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4d QG regularized by CDT

Main goal (at least in 80ties) for QG

Obtain the background geometry (〈gµν〉) we observe

Study the fluctuations around the background geometry

What lattice gravity (CDT) offers:

A non-perturbative QFT definition of QG

A background independent formulation

An emergent background geometry (〈gµν〉)
The possibility to study the quantum fluctuations around
this emergent background geometry.
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Problems to confront for a lattice theory

(1) How to face the non-renormalizability of quantum gravity
(this is a problem for any field theory of quantum gravity,
not only lattice theories)

(2) Provide evidence of a continuum limit (where the
continuum field theory has the desired properties)

(3) If rotation is performed to Euclidean signature, how does
one deal with the unboundedness of the Euclidean
Einstein-Hilbert action?

(4) If there exists no continuum field theory of gravity, can a
lattice theory be of any use?
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(1) Facing the non-renormalizability of gravity

Effective QFT of gravity

We believe gravity exists as an effective QFT for E2 ≪ 1/G.

True for other non-renormalizable theories

Weak interactions L = ψ̄∂ψ + GF ψ̄(·)ψψ̄(·)ψ

Nonlinear sigma model L = (∂π)2 +
1

F 2
π

(π∂π)2

1 − π2/F 2
π

Good for E2 ≪ 1/GF and E2 ≪ F 2
π .
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Effective QFT of gravity

Lowest order quantum correction to the gravitational potential
of a point particle:

G
r

→ G(r)
r

, G(r) = G
(

1 − ω
G
r2 + · · ·

)

, ω =
167
30π

.

The gravitational coupling constant becomes scale dependent
and transferring from distance to energy we have

G(E) = G(1 − ωGE2 + · · · ) ≈ G
1 + ωGE2 .
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Effective QFT of the electric charge

Same calculation in QED

e2

r
→ e2(r)

r
, e2(r) = e2

(

1 − e2

6π2 ln(m r) + · · ·
)

, m r ≪ 1.

The electric charge is also scale dependent and has a Landau
pole

e2(E) = e2
(

1 +
e2

6π2 ln(E/m) + · · ·
)

≈ e2

1 − e2

6π2 ln(E/m)
.
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GE2 ≪ 1 → G(E)E2 ≪ 1

BUT
G(E)E2 < 1 (≪ 1 ?).

Suddenly seems as if quantum gravity has become an (almost)
reliable quantum theory at all energy scales.

The behavior can be described the β function for QG. For the
dimensionless coupling constant G̃(E) = G(E)E2

E
dG̃
dE

= β(G̃), β(G̃) = 2G̃ − 2ωG̃2.

Two fixed points (β(G̃) = 0): G̃ = 0 and G̃ = 1/ω.
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g g

β(g)β(g)

Generic situation for asymptotic free theories in d dimensions,
extended to d + ε dimensions.

β(g) → εg + β(g)
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The four-Fermi action, the nonlinear sigma model and QG are
all renormalizable theories in 2d, with a negative β-function and
have a 2 + ε expansion. For QG first explored by Kawai et al.

Alternatively one can use the exact renormalization group
approach. (Reuter et al., Litim, ......). Philosophy: asymptotic
safety (Weinberg).
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(2) Continuum limit ?
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Defining the continuum limit in lattice field theory

Let the lattice coordinate be xn = a n, a being the lattice
spacing and O(xn) an observable.

− log〈O(xn)O(xm)〉 ∼ |n − m|/ξ(g0) + o(|n − m|).

ξ(g0) ∝
1

|g0 − gc
0 |ν

, a(g0) ∝ |g0 − gc
0 |ν .

mpha(g0) = 1/ξ(g0), e−|n−m|/ξ(g0) = e−mph|xn−xm|

〈O(xn)O(ym)〉 falls off exponentially like e−mph|xn−ym| for g0 → gc
0

when |xn − ym|, but not |n−m|, is kept fixed in the limit g0 → gc
0 .
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How to define the equivalent of 〈O(xn)O(ym)〉 in a
diffeomorphism invariant theory

〈φφ(R)〉 ≡
∫

D[gµν ] e−S[gµν ]×
∫∫

√

g(x)
√

g(y) 〈φ(x)φ(y)〉[gµν ]
matter δ(R−dgµν

(x , y)).

〈φ(x)φ(y)〉[gµν ]
matter denotes the correlator of the matter fields

calculated for a fixed geometry, defined by the metric gµν(x).

It works in 2d Euclidean QG (Liouville gravity)
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(3) Unboundedness of the Euclidean action

Already the discussion about continuum limit of the lattice
theories hinted a rotation to Euclidean signature. The
Einstein-Hilbert action is unbounded from below, caused by the
conformal factor:

g̃µν = Ω2gµν

S[g,Λ,G] = − 1
16πG

∫

d4ξ
√

g
(

R − 2Λ
)

.

S[g̃,Λ,G] = − 1
16πG

∫

d4ξ
√

g
(

Ω2R + 6∂µΩ∂µΩ − 2ΛΩ4
)

.

How is this dealt with ?.
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Using the lattice regularization called dynamical triangulations
(DT) the Euclidean action is bounded for a fixed lattice spacing
a and a fixed four-volume V4 = N4a4. However, for a → 0 the
unboundedness re-emerges.

S[T ] = −κ2N2(T ) + κ4N4(T ), c1 <
N2

N4
(= x) < c2.

The unbounded configurations corresponds to x ≈ c2. But are
they important in the non-perturbative path integral ?

Z =
∑

T

e−S[T ] =
∑

N4

e−k4N4
∑

N2

N (N2,N4)e
κ2N2

N (N2,N4) eκ2N2 = PN4
(x),

∑

x

PN4
(x) = f (N4) eκc

4(κ2)N4
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2x=N /N4

small κ

P (x)N4

2 large κ2

PN4
(x) ≈ A e

N4

(

κc
4−α(x−x0)

2

)

+ Ã e
N4

(

κ̃c
4−α̃(x−x̃0)

2

)

.

κ2 → κ2 + ∆κ2, κc
4 → kc

4 + ∆κ2x0, κ̃c
4 → k̃c

4 + ∆κ2x̃0

Phase transition when κc
4 = κ̃c

4.
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The A-C transition
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Do we know examples of such entropy driven phase
transitions? Yes, the Kosterlitz-Thouless transition in the XY
model. This Abelian 2d spin model has vortices with energy

E = κ ln(R/a)

Saturating the partition function by single vortex configurations:

Z ≡ e−F/kBT =
∑

spin configurations

e−E [spin]/kBT ≈
(

R
a

)2

e−[κ ln(R/a)]/kBT .

S = kB ln(number of configurations) has the same functional form
as the vortex energy. Thus

F = E − ST = (κ− 2kBT ) ln(R/a)
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(4) No continuum limit ?

Examples

Lattice compact U(1) gauge theory in 3 dimensions has
confinement for all values of the coupling constant, due to
lattice monopoles. It describes perfectly the
non-perturbative physics of the Georgi-Glashow model, i.e.
the physics below the scale of Higgs and the W-particle.
The formula for the string tension is the same expressed in
terms of lattice monopoles masses and continuum
monopole masses.
Lattice compact U(1) gauge theory in 4 dimensions at the
phase transition point describes the low energy physics of
certain broken N = 1,2 supersymmetric field theories. In
fact, one can use the supersymmetric symmetry breaking
technology of Seiberg et al. scale matching to “post-dict”
(unfortunately) the lattice critical exponents.
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Lattice gravity: causal dynamical triangulations (CDT)

Basic tool: The path integral

Text-book example: non-relativistic particle in one dimension.

ti tf

xi

xf

t

x a
x(t) = 〈x(t)〉 + y(t)

〈|y |〉 ∝
√

~/mω

In QG we want 〈x(t)〉

〈|y |〉 ∝
√

~G

Transition amplitude as a weighted sum over all possible
trajectories. On the plot: time is discretized in steps a,
trajectories are piecewise linear.
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In a continuum limit a → 0

G(x i , xf , t) :=

∫

trajectories: x i→xf

eiS[x(t)]

where S[x(t)] is a classical action.

The QG amplitude between the two geometric states

G(g i ,gf , t) :=

∫

geometries: g i→gf

eiS[gµν(t ′)]

To define this path integral we need a geometric cut-off a and a
definition of the class of geometries entering.
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showcasing piecewise linear geometries via building blocks:

2d 3d 4d

−→
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t

t+1

(4,1)                                        (3,2)

t+1

t

t−1

CDT slicing in proper time. Topology of space preserved.

a2
t = −αa2

s , iSL[α] = −SE [−α]

SE [−α] = −(κ0+6∆)N0+κ4

(

N(2,3)
4 +N(1,4)

4

)

+∆
(

N(2,3)
4 +2N(1,4)

4

)
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G(g i ,gf , t) :=

∫

geometries: g i→gf

eiS[gµν(t ′)]

= lim
a→0

∑

T :T (3)
i →T (3)

f

1
CT

eiST

GE(g i ,gf , t , κ0, κ4,∆) = lim
a→0

∑

T :T (3)
i →T (3)

f

1
CT

e−SE [T ]

〈xf |eiĤt |xi〉 → 〈xf |e−Ĥτ |xi〉
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Scaling in the IR limit?

Z (κ0, κ4) =
∑

N4

e−κ4N4 ZN4
(κ0),

where ZN4
(κ0) is the partition function for a fixed number N4 of

four-simplices (we ignore ∆ for simplicity), namely,

ZN4
(κ0) = ekc

4 N4 f (N4, κ0)

We want to consider the limit N4 → ∞, and fine-tune κ4 → κc
4

for fixed κ0. We expect the physical cosmological constant Λ to
be defined by the approach to the critical point according to

κ4 = κc
4 +

Λ

16πG
a4, (κ4 − κc

4) N4 =
Λ

16πG
V4, V4 = N4a4,
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How can one imagine obtaining an interesting continuum
behavior as a function of κ0? Assume f (N4, κ0) has the form
(numerical evidence)

f (N4, κ0) = ek1(κ0)
√

N4 ,
〈

e− 1
G

R

V4

√
gR
〉

= ec
√

V4
G .

Z (κ4, κ0) =
∑

N4

e−(κ4−κc
4)N4+k1(κ0)

√
N4 .

Search for κc
0 with k1(κ

c
0) = 0, with the approach to this point

governed by

k1(κ0) ∝
a2

G
, i.e. k1(κ0)

√

N4 ∝
√

V4

G
.

Z (κ4, κ0) ≈ exp
( k2

1 (κ0)

4(κ4 − κc
4)

)

= exp
( c

GΛ

)

,

as one would naı̈vely expect from Einstein’s equations, with the
partition function being dominated by a typical instanton
contribution, for a suitable constant c.
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UV scaling limit?

If we are close to the UV fixed point, we know that G will not be
constant when we change scale, but Ĝ(a) will. Writing
G(a) = a2Ĝ(a) ≈ a2Ĝ∗,

κ4 − κc
4 =

Λ

G(a)
a4 ≈ Λ

Ĝ∗
a2,

k1(κ
c
0) =

a2

G(a)
≈ 1

Ĝ∗
.

The first of these relations now looks two-dimensional because
of the anomalous scaling of G(a)! Nevertheless, the
expectation value of the four-volume is still finite:

〈V4〉 = 〈N4〉 a4 ∝ κ2
1(κ

c
0)

(κ4 − κc
4)

2 a4
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Relation to asymptotic freedom

Assume now that we have a fixed point for gravity. The
gravitational coupling constant is dimensionful, and we can
write for the bare coupling constant

G(a) = a2Ĝ(a), a
dĜ
da

= −β(Ĝ), β(Ĝ) = 2Ĝ − cĜ2 + · · · .

The putative non-Gaussian fixed point corresponds to Ĝ → Ĝ∗,
i.e. G(a) → Ĝ∗a2. In our case it is tempting to identify our
dimensionless constant k1 with 1/Ĝ, up to the constant of
proportionality. Close to the UV fixed point we have

Ĝ(a) = Ĝ∗ − Kac̃ , k1 = k∗
1 + Kac̃ , c̃ = −β′(Ĝ∗).

Usually one relates the lattice spacing near the fixed point to
the bare coupling constants with the help of some correlation
length ξ.
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IR

UV

∆

κ 0

line of constant V4

Consider V4 = N4a4 as fixed. It requires the fine-tuning of
coupling constants.

k1(N4) = kc
1 − K̃ N−c̃/4

4 .

How to determine k1(N4)?
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Phase diagram of CDT
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Lifshitz-like diagram....
Phase C: constant magnetization (constant 4d geometry)
Phase B: zero magnetization (no 4d geometry)
Phase A: oscillating magnetization (conformal mode ?)

J. Ambjørn QG from CDT



Volume distribution in (imaginary) time

Phase A . The universe “oscillating”
in time direction. The oscillation
maybe reflecting the dominance of
the conformal mode.

Phase B . Compactification into a 3d
Euclidean DT. Only minimal
extension in the time direction.

Phase C . Extended de Sitter phase.
dH = 4.
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C

B

φ| | > 0

|φ| = 0

dφ_ > 0

, |[g]| = 0
A

dg > 0_
dt

dt| [g] | > 0

SLifshitz[φ] =

∫

dDx
(

µ(∂iφ)2 + (∆φ)2 + · · · + νφ2 + φ4 + · · ·
)
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Snapshot of a typical configuration

A typical configuration. Distribution of a spatial volume N3(t) as
a function of (imaginary) time t .

Quantum fluctuation around a semiclassical background?

Configuration consists of a “stalk” of the cut-off size and a
“blob”. Center of the blob can shift. We fix the “center of mass”
to be at zero time.
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Minisuperspace model

The semiclassical distribution can be obtained from the
minisuperspace effective action of Hartle and Hawking

Seff =
1

24πG

∫

dt
√

gtt

(

gtt V̇3
2
(t)

V3(t)
+ k2V 1/3

3 (t) − λV3(t)

)

,

The discretization of this action is (and we have reconstructed it
from the date (the 3-volume–3-volume correlations))

Sdiscr = k1

∑

i

(

(N3(i + 1) − N3(i))2

N3(i)
+ k̃2N1/3

3 (i) − λ̃N3(i)
)

,

G =
a2

k1

√
C4 s2

0

3
√

6
.

J. Ambjørn QG from CDT



Quantum fluctuations

The classical solution to the minisuperspace action is

√
gtt V cl

3 (t) = V4
3

4B
cos3

(

t
B

)

where τ =
√

gtt t , V4 = 8π2R4/3 and
√

gtt = R/B.

Writing V3(t) = V cl
3 (t) + x(t) we can expand the action around

this solution

S(V3) = S(V cl
3 ) +

1
18πG

B
V4

∫

dt x(t)Ĥx(t).

where the Hermitian operator Ĥ is:

Ĥ = − d
dt

1
cos3(t/B)

d
dt

− 4
B2 cos5(t/B)

,

J. Ambjørn QG from CDT



In the quadratic approximation the volume fluctuations are:

C(t , t ′) :=
〈

x(t)x(t ′)
〉

∼ Ĥ−1(t , t ′).

Ĉ and Ĥ have the same eigenfunctions.

C(t , t ′) can be measured as

C(i , i ′) =
〈(

N3(i) − 〈N3(i)〉
)(

N3(i
′) − 〈N3(i

′)〉
)〉

,

and its eigenfunctions can be found and compared to the ones
calculated from Ĥ.
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No parameters are put in ! (expect ti/B = i/s0N1/4
4 )

We conclude that the quadratic approximation to the
minisuperspace action describes the measured quantum
fluctuations well.
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Size of our Quantum universe

For a specific value of the bare coupling constants
(κ0 = 2.2,∆ = 0.6) we have high-statistics measurements for
N4 ranging from 45.500 to 362.000 four-simplices.

Largest universe corresponds to approx. 104 hyper-cubes.

We have G = const. a2/k1 and we have measured k1.

G ≈ 0.23a2, ℓP ≈ 0.48a, ℓP ≡
√

G.

From V4 = 8π2R4/3 = C4N4a4, we obtain that

R = 3.1a
The linear size πR of the quantum de Sitter universes studied
here lies in the range of 12-21 ℓP for the N4 used.
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Trans-Planckian ?

ℓP =
√

G ∝ a
√

k1(κ0,∆)
i.e. k1(κ0,∆) → 0.

BUT IS IT POSSIBLE ?
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Summary and perspectives

We have obtained the (Euclidean) minisuperspace action
from first principles. (The self-organized de Sitter space)

We have an effective field theory of (something we call)
QG down to a few Planck scales.

Investigate a possible UV fixed point (points, the B-C line).
Possibly Hořava-Lifshitz gravity.

couple matter to the system and investigate cosmological
implications.

Measure the wave function of the universe

〈x | e−tĤ |y〉 → Ψ0(y)Ψ0(x) e−tE0
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