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e S-matrix is physically pseudo-unitary (ST = BS~'B~!, B Herm.)

e Kinematics of the model? How are excitations described?
» Short representations labeled by central charges U and V (= ¢©)
satisfying shortening condition
> Parametrized by deformed x* variables
> Natural definition of E and p in terms of U and V
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Bound states and the u-plane

The g-deformed

mirror TBA e Nice parametrization of the physical mirror region?

Stijn J. van

Tongeren x:l: %x(uii/g)

e ¢ = 1 mirror region +— u-plane
The g-deformed .
model x(u) — %(u — I /4 _ u2)

o ¢ = ¢™/* mirror region « u-plane

S sinh T8 — ;. /o2sin® T — sinh? &) — o24in?2 =
eZk(smh T z\/g sin” £ — sinh 2k) g sin” %

x(u) =
gsin T4/1 —i—gZSinZ%




Bound states and the u-plane

Imx*>0,Imx™ >0,
vxll‘]lj‘k«i\g]’dw - [ Imxt <0, Imx” <0,
 Imx*>0,Imx <0,
MW imx <0, Imx" >0,
x> T,
1L IxTI<d,
<1, xTI>1,
<1, IxTI<l.
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Bound states on the u-plane
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Stijn J. van
Tongeren

Bigger bound states? x; = x3, x; =x7, ..., Xo_1 = x‘Q|r

On the u-plane we get standard Bethe strings

The g-deformed

model u]:u—i—é(Q-i-l—Z]), J:l,,Q

Undeformed mirror region = the u-plane: Q arbitrary

Deformed mirror region = strip on the u-plane: Q < k

The deformed theory has a finite spectrum of physical excitations

What about the auxiliary particles?




Auxiliary spectrum?

The g-deformed
model




Auxiliary spectrum?

e We would like to understand the spectrum associated to R

The g-deformed
model



Auxiliary spectrum?

e We would like to understand the spectrum associated to R

The g-deformed
model

e R for psu(2|2) — Hubbard



Auxiliary spectrum?

e We would like to understand the spectrum associated to R

The g-deformed
model

e R for psu(2|2) — Hubbard
e R for psu,(2|2) — g-Hubbard?



Auxiliary spectrum?

The g-deformed
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We would like to understand the spectrum associated to R

The g-deformed
model

R for psu(2|2) — Hubbard

R for psu,(2|2) — g-Hubbard?

“Similar” to the g-deformation of the XXX spin chain
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TBA for the g-deformed XXX spin chain

The g-deformed
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e g-def XXX spin chain is XXZ (A = cos 7 /k)

- e Different string hypothesis! Especially for k € Z
\’l\in chain TBA

o Still Bethe strings, but not all M allowed
» M=1,....,k—1,withu € R (“positive parity”)
» M =1withIm(u) =ik (“negative parity”)
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TBA for the XXZ spin chain II

e Negative parity string scatters inversely to a k — 1 string

e Results in special relation: ¥, = (Yk_l)_l

g-deformed
spin chain TBA

IOg Yy = log (1 =+ YM+1) (1 + YMfl) * S
log Yior = log (1 + Yk_3) (1 + Yk_1)2 * 8
logYi—1 = log (1 + Yx—2) x s



TBA for other g-deformed spin chains?

e su,(2): Hermitian, nice, elegant, ‘simple’

g-deformed
spin chain TBA



TBA for other g-deformed spin chains?

e su,(2): Hermitian, nice, elegant, ‘simple’

e su,(3): interesting, but complex and rather strange

g-deformed
spin chain TBA



TBA for other g-deformed spin chains?

e su,(2): Hermitian, nice, elegant, ‘simple’

e su,(3): interesting, but complex and rather strange

9

Saleur and Wehefritz-Kaufmann *00

g-deformed
spin chain TBA




TBA for other g-deformed spin chains?

e su,(2): Hermitian, nice, elegant, ‘simple’

e su,(3): interesting, but complex and rather strange

9

Saleur and Wehefritz-Kaufmann *00

g-deformed
spin chain TBA

o su,(N): ???



TBA for other g-deformed spin chains?

The g-deformed
mirror TBA e su,(2): Hermitian, nice, elegant, ‘simple’
Stijn J. van

Tongeren

e su,(3): interesting, but complex and rather strange

9

Saleur and Wehefritz-Kaufmann *00

g-deformed
spin chain TBA

o su,(N): ???

o 5u,(2[2): can be nice, elegant, ‘simple’, real
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Quantum deformed Hubbard TBA

The g-deformed
mirror TBA

Stijn J. van Our model has psu, (2|2) mirror auxiliary Bethe equations

Tongeren

Come from a pseudo-unitary R-matrix (RT = AR7'A™")

Two classes of pseudo-unitary QM (H ~ Y i0logR)
o > Self-conjugate spectrum
» Real spectrum

(quasi-unitary; 3 “A” = 00", H' = 00TH(00")™")

Multi-body R is really only pseudo-unitary on the string line

But multi-body R appears to be quasi-unitary on the mirror line!

Mirror psu,(22) string complexes and TBA are ‘real’
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TBA for mirror su,(2|2)

The g-deformed

mirror TBA o Mirror psu(2]2): Hubbard model (y(v) & w roots)
Stijn J. van ¢
Tongeren e String hypothesis:
> y-particles (+)
> M|w strings, any M (s11(2)) ?
> M|vw strings, any M (su(2))

g-deformed
spin chain TBA

e g-deformed mirror string hypothesis: constrained as XXZ
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The g-deformed
mirror TBA
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Tongeren Two g-Hubbard subsystems coupled via k Q-particles
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\.i
mirror TBA




g-deformed Mirror TBA equations

The g-deformed

mirror TBA




g-deformed Mirror TBA equations

1 —
log ¥y, = log (14 Yyg o q13) (14 Yoy q)y) * 5 — log (14 Yaq1) * s 4 Sp,1 log (1 v )Qs
- Yy
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1—
log ¥y, = log (14 Yyg o q13) (14 Yoy q)y) * 5 — log (14 Yaq1) * s 4 Sp,1 log (1 v )Qs
- Ty

2
log (1 + Y _31) (1 + Y ypy)" % s — log (1 + Y1) %5,
log Yy yjyy = log (1 + Yg_p|y) x5 —log (14 ¥j) x5,

log Yk—2|vw

1—Y_
log Yy, = log (1 + Yy q)y) (1 + Yyr_ypy) * 5+ Sp,1 log (ﬁ) xS,
-y

2
log Yy, = log (1 4 Y3, ) (1 + Ye—ypp)” x5,

log ¥y}, = log (14 Yp_gp,,) * s,
—1
1+4Y, + Yy
logY4 = —log (1 + Yp) *Kiy + log 7M_|‘;W * Ky + log ( lvw) Ki—y
L+ 7,0, (14 Yizi)
2
(-2
log ¥} = logi1 * s — Axks,
14y,
Yot+1Yo—1 -1 )2
log¥p = log ——————————— *«s+log (1 +7V, * 8,
U+ Yo D+ Yo41) (175 )

— 4
log Yy =2log Y *s —log(1 + Yp_) s + log (1 + Y, ll|vw) * .
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Crossing and the finite Y-system

The g-deformed
HIHOELEA The presented TBA equations are in simplified form; closest to

Y-system

Stijn J. van
Tongeren

e They are derived from so-called canonical equations by applying
(K + Dy = 0w — (Syrvs1 + Surv—1)s

relying on identities satisfied by kernels for N and N 4 1 bound
The g-deformed states
AdSs x S°

R e We have a boundary, so what about boundary +1?

e For XXZ type equations this still works; would-be length k bound
states scatter trivially (add zero)

+ -
Yk—1|ka—1|w = 1+ Yo

e For our momentum carrying particles this is not the case
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The g-deformed
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Stijn J. van Stlll, we derived

Tongeren

2
log Y = 2log Yi—1 *s —log(1+ Yi—1) * s+ log H <1+Y(+> *S

a=1.2 k—1]vw

e Idea: if we had a length £ + 1 bound state we would be ok at k

e Nice relation between k + 1 and k — 1?
The g-deformed
AdSs x S°

mirror TBA Sk+1 (u) = Sk_l (u) §1 (u + lk/g)S] (u — lk/g)

~~

e For auxiliary kernels the remainder are some known kernels

e For Sy, precisely with ¢ = ¢/™/* we get crossing!

o Total remainder is then just the equation for Y;_},,,; done
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Crossing and the finite Y-system II1

Reversing the logic

o Assuming the bound state Sy satisfies discrete Laplace

SA—}_N SA;N -1
Sun+1Sun—1

e and the existence of a Y-system

we can ‘derive’ the crossing equation!
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TBA in finite size AdS/CFT

g-deformed mirror model: spectrum bounded

g-deformed auxiliary TBA

» XXX to XXZ: interesting TBA structure
» g-Hubbard: analogous new nice TBA structure
» Possible due to ‘reality’ of the mirror g-Hubbard model

Conclusion

g-deformed mirror TBA and Y-system

> Closure relies essentially on crossing
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