Symmetry constraints on perturbative $\mathcal{N} = 8$ supergravity

Henriette Elvang

University of Michigan

ETH Zurich June 22, 2011

Based on

arXiv:1009.1643 w/ Niklas Beisert, Dan Freedman, Michael Kiermaier, Alejandro Morales, Stephan Stieberger

arXiv:1007.4813 w/ Michael Kiermaier

arXiv:1003.5018 w/ Dan Freedman, Michael Kiermaier

Henriette Elvang Symmetry constraints on perturbative $\mathcal{N} = 8$ supergravity

Is $\mathcal{N} = 8$ supergravity UV finite in 4d?

Is $\mathcal{N} = 8$ supergravity UV finite in 4d?

Results:

• SUSY prohibits L = 1, 2 divergences.

[Grisaru (1977); van Nieuwenhuizen and Wu (1977)]

• Explicit calculations (unitary methods) demonstrate that the 4-graviton amplitude is finite at loop orders L = 3, 4. [Bern,Carrasco,Dixon,Roiban,Johansson (2007-2009)]

 \rightarrow why?

- Cancelations beyond what is expected from SUSY
 → 'magic' or symmetries?
- Superfield arguments + string theory arguments.

[Bossard, Drummond, Green, Howe, Russo, Stelle, Vanhove, ...]

Perturbative structure of $\mathcal{N} = 8$ supergravity in 4d

Questions:

- Why are the 3- and 4-loop 4-graviton amplitudes finite?
- What to expect from higher-loop orders?
- What about higher-point loop amplitudes?
- What can the symmetries of the N = 8 theory teach us about the perturbative structure of the theory?

On-shell states and symmetries of $\mathcal{N} = 8$ supergravity

 $2^8 = 256$ massless states

statehelicity1 graviton+2 h^+

70 scalars 0 φ^{abcd} (*a*, *b*, ... = 1, ..., 8)

1 graviton -2 h^-

35 pairs of complex scalars are self-conjugate: $\overline{\varphi}_{abcd} = \frac{1}{4!} \epsilon_{abcdefgh} \varphi^{efgh}$.

Global SU(8) R-symmetry:

 $M_n^{SUGRA}(v^{12}, \varphi^{1245}, \dots) = 0$ unless SU(8)-singlet.

Global continuous $E_{7(7)}$ symmetry spontaneously broken to SU(8). The 133 – 63 = 70 scalars are the Goldstone bosons.

- **1** PART 1: $\mathcal{N} = 8$ SUSY and SU(8).
- **2** PART 2: $E_{7(7)}$ constraints.
- Ourrent status.

Perturbative structure of $\mathcal{N}=8$ supergravity in 4d

L-loop divergence \leftrightarrow counterterm local operator of mass dimension (2L + 2)

for example: R^4 at 3-loop order

Perturbative structure of $\mathcal{N} = 8$ supergravity in 4d

L-loop divergence \leftrightarrow counterterm local operator of mass dimension (2L + 2)

for example: R^4 at 3-loop order

Our goal: characterize candidate counterterm operators to bound lowest possible order of a UV divergence

Which operator is the first viable candidate counterterm?

L	<i>n</i> = 4	5	6					
3	R^4				Non-gravitational counterterm			
4	$D^2 R^4$	R^5		here?				
5	$D^4 R^4$	$D^2 R^5$	R^6					
6	$D^6 R^4$	$D^4 R^5$	$D^2 R^6$	R^7				
7	$D^8 R^4$	$D^6 R^5$	$D^4 R^6$	$D^2 R^7$	R^8			
8	$D^{10}R^4$	$D^8 R^5$	$D^6 R^6$	$D^4 R^7$	$D^2 R^8$	R^9		

Which operator is the first viable candidate counterterm?

L	<i>n</i> = 4	5	6					
3	R^4			counter	Non-gravitational counterterm			
4	$D^2 R^4$	R^5		here?				
5	$D^4 R^4$	$D^2 R^5$	R^6					
6	$D^6 R^4$	$D^4 R^5$	$D^2 R^6$	R^7				
7	$D^8 R^4$	$D^6 R^5$	$D^4 R^6$	$D^2 R^7$	R^8			
8	$D^{10}R^4$	$D^8 R^5$	$D^6 R^6$	$D^4 R^7$	$D^2 R^8$	R^9		

- Must require $\mathcal{N} = 8$ SUSY and SU(8) R-symmetry.
- Role of *E*₇₍₇₎?

Operators complicated

Which operator is the first viable candidate counterterm?

L	<i>n</i> = 4	5	6						
3	R^4			counter	Non-gravitational counterterm				
4	$D^2 R^4$	R^5		here?					
5	$D^4 R^4$	$D^2 R^5$	R^6						
6	$D^6 R^4$	$D^4 R^5$	$D^2 R^6$	R^7					
7	$D^8 R^4$	$D^6 R^5$	$D^4 R^6$	$D^2 R^7$	R^8				
8	$D^{10}R^4$	$D^8 R^5$	$D^6 R^6$	$D^4 R^7$	$D^2 R^8$	R^9			

- Must require $\mathcal{N} = 8$ SUSY and SU(8) R-symmetry.
- Role of *E*₇₍₇₎?

Operators complicated, but their leading on-shell matrix elements are simple!

I will use 4d *spinor helicity* formalism to study on-shell matrix elements:

• If 4d momentum p_{μ} null, $p^2=0$, then

$$p_{lpha\dot{eta}} = p_{\mu}(ar{\sigma}^{\mu})^{\dot{lpha}eta} = |p
angle^{\dot{lpha}} [p|^{eta}$$

with bra and kets being 2-component commuting spinors which are solutions to the massless Weyl eqn, $p_{\alpha\dot{\beta}}|p\rangle^{\dot{\beta}} = 0$.

- Spinor products $\langle 12 \rangle \equiv \langle p_1 |_{\dot{\alpha}} | p_2 \rangle^{\dot{\alpha}}$ and $[12] = [p_1|^{\alpha} | p_2]_{\alpha}$ are just $\sqrt{|s_{12}|} = \sqrt{|2p_1 \cdot p_2|}$ up to a complex phase.
- Note [ij] = -[ji] and $\langle ij \rangle = -\langle ji \rangle$.
- Dimensional analysis: $\langle ij \rangle$ and [ij] have mass dimension 1.

Analysis of potential counterterms

Instead of studying the operators, we analyze their leading matrix elements:

- *operator* ↔ *matrix elements*
 - ${\sf local} \quad \leftrightarrow \quad {\sf polynomial \ in \ momenta \ and \ polarizations}$

 \leftrightarrow polynomial in $\langle ij \rangle$ and [ij].

- *L*-loop \leftrightarrow $\langle ij \rangle$, [ij] polynomial has degree 2L + 2.
- $\mathcal{N} = 8$ SUSY \leftrightarrow SUSY Ward identities.
- SU(8)-invariant \leftrightarrow SU(8) Ward identities.
- $E_{7(7)}$ -compatible \leftrightarrow low-energy theorems

no such matrix elements \leftrightarrow no such operator \leftrightarrow no such counterterm.

If matrix elements do exist: determine multiplicities of such operators.

• "Little group scaling":

For each external state $i = 1, \ldots, n$,

 $|i
angle
ightarrow t_i|i
angle$ and $|i]
ightarrow t_i^{-1}|i]$, \implies $A_n
ightarrow t_i^{-2h_i}A_n$

where h_i is the helicity.

• $\mathcal{N} = 4,8$ maximal SUSY Ward identities:

$$\mathsf{MHV}: \langle ++--++\ldots \rangle = \frac{\langle \mathbf{34} \rangle^{\mathcal{N}}}{\langle \mathbf{12} \rangle^{\mathcal{N}}} \langle --++++\ldots \rangle.$$

Example: n-gluon MHV amplitude (Parke-Taylor formula)

$$A_n(1^-2^-3^+4^+\dots n^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \dots \langle n1 \rangle}$$

has mass dim. 4 - n.

MHV = maximally helicity violating

4-loops: R^5 (mass dim. 2L + 2 = 10)

- 10 derivatives in $R^5 \rightarrow$ leading 5-point interaction has 10 powers of momentum
 - 5-pt matrix element has mass dim. 10 \rightarrow and is polynomial of degree 10 in $\langle .. \rangle$'s and [..]'s.

4-loops: R^5 (mass dim. 2L + 2 = 10)

 $\begin{array}{rcl} 10 \mbox{ derivatives in } R^5 & \to & \mbox{ leading 5-point interaction has 10 powers of momentum} \\ & \to & \mbox{ 5-pt matrix element has mass dim. 10} \\ & & \mbox{ and is polynomial of degree 10 in } \langle .. \rangle 's \mbox{ and } [..]'s. \end{array}$

Little grp scaling
$$\rightarrow \langle 1^{-}2^{-}3^{+}4^{+}5^{+}\rangle_{R^{5}}$$
 contains
$$\begin{cases} |1\rangle^{4}, |2\rangle^{4} \\ |3]^{4}, |4]^{4}, |5]^{4} \end{cases}$$

unique: $\langle 1^2 2^3 4^4 5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

4-loops: R^5 (mass dim. 2L + 2 = 10)

 $\begin{array}{rcl} \mbox{10 derivatives in } R^5 & \to & \mbox{leading 5-point interaction has 10 powers of momentum} \\ & \to & \mbox{5-pt matrix element has mass dim. 10} \\ & & \mbox{and is polynomial of degree 10 in } \langle .. \rangle 's \mbox{ and } [..]'s. \end{array}$

Little grp scaling
$$\rightarrow \langle 1^2 - 3^4 + 5^+ \rangle_{R^5}$$
 contains
$$\begin{cases} |1\rangle^4, |2\rangle^4 \\ |3]^4, |4]^4, |5]^4 \end{cases}$$

unique: $\langle 1^2 2^3 4^+ 5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

SUSY Ward Id.s
$$\rightarrow \langle 1^+2^+3^-4^-5^+ \rangle_{R^5} = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 1^-2^-3^+4^+5^+ \rangle_{R^5}$$
 i.e.
 $\langle 34 \rangle^4 [12]^2 [25]^2 [51]^2 = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$
local = non-local conflict!

4-loops: R^5 (mass dim. 2L + 2 = 10)

 $\begin{array}{rcl} \mbox{10 derivatives in } R^5 & \to & \mbox{leading 5-point interaction has 10 powers of momentum} \\ & \to & \mbox{5-pt matrix element has mass dim. 10} \\ & & \mbox{and is polynomial of degree 10 in } \langle .. \rangle 's \mbox{ and } [..]'s. \end{array}$

Little grp scaling
$$\rightarrow \langle 1^2 2^3 4^+ 5^+ \rangle_{R^5}$$
 contains
$$\begin{cases} |1\rangle^4, |2\rangle^4 \\ |3]^4, |4]^4, |5]^4 \end{cases}$$

unique: $\langle 1^2 2^3 4^+ 5^+ \rangle_{R^5} = \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$

SUSY Ward Id.s
$$\rightarrow \langle 1^+2^+3^-4^-5^+ \rangle_{R^5} = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 1^-2^-3^+4^+5^+ \rangle_{R^5}$$
 i.e.
 $\langle 34 \rangle^4 [12]^2 [25]^2 [51]^2 = \frac{\langle 34 \rangle^8}{\langle 12 \rangle^8} \langle 12 \rangle^4 [34]^2 [45]^2 [53]^2$
local = non-local conflict!

 \implies No $\mathcal{N} = 8$ SUSY matrix elements. So R^5 is not indep. supersymmetrizable.

Carry out an analysis of matrix elements at MHV and NMHV level. [HE, Freedman, Kiermaier, 1003.5018]

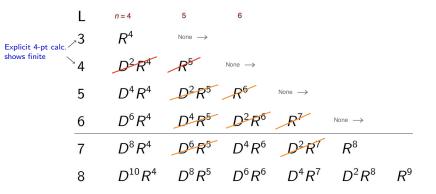
• Use superamplitudes.

- Use solution to SUSY Ward identities. [HE, Freedman, Kiermaier, 0911.3169]
- Use Gröbner basis: PolynomialRing[(*ij*),[*kl*]]/Ideal[Shouten,mom.cons.]
 [Beisert, HE, Freedman, Kiermaier, Morales, Stieberger, 1009.1643]

RESULTS: Chart of potential counterterms

The matrix elements of a prospective counterterm must respect $\mathcal{N} = 8$ SUSY and SU(8) Ward identities.

If no: excluded. If yes: we find multiplicities of such operators.

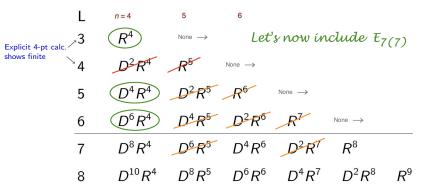


"None \rightarrow ":

we proved no MHV and no NMHV, and conjectured no N^k MHV for L < 7 in [HE, Freedman, Kiermaier, 1003.5018]. Conjecture proven by [Howe, Heslop, Drummond, 1008.4939]

The matrix elements of a prospective counterterm must respect $\mathcal{N} = 8$ SUSY and SU(8) Ward identities.

If no: excluded. If yes: we find multiplicities of such operators.



"None \rightarrow ":

we proved no MHV and no NMHV, and conjectured no N^k MHV for L < 7 in [HE, Freedman, Kiermaier, 1003.5018]. Conjecture proven by [Howe, Heslop, Drummond, 1008.4939]

Symmetries

• $\mathcal{N} = 8$ supergravity has a global continuous $E_{7(7)}$ symmetry which is spontaneously broken to SU(8).

The 133 - 63 = 70 scalars are the Goldstone bosons.

Low-energy theorems:

In $\mathcal{N} = 8$ supergravity, single soft scalar limits vanish,

 $M_n(\varphi(p),\dots) o 0$ as p o 0.

[Bianchi, HE, Freedman '0805; Arkani-Hamed, Cachazo, Kaplan '0808; Kallosh, Kugo '0811]

Symmetries

• $\mathcal{N} = 8$ supergravity has a global continuous $E_{7(7)}$ symmetry which is spontaneously broken to SU(8).

The 133 - 63 = 70 scalars are the Goldstone bosons.

Low-energy theorems:

In $\mathcal{N}=8$ supergravity, single soft scalar limits vanish,

 $M_n(\varphi(p),\dots) o 0$ as p o 0.

[Bianchi, HE, Freedman '0805; Arkani-Hamed, Cachazo, Kaplan '0808; Kallosh, Kugo '0811]

[Bossard, Hillmann, Nicolai (2010)]

• Counterterm operator \mathcal{O} : $E_{7(7)}$ compatible?

Test if the single soft scalar limits of their matrix elements vanish.

Soft scalar limits of the MHV 4-, 5- and 6-pt matrix elements trivially vanish

We would like to calculate the scalar-graviton NMHV matrix element

 $\lim_{p_1\to 0} \left\langle \varphi \ \overline{\varphi} \ 3^- 4^- 5^+ 6^+ \right\rangle_{\mathcal{O}} = ?$

to test if its single soft limit vanishes or not, when $\mathcal{O} = R^4$, $D^4 R^4$, $D^6 R^4$.

R^4 matrix elements

 R^4

$$\left\langle \varphi \, \overline{\varphi} + + - - \right\rangle_{{\sf R}^4}$$

Very hard to calculate from Feynman diagrams \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow

We use a trick to extract the 6-point R⁴ matrix elements from the closed string theory tree amplitude.

String effective action: $\alpha'^3 \sqrt{-g} e^{-6\phi} R^4$

(not quite what we want)

 $e^{-6\phi}R^4$ versus R^4

• The $\alpha'^3\text{-correction}$ to the closed string tree amplitude are encoded in the supersymmetrization of

$$\alpha^{\prime 3}\sqrt{-g}\,e^{-6\phi}R^4$$

This preserves only $SU(4) \times SU(4)$.

• We cannot use the closed string tree amplitude directly to explore the 3-loop R^4 candidate counterterm of $\mathcal{N} = 8$ supergravity, because it has to be an SU(8)-invariant supersymmetrization.

Earlier work w/ $e^{-6\phi}R^4$ [Brödel & Dixon, 2009]

 \implies

 \implies

How to obtain the matrix elements $\langle \varphi \ \overline{\varphi} \ 3^- 4^- 5^+ 6^+ \rangle_{R^4}$ of the SU(8)-invariant supersymmetrization of R^4 from α'^3 of the string amplitude?

'Average' the α'^3 contributions of the string amplitude over SU(8)

'Average' the matrix elements of $e^{-6\phi}R^4$ over SU(8)

matrix elements of an SU(8)-invariant supersymmetric 8-derivative operator.

There is only ONE such operator, namely the desired R^4 . [Freedman, Kiermaier, H.E. (March 2010)]

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}$. Thanks to $SU(4) \times SU(4)$, we get $\langle \varphi \overline{\varphi} + + -- \rangle_{R^4} = \frac{1}{35} \langle \varphi^{1234} \varphi^{5678} + + -- \rangle_{e^{\cdot 6\phi}R^4} - \frac{16}{35} \langle \varphi^{123|5} \varphi^{4|678} + + -- \rangle_{e^{\cdot 6\phi}R^4}$ $+ \frac{18}{35} \langle \varphi^{12|56} \varphi^{34|78} + + -- \rangle_{e^{\cdot 6\phi}R^4}$.

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}$. Thanks to $SU(4) \times SU(4)$, we get $\langle \varphi \overline{\varphi} + + -- \rangle_{R^4} = \frac{1}{35} \langle \varphi^{1234} \varphi^{5678} + + -- \rangle_{e^{-6\phi}R^4} - \frac{16}{35} \langle \varphi^{123|5} \varphi^{4|678} + + -- \rangle_{e^{-6\phi}R^4} + \frac{18}{35} \langle \varphi^{12|56} \varphi^{34|78} + + -- \rangle_{e^{-6\phi}R^4}$.

We calculate these 3 matrix elements from the $\alpha'\text{-expansion}$ of the closed string NMHV amplitudes, obtained via KLT

(α' -expansion of open string amplitude from Stieberger & Taylor)

Average of SU(8)

Product of two scalars ϕ^{abcd} contains one singlet: $(\varphi \ \overline{\varphi})_{\text{sing}} = \frac{1}{8!} \epsilon_{abcdefgh} \varphi^{abcd} \varphi^{efgh}$. Thanks to $SU(4) \times SU(4)$, we get $\langle \varphi \ \overline{\varphi} + + - - \rangle_{R^4} = \frac{1}{35} \langle \varphi^{1234} \varphi^{5678} + + - - \rangle_{e^{-6}\phi_{R^4}} - \frac{16}{35} \langle \varphi^{123|5} \varphi^{4|678} + + - - \rangle_{e^{-6}\phi_{R^4}}$ $+ \frac{18}{35} \langle \varphi^{12|56} \varphi^{34|78} + + - - \rangle_{e^{-6}\phi_{R^4}}.$

We calculate these 3 matrix elements from the $\alpha'\text{-expansion}$ of the closed string NMHV amplitudes, obtained via KLT

(lpha'-expansion of open string amplitude from Stieberger & Taylor)

$$\begin{split} &\lim_{p_1 \to 0} \ \left\langle \varphi^{1234} \varphi^{5678} + + - - \right\rangle_{e^{-6\phi} R^4} &= -12 \, \zeta(3) \, \times [34]^4 \langle 56 \rangle^4, \\ &\lim_{p_1 \to 0} \ \left\langle \varphi^{123|5} \varphi^{4|678} + + - - \right\rangle_{e^{-6\phi} R^4} &= -6 \, \zeta(3) \, \times [34]^4 \langle 56 \rangle^4, \\ &\lim_{p_1 \to 0} \ \left\langle \varphi^{12|56} \varphi^{34|78} + + - - \right\rangle_{e^{-6\phi} R^4} &= 0. \end{split}$$

hence

$$\lim_{p_{1}\rightarrow0}\left\langle \varphi\,\overline{\varphi}++--\right\rangle _{\mathcal{R}^{4}}\ =\ 2\zeta(3)\,\frac{6}{5}\left[34\right]^{4}\!\left\langle 56\right\rangle ^{4}\ \neq\ 0\,.$$

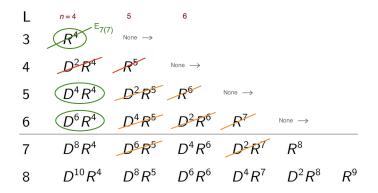
Conclusion: the unique SU(8)-invariant supersymmetrization of R^4 is NOT $E_{7(7)}$ -compatible.

Henriette Elvang

Symmetry constraints on perturbative $\mathcal{N}=8$ supergravity

Chart of potential counterterms in $\mathcal{N} = 8$ supergravity

Candidate counterterm operators must be $\mathcal{N} = 8$ SUSY and SU(8)-invariant and have $E_{7(7)}$ symmetry.



Understand now why 3-loop 4-graviton amplitude is finite.

(*) Why
$$\lim_{p_1 \to 0} \langle \varphi^{12|56} \varphi^{34|78} + + - - \rangle_{e^{-6\phi_{R^4}}} = 0$$
 ?

• $\mathcal{N} = 8$ supergravity: Global $E_{7(7)}$ symmetry spontaneously broken to SU(8). The 133 – 63 = 70 scalars are the Goldstone bosons, which transform in the **70**.

• These are precisely scalars that decompose into products of two $\mathcal{N}=4$ SYM scalars:

$$\varphi_s = z \otimes z$$
 ex. $\varphi^{12|56}$

• Eq. (*) holds to all orders in α' . have checked explicit up to and incl. α'^7 .

Green, Miller, Russo, and Vanhove (GMRV) showed that duality and supersymmetry requires the SUSY operator R^4 to have a non-linear completion of $f_{R^4}R^4$, where f_{R^4} is a moduli-dependent automorphic function which satisfies

 $\Delta f_{R^4} = -42 f_{R^4} \quad \text{for} \quad D = 4$

Here Δ is the Laplacian on the coset $E_{7(7)}/SU(8)$.

Compare:

Let's compare GMRV to our result:

$$\lim_{P_{1}\rightarrow0}\left\langle \varphi\,\overline{\varphi}++--\right\rangle _{R^{4}}\ =\ 2\zeta(3)\frac{6}{5}\left[34\right]^{4}\left\langle 56\right\rangle ^{4}\ \neq\ 0\,.$$

Must come from local operator $(\varphi \overline{\varphi})_{sing} R^4$, so that is part of the non-linear completion of R^4 , i.e. $f_{R^4} R^4$ with

$$f_{R^4} \propto -2\zeta(3) \Big[1 - rac{6}{5} ig(arphi^{1234} arphi^{5678} + 34 ext{ others} ig) + \dots \Big]$$

The Laplacian on $E_{7(7)}/SU(8)$ is

$$\Delta = \left(\frac{\partial}{\partial \varphi^{1234}} \frac{\partial}{\partial \varphi^{5678}} + 34 \text{ inequivalent perms}\right) \ + \ \dots$$

Indeed we find

$$\Delta f_{R^4} + 42 f_{R^4} = -2\zeta(3) \Big(-\frac{6}{5} \times 35 + 42 \Big) + O(\varphi \overline{\varphi}) = 0 + O(\varphi \overline{\varphi})$$

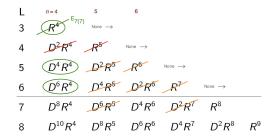
so our result matches GMRV!

$\mathcal{N}=8$ supergravity

The R^4 operator in D = 4:

- $\mathcal{N} = 8$ SUSY and SU(8) invariant.
- NOT E₇₍₇₎ invariant.
- Explains why R⁴ is not a candidate counterterm...
- ... and why the 3-loop 4-point amplitude is finite.

[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban '07]



Closed string effective action

$$\begin{split} S_{\text{eff}} &= S_{\text{SG}} - 2\,\alpha'^3\zeta(3)\,e^{-6\phi}R^4 - \alpha'^5\,\zeta(5)\,e^{-10\phi}D^4R^4 \\ &+ \frac{2}{3}\,\alpha'^6\,\zeta(3)^2\,e^{-12\phi}D^6R^4 - \frac{1}{2}\alpha'^7\zeta(7)\,e^{-14\phi}D^8R^4 + \dots\,. \end{split}$$

SU(8) average procedure gives unique $D^4 R^4$ matrix elements from α'^5 of closed string amplitude.

- NOT E₇₍₇₎ invariant.
- Single soft limit shows SUSY operator is $f_{D^4R^4} D^4 R^4$ with $f_{D^4R^4} \propto -\zeta(5) \left[1 \frac{12}{7} \left(\varphi^{1234} \varphi^{5678} + 34 \text{ others} \right) + \dots \right]$
- Satisfies Green et al's $\Delta f_{D^4R^4} = -60 f_{D^4R^4}$
- Conclude: $D^4 R^4$ is *not* a candidate counterterm.
- $\mathcal{N} = 8$ SG finite at 5-loops in D = 4.

Next up: $D^4 R^4$ and $D^6 R^4$

Closed string effective action

$$\begin{split} S_{\text{eff}} &= S_{\text{SG}} - 2\,\alpha'^3\zeta(3)\,e^{-6\phi}R^4 - \alpha'^5\,\zeta(5)\,e^{-10\phi}D^4R^4 \\ &+ \frac{2}{3}\,\alpha'^6\,\zeta(3)^2\,e^{-12\phi}D^6R^4 - \frac{1}{2}\alpha'^7\zeta(7)\,e^{-14\phi}D^8R^4 + \dots\,. \end{split}$$

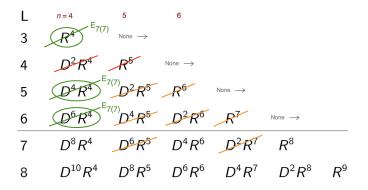
Matrix elements from α'^6 of closed string amplitude are polluted by pole terms $R^4 - R^4$ from $\alpha'^3 \times \alpha'^3$.

- We calculate fully $\mathcal{N} = 8$ SUSY'ized $\mathbb{R}^4 \mathbb{R}^4$.
- Extract $\langle \varphi \, \overline{\varphi} + + - \rangle_{R^4 R^4}$ and subtract it from $\langle \varphi \, \overline{\varphi} + + - \rangle_{e^{-12\phi} D^6 R^4}$.
- SU(8) average then gives $\langle \varphi \,\overline{\varphi} + + - \rangle_{D^6 R^4}$, which has non-vanishing single soft scalar limit.
- Satisfies Green et al's $\Delta f_{D^6R^4} = -60 f_{D^6R^4} (f_{R^4})^2$.

The inhom. term is from $R^4 - R^4$.

- NOT *E*₇₍₇₎ invariant.
- Conclude: $D^6 R^4$ is not a candidate counterterm.
- $\mathcal{N} = 8$ SG finite at 6-loops in D = 4.

 $\mathcal{N} = 8$ SUSY and SU(8)-invariant candidate counterterm operators.



[[]HE, Kiermaier, 1007.4813]

[Beisert, HE, Freedman, Kiermaier, Morales, Stieberger, 1009.1643]

What do we know about $L \ge 7$ loops?

 $\mathcal{N} = 8$ SUSY and SU(8)-singlet candidate counterterm operators and SU(8) **70** operators for their single soft scalar limits.

7-loop	4-pt	5-pt	6-pt	7-pt	8-pt	9-pt	10-pt	: 11-pt	12-pt	13-pt	14-pt	15-pt	16-pt
singlet	$D^8 R^4_{1 \times MHV}$	$D^6 R^5$	$D^4 R^6_{2 \times \text{NMHV}}$	$D^2 R^7$	$R^8_{3 \times N^2 MH}$	$\varphi^2 D^2 R$	$\varphi^2 R^8$ $_{4 \times N^3 MI}$		$_{\rm 6\times N^4MHV}^{\varphi 4}R^8$	$\varphi^6 \overline{D^2 R^7}$	$\varphi^6 R^8$ $_{8 \times N^5 MHV}$	$\varphi^{8} D^{2} R^{7}$	$\varphi^8 R^8$ 10×N ⁶ MHV
		1	soft	1	oft	2	soft	1	soft	1	soft		soft
70		$\varphi D^8 R^4$		$\varphi D^4 R^6$		φR^8		$\varphi^3 R^8$		$\varphi^5 R^8$		$\varphi^7 R^8$	
		$2\times$		$4\times$		$6 \times$		9×		$14 \times$		$19 \times$	
8-loop	4-pt	5-pt	6-pt	7-pt		8-pt	9-pt	10-pt	11-pt	12-pt	13-]	pt	14-pt
singlet	$D^{10}R^4$	$D^8 R^5$	$D^6 R^6$	D^4R		$D^{2}R^{8}$	R^9	$\varphi^2 D^2 R^8$	$\varphi^2 R^9$	$\varphi^4 D^2 R$			$\rho^{6}D^{2}R^{8}$
	$1 \times MHV$	1×MHV	3×NMHV	3×NMI	IV 8×	N ² MHV 8	×N ² MHV	25×N ³ MHV	$22 \times N^3 MHV$	√ 66×N ⁴ MI	HV $51 \times N^4$	MHV 15	$3 \times N^5 MHV$
70		$\varphi D^{10} R^4$	$\varphi D^8 R^5$	$\varphi D^6 F$	6 φ)	$D^4 R^7 = q$	$\rho D^2 R^8$	φR^9	$arphi^3 D^2 R^8$	$\varphi^3 R^9$	$\varphi^5 D$	$^{2}R^{8}$	
		3×	4×	$17 \times$		16×	81 ×	$63 \times$	$232 \times$	$211 \times$	103	3 ×	

Multiplicities found using SU(2,2|8).

[Beisert, HE, Freedman, Kiermaier, Morales, Stieberger, 1009.1643]

For n > 4 none of the L = 7 operators are $E_{7(7)}$ compatible. This means that the 4-graviton amplitude determines whether the theory is finite or not at L = 7. SUSY, SU(8), $E_{7(7)} \implies \mathcal{N} = 8$ supergravity in 4d finite up to 7-loop order.

First divergence at L = 7?

Candidate full superspace integral — but it vanishes!!

But there is a new 7/8th superspace integral counterterm available.

[Bossard, Howe, Stelle, Vanhove (2011)]

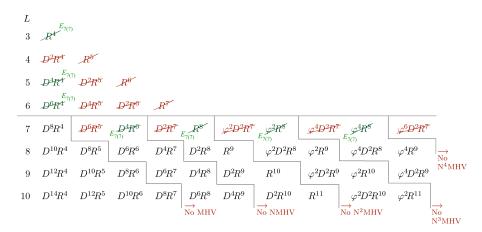
First divergence at L = 8?

Candidate full superspace integral available [Kallosh (1981), Howe & Lindstrom (1981)]

 \rightarrow Looks like more than SUSY and $E_{7(7)}$ is needed for finiteness.

Landscape of potential counterterms

 $\mathcal{N} = 8$ SUSY and SU(8)-invariant candidate counterterm operators.



[HE, Kiermaier, 1007.4813]

[Beisert, HE, Freedman, Kiermaier, Morales, Stieberger, 1009.1643]

Henriette Elvang Symmetry

Symmetry constraints on perturbative $\mathcal{N}=8$ supergravity