form

L
Yo=4h Q° xa o(n®
Q= XQ_ + ( )

Yq-functions are NOT analytic on the u-plane.
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Ground state energy: any L, small h

Q— i . .
Xor s XOE () = x(u+ 5 Q) , the Yo-functions acquire the form

Since £ = log

L
Vo—ara (X)) +on
Q= XQ_ + ( )

Yq-functions are NOT analytic on the u-plane.

In terms of the z-torus rapidity variable x@* /x@~ = (cn z 4 isn 2)2.
Thus, the Yu-functions ARE meromorphic on the z-torus if

1
L= T is integer or half-integer.

Lis quantized!!! if Y is analytic on z-torus.
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Ground state energy: any L, small h

Q— i . .
Xor s XOE () = x(u+ 5 Q) , the Yo-functions acquire the form

Since £ = log

2 2 [ X9F ' 3
Yo=4h"Q prom + O(h°).
Yq-functions are NOT analytic on the u-plane.

In terms of the z-torus rapidity variable x@* /x@~ = (cn z 4 isn 2)2.
Thus, the Yu-functions ARE meromorphic on the z-torus if

1
L= T is integer or half-integer. J

Lis quantized!!! if Y is analytic on z-torus.

The ground state energy at the leading order in h and arbitrary L is given by

du S dp9 7 >, [ dp? _IF
En(L) = —h? P atetéa = _p? /74 2 e~ La
(L) o O§:1 T QPe 021 o QPe

For L = 2 the series in Q diverges?! as 3



Ground state
[e]e]e] lele)

Ground state energy: any h, large L

Generalized Luscher formula Janik, Lukowski ‘07

du = dp?
27 & du

Eg (L) — _ efLEQ troei(w+h)F 4o

The trace runs through all 16 Q2 polarizations of a Q-particle state. We obtain
du  dp@ > .oh _,z
Eq(Ll)=—- [ — ——16Q°sin“ ~ e "Q ...,
(L) / 2r (; au 2 *

At small values of h it agrees with the previous one.
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Ground state energy: any h, large L

Generalized Luscher formula Janik, Lukowski ‘07

du & dp?

au e—L€a trqe!HNF 4.
27 & du

Eall) =~

The trace runs through all 16 Q2 polarizations of a Q-particle state. We obtain
du  dp@ > .oh _,z
Eq(Ll)=—- [ — ——16Q°sin“ ~ e "Q ...,
(L) / 2r (; au 2 *

At small values of h it agrees with the previous one.

Expansion of Y-functions in terms of e~L¢a is similar to the small h one

. h £ [+ a [eY
Yo~ 16023|n2§e450, v~ 1, Y,f,,‘,l,“ Y/Eﬂ\\)/sz(M+2)7

and the energy of the ground state agrees with the Lischer formula.

For h = = it should give the energy of the non-BPS
ground state in the sector with anti-periodic fermions.
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Analyticity of Y-system

A(u)

el el
log (1 - Ym> (1 - Y(z)) (0(-u—2)+0(u—2))
el A el el 5
L& ~ log <1y“)> 1y(2)) <1yf)> (1%2)),«

1 1 y -
— log (1+Y(1)> <1+(2)) * Ky +2log (14 Yg) x K3 ,

M|vw M|vw

+

in the both small h and large L cases we get

x(u+ i0)

A=LE&=LlogX¥th)
9 X —10)

#0 for u € (—o0, —2) U (2,00).

Since A does not vanish, the TBA equations do NOT lead to an analytic Y-system.



Ground state
[e]e]e]e]e] )

Analyticity of Y-system

Y-system on an infinite genus surface? Y-equations valid on its particular sheet?
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Analyticity of Y-system

Y-system on an infinite genus surface? Y-equations valid on its particular sheet?
The Y-equation is obtained from the TBA one by applying the operator s~'

ih. ih:
(1- )0 - %)

1+

AW, (u+ é —i0) Yy (u— é +i0) =
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Analyticity of Y-system

Y-system on an infinite genus surface? Y-equations valid on its particular sheet?
The Y-equation is obtained from the TBA one by applying the operator s~'

ih. ih:
(1- )0 - %)

1+

AW, (u+ é —i0) Yy (u— é +i0) =

From the explicit ground state solution we find that the jump discontinuity of
log Yi(u =+ é) across the real u-line is given by +A(u), and, therefore,

ih. ih:
(1- )1 - Z5)

i i
Yiut L +io)yy(u— L +i0)= -
1( g f g
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Analyticity of Y-system

Y-system on an infinite genus surface? Y-equations valid on its particular sheet?
The Y-equation is obtained from the TBA one by applying the operator s~'

ih. ih:
(1- )0 - %)

1+

AW, (u+ é —i0) Yy (u— é +i0) =

From the explicit ground state solution we find that the jump discontinuity of
log Yi(u =+ é) across the real u-line is given by +A(u), and, therefore,

ih. ih:
(1- )1 - Z5)

i i
Yi(u+ L +i0)Yi(u— L +i0)= -
"y g

@ Y;-equation might hold on the u-plane with the cuts from +2 + é to +oo if the
shifts upward and downward have the infinitesimal parts of the same sign.
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Analyticity of Y-system

Y-system on an infinite genus surface? Y-equations valid on its particular sheet?
The Y-equation is obtained from the TBA one by applying the operator s~'

ol

(1- 251 - 42)

—y@ J%E

eA(U)y1(u+é—i0)Y1(u—é+i0): P
Y,

From the explicit ground state solution we find that the jump discontinuity of
log Yi(u =+ é) across the real u-line is given by +A(u), and, therefore,
ihq ihy
(1- im)“ - 5@))

i i
Yi(u+ — +i0)Yy(u— — +i0) =
WUt = 0)Yi(u = 00) T

@ Y;-equation might hold on the u-plane with the cuts from +2 + é to +oo if the

shifts upward and downward have the infinitesimal parts of the same sign.
@ The equations for Yq (Q > 2) would then induce infinitely many cuts on the

u-plane with the branch points located at +2 + éQ.
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Analyticity of Y-system

Y-system on an infinite genus surface? Y-equations valid on its particular sheet?
The Y-equation is obtained from the TBA one by applying the operator s~'

ihy ihy
(1= ) (1 - %5)

A(u) L o=
e~y (u+ i0)Yi(u +1i0) =
g g 1+
From the explicit ground state solution we find that the jump discontinuity of

log Yi(u =+ é) across the real u-line is given by +A(u), and, therefore,

ih. ih:
(1- )1 - Z5)

i i
Yiut L +io)yy(u— L +i0)=
1( g f g

@ Y;-equation might hold on the u-plane with the cuts from +2 + é to +oo if the
shifts upward and downward have the infinitesimal parts of the same sign.

@ The equations for Yq (Q > 2) would then induce infinitely many cuts on the
u-plane with the branch points located at +2 + éQ.

@ Y-system equations can have the canonical form only on a particular sheet of the
infinite genus Riemann surface, and would take different forms on other sheets.

@ Understand the corresponding transformation properties of the Y-system.
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Analyticity of Y-system

Y-system on an infinite genus surface? Y-equations valid on its particular sheet?
The Y-equation is obtained from the TBA one by applying the operator s~'

ihy ihy
(1= ) (1 - %5)

A(u) L o=
e~y (u+ i0)Yi(u +1i0) =
g g 1+
From the explicit ground state solution we find that the jump discontinuity of

log Yi(u =+ é) across the real u-line is given by +A(u), and, therefore,

ih. ih:
(1- )1 - Z5)

i i
Yiut L +io)yy(u— L +i0)= -
1( g f g

@ Y;-equation might hold on the u-plane with the cuts from +2 + é to +oo if the
shifts upward and downward have the infinitesimal parts of the same sign.

@ The equations for Yq (Q > 2) would then induce infinitely many cuts on the
u-plane with the branch points located at +2 + éQ.

@ Y-system equations can have the canonical form only on a particular sheet of the
infinite genus Riemann surface, and would take different forms on other sheets.

@ Understand the corresponding transformation properties of the Y-system.

@ This is in contrast to relativistic models.

@ Understand how such a Y-system can be used for analyzing the spectrum.
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Conclusion

@ Find TBA egs to account for excited state energies  p porey, Tateo 96

@ Reproduce known string and field theory results by using the
TBA egs

Classical and one-loop spinning string energies Frolov, Tseytiin 03
Finite-gap integral equations Kazakov, Marshakov, Minahan, Zarembo '04
Finite-size giant magnon energy Arutynov, Frolov, Zamaklar ‘06
Bethe-Yang equations Beisert, Staudacher '05
5-loop Konishi and twist two Bajnok, Hegedus, Janik, Lukowski 09

@ Compute analytically anomalous dimension of Konishi and twist
two operators up to 12 (any?) loops

Compute nUmerica”y Konishi for any A Gromov, Kazakov, Vieira '09(b)
Prove PSU(2,2|4) invariance of the string spectrum

Prove the gauge independence of the string spectrum

Understand the Y-system on the infinite genus Riemann surface
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