

Introduction

The hermitian one-matrix model with polynomial potential V(z) is, generically, very hard to solve exactly. Instead one often uses the large N limit: $N \to +\infty$ while $t = g_s N$ fixed ['t Hooft]. In this case the free energy $F = \log Z$ has a perturbative genus expansion,

$$F\simeq \sum^{+\infty}F_g(t)\,g_s^{2g-2}.$$

Resurgent Analysis of Large N Matrix Models

Inês Aniceto and Ricardo Schiappa

CAMGSD, Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049–001 Lisboa, Portugal (ianiceto, schiappa) @math.ist.utl.pt

> Final solutions are written as a transseries *ansatz* for the resurgent function,

$$F(\boldsymbol{\sigma}, g_s) = \sum_{\boldsymbol{n} \in \mathbb{N}^k} \boldsymbol{\sigma}^{\boldsymbol{n}} e^{-rac{\boldsymbol{n} \cdot \boldsymbol{A}}{g_s}} \Phi_{(\boldsymbol{n})}(g_s),$$

with $\sigma = (\sigma_1, \ldots, \sigma_k)$ the nonperturbative ambiguities/transseries parameters.

Matrix models/minimal/topological strings [IA-RS-Vonk]:

• "Generalized" instanton sectors are labeled by n = $(n_1,\ldots,n_k)\in\mathbb{N}^k.$

INSTITUTO SUPERIOR TÉCNICO

g=0Large–order $F_q \sim (2g)!$ renders the topological genus expansion as an asymptotic approximation [Shenker].

How can one recover the exact solution from the asymptotic expansion? One needs to consider all distinct eigenvalue partitions \Rightarrow amounts to all distinct instanton sectors! The sum over all possible canonical multi– cut backgrounds yields a grand–canonical, manifestly background independent partition function [Eynard-Mariño]. This construction may be made explicit via: Resurgence and Transseries.

But, as it turns out, this construction will further go beyond "standard" instantons and beyond multi-cut configurations [IA-RS-Vonk]! The transseries construction reconstructs the "original" nonperturbative partition function behind the large N expansion.

Resurgent Transseries and Asymptotics

How do we associate values to (factorially) divergent sums? Use the Borel transform of the asymptotic series,

- $\mathbf{n} = (0, \dots, 0)$ sector is the usual perturbative sector.
- $\mathbf{n} = (n, 0, \dots, 0)$ sectors are multi–instanton sectors.
- Generically $A_i \in \mathbb{C} \Rightarrow$ Many new sectors!
- Sectors with $n_i \neq n_j$, $\forall_{i,j} \Rightarrow$ Generically $\Phi_{(n)}$ has an expansion in g_s (open string like).
- Sectors with $\mathbf{n} \cdot \mathbf{A} = 0 \Rightarrow$ Generically $\Phi_{(\mathbf{n})}$ has an expansion in g_s^2 (closed string like).

Exact knowledge of the above Stokes automorphism yields exact large–order formulae. Can illustrate this by writing down the first few terms in the double-series,

$$F_g^{(0)} \simeq \frac{S_1}{2\pi i} \frac{\Gamma(g-\beta)}{A^{g-\beta}} \left(F_1^{(1)} + \frac{A}{g-\beta-1} F_2^{(1)} + \cdots \right) + \frac{S_1^2}{2\pi i} \frac{\Gamma(g-2\beta)}{(2A)^{g-2\beta}} \left(F_1^{(2)} + \cdots \right) + \cdots$$

Can further obtain all multi-instanton exact large-order formulae! For example,

One further finds a three–cuts anti–Stokes phase [Eynard-Mariño, Mariño-Pasquetti-Putrov, IA-RS-Vonk], and a "new" trivalenttree phase [David,Bertola,IA-RS-Vonk].

The transseries solution to the quartic string equation

$$\Re(x)\left\{1-\frac{\lambda}{6}\left(\mathcal{R}(x-g_s)+\mathcal{R}(x)+\mathcal{R}(x+g_s)\right)\right\}=x$$

requires both "instanton" actions +A and -A, leading to the transseries

$$\mathcal{R}(x) = \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} \sigma_1^n \sigma_2^m e^{-(n-m)A(x)/g_s} \sum_{g=\beta_{nm}}^{+\infty} g_s^g R_g^{(n|m)}(x).$$

This is a fully nonperturbative solution \Rightarrow Via Stokes transitions one can move anywhere in the above phase diagram. Further:

• 1–parameter resummation: yields the theta functions of the grand–canonical sum over all multi–cut configurations! [Eynard-Mariño, IA-RS-Vonk]

which has finite convergence radius

The Borel resummation of $F(g_s)$ along θ is

 $\mathcal{S}_{\theta}F(g_s) = \int_0^{\mathrm{e}^{\mathrm{i}\theta}\infty} \mathrm{d}s\,\mathcal{B}[F](s)\,\mathrm{e}^{-\frac{s}{g_s}}.$

 $S_{\theta}F(g_s)$ has, by construction, the same asymptotic expansion as $F(g_s)$ and may provide a solution to our original question. This holds *except* along singular directions θ : directions along which there are singularities in the Borel plane (in the original complex g_s -plane such directions are known as **Stokes lines**).

One needs to introduce *lateral* Borel resummations along θ , $S_{\theta^{\pm}}F(g_s)$:

This yields the *full* large–order information in terms of a (possibly) infinite sequence of Stokes invariants $S_{\ell} \in \mathbb{C}$, $\ell \in \{1, -1, -2, -3, -4, \cdots\}$. It further allows for numerical checks of extremely high precision!

Resurgence of the Quartic 3 **Matrix Model**

The quartic potential $V(z) = \frac{1}{2}z^2 - \frac{\lambda}{24}z^4$ generically admits a three-cuts solution. Transseries may be constructed around the one-cut and the two-cuts backgrounds.

In these backgrounds, instantons arise from B-cycles [David,Seiberg-Shih,Mariño-RS-Weiss,RS-Vaz].

• 2–parameters resummation: yields the asymptotics of the trivalent—tree phase? [work in progress]

One may further study the transseries solution in the double-scaling limit yielding the Painlevé I equation $u^2(z) - \frac{1}{6}u''(z) = z$. The general two-parameteres transseries solution is $(x = z^{-5/4})$

$$u = \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} \sigma_1^n \sigma_2^m e^{-(n-m)\frac{A}{x}} \left(\sum_{k=0}^{\min(n,m)} \log^k(x) \cdot \Phi_{(n|m)}^{[k]}(x) \right).$$

- Checked the validity of all nonperturbative sectors via detailed large–order analysis.
- The physical interpretation of the "generalized" instanton series is still open!

Resurgence allows for extremely accurate tests: at genus g = 30, including six instantons corrections, our results are correct up to 60 decimal places!

But the choice of contour introduces a nonperturbative ambiguity

 $\mathcal{S}_{\theta^+}F(g_s) - \mathcal{S}_{\theta^-}F(g_s) \propto \mathrm{e}^{-A/g_s}.$

Resurgent functions allow for the resummation of asymptotic series along *any* direction in the complex splane \Rightarrow This first yields a family of sectorial analytic functions $\{S_{\theta}F\} \Rightarrow$ But one further needs to "connect" these sectorial solutions together [Écalle].

The connection of distinct sectorial solutions on both sides of Stokes lines entails understanding their "jump", accomplished via the Stokes' automorphism, $\underline{\mathfrak{S}}_{\theta}$,

 $\mathcal{S}_{\theta^+} = \mathcal{S}_{\theta^-} \circ \mathfrak{S}_{\theta} \equiv \mathcal{S}_{\theta^-} \circ (\mathbf{1} - \operatorname{Disc}_{\theta^-}).$

The action of $\underline{\mathfrak{S}}_{\theta}$ on resurgent functions translates into the required connection of distinct sectorial solutions, across any singular direction θ .

The instanton actions in these backgrounds yield the:

• Stokes lines ("jumps" in Borel plane): $\mathbb{Im}\left(\frac{A(t)}{g_s}\right) = 0.$

• Anti–Stokes lines (phase boundaries): $\mathbb{R}e\left(\frac{A(t)}{g_s}\right) = 0.$

In this way one may construct the quartic phase diagram for complex 't Hooft coupling:

In here, the Stokes constant $S_1^{(0)}$ is computed from first principles (one-loop result around the one-instanton sector) in both the matrix model and the double-scaling limit, $S_1^{(0)} = -i \frac{3^{1/4}}{2\sqrt{\pi}}$ [David]. But all other Stokes constants $S_{\ell}^{(k)}, \widetilde{S}_{\ell}^{(k)}$ so far have been only computed numerically \Rightarrow Requires extra physical input! But there are many (as yet unexplained) relations between these constants...

Acknowledgements

We are very grateful to Marcel Vonk for a most stimulating collaboration in the results reported herein.