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What could be the motivation? 

Relative locality is a framework in which we can relax in a controlled 
manner the notion of locality

Relative Locality

We do so by allowing momentum space to be curved
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What could be the motivation? 

Relative locality is a framework in which we can relax in a controlled 
manner the notion of locality

Relative Locality

Quantum gravity

We know that in quantum gravity the notion of spacetime disolve

Locality as we know it at low energy is replaced by something more 
fundamental, what is it?
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What could be the motivation? 

Relative locality is a framework in which we can relax in a controlled 
manner the notion of locality

Relative Locality

Quantum gravity phenomenology

How is it possible to probe experimentally theories of Q-gravity?

It is presumably impossible to detect a quantum graviton

So is there a regime of quantum gravity that may be accessible to 
experiment? and show radically new features?
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Quantum gravity limit
Quantum gravity

We work in a regime where we neglect both quantum mechanics 
and gravity                       are neglected while 

The principle of relative locality

Giovanni Amelino-Cameliaa, Laurent Freidelc, Jerzy Kowalski-Glikmanb, Lee Smolinc
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We propose a deepening of the relativity principle according to which the invariant arena for non-quantum
physics is a phase space rather than spacetime. Descriptions of particles propagating and interacting in space-
times are constructed by observers, but different observers, separated from each other by translations, construct
different spacetime projections from the invariant phase space. Nonetheless, all observers agree that interactions
are local in the spacetime coordinates constructed by observers local to them.

This framework, in which absolute locality is replaced by relative locality, results from deforming momentum
space, just as the passage from absolute to relative simultaneity results from deforming the linear addition of
velocities. Different aspects of momentum space geometry, such as its curvature, torsion and non-metricity, are
reflected in different kinds of deformations of the energy-momentum conservation laws. These are in principle
all measurable by appropriate experiments. We also discuss a natural set of physical hypotheses which singles
out the cases of momentum space with a metric compatible connection and constant curvature.

I. INTRODUCTION

How do we know we live in a spacetime? And if so how
do we know we all share the same spacetime? These are the
fundamental questions we are investigating in this note.

We local observers do not directly observe any events
macroscopically displaced from our measuring instruments.
As naive observers looking out at the world, and no less as par-
ticle physicists and astronomers, we are basically “calorime-
ters” with clocks. Our most fundamental measurements are
the energies and angles of the quanta we emit or absorb, and
the times of those events. Judging by what we observe, we
live in momentum space, not in spacetime.

The idea that we live in a spacetime is constructed by in-
ference from our measurements of momenta and energy. This
was vividly illustrated by Einstein’s procedure to give space-
time coordinates to distant events by exchanges of light sig-
nals [1]. When we use Einstein’s procedure we take into ac-
count the time it takes the photons to travel back and forth
but we throw away information about their energy, resulting
in a projection into spacetime. When we do this we presume
that the same spacetime is reconstructed by exchanges of light
signals of different frequencies. We are also used to assuming
that different local observers, distant from each other, recon-
struct the same spacetime by measurements of photons they
send and receive.

But why should the information about the energy of the
photons we use to probe spacetime be inessential? Might that
just be a low energy approximation? And why should we pre-
sume that we construct the same spacetime from our observa-
tions as observers a cosmological distance from us?

In this paper we show that absolute locality, which postu-
lates that all observers live in the same space time, is equiva-
lent to the assumption that momentum space is a linear man-
ifold. This corresponds to an idealization in which we throw
away the information about the energy of the quanta we use
to probe spacetime and it can be transcended in a simple and

powerful generalization of special relativistic physics which
is motivated by general considerations of the unification of
gravity with quantum physics. In this work we link the no-
tion of locality with assumptions made about the geometry of
momentum space. We propose a new framework in which we
can relax in a controlled manner the concept of absolute lo-
cality by linking this to a new understanding of the geometry
of momentum space. In this framework there is no notion of
absolute locality, different observers see different spacetimes,
and the spacetimes they observe are energy and momentum
dependent. Locality, a coincidence of events, becomes rela-
tive: coincidences of events are still objective for all local ob-
servers, but they are not in general manifest in the spacetime
coordinates constructed by distant observers.

One way to motivate this new physical framework is by
thinking about the symmetry of the vacuum. The most ba-
sic question that can be asked of any physical system is what
is the symmetry of the ground state that governs its low lying
excitations. This is no less true of spacetime itself, moreover
in general relativity, and presumably in any description of the
quantum dynamics of spacetime, the symmetry of the ground
state is dynamically determined. We also expect that the clas-
sical spacetime geometry of general relativity is a semiclassi-
cal approximation to a more fundamental quantum geometry.
In this paper we show how simple physical assumptions about
the geometry of momentum space may control the departure
of the spacetime description from the classical one.

We will first restrict attention to an approximation in which
h̄ and GNewton both may be neglected while their ratio

√
h̄

GNewton
= mp (1)

is held fixed1. In this approximation quantum and gravita-

1 We work in units in which c = 1.
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is held fixed

In this limit there is a fundamental energy scale

How does this scale enters physics?
One expects a deformation of momentum space
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Abstract

In this note I describe the geometry of momentum space in more detail

1 Connections and non linear composition
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As a mathematical theory Quantum gravity depends parametrically 
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Quantum gravity limit

QFT limit is a limit in which 

Given a massive object we can consider its Comptom wave lenght
   and its Schwarschild radius         and we denote by D the typical 
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One expects a deformation of momentum space
Wednesday, June 22, 2011



Born reciprocity principle: postulate that there is a fundamental 
symmetry in Quantum Mechanics between space and momentum 
space

Gravity however stress the difference, between them, 
space is curved while momentum space stays flat (a cotangent fiber)

How can we reconcile them?

Born Reciprocity Max Born 1938
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Born reciprocity principle: postulate that there is a fundamental 
symmetry in Quantum Mechanics between space and momentum 
space

Gravity however stress the difference, between them, 
space is curved while momentum space stays flat (a cotangent fiber)

How can we reconcile them?

By allowing momentum space to be curved

a momentum scale is needed

This is what happens in 3d gravity !

Born Reciprocity
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We don’t really see spacetime, we see momentum space...

As naive observers we do not directly observe spacetime points

we do not directly observe events macroscopically displaced from us

Our most fundamental measurements are all about energy-
momentum quanta we absorb and emit and time of emission/
reception

We see photons arriving with different momenta and energies at 
different angles 

Physics happens in phase space.We do not have to assume 
that the projection from phase space to space time is trivial. 

Operational locality

Wednesday, June 22, 2011



One fundamental hypothesis is that the energy of the probe we use is  
inessential. 
This is the absolute locality hypothesis.   Why? 
Could  it  be  low energy approximation?

Spacetime is constructed by inference from energy and momenta 
measurement
e.g. Einstein procedure of photon exchange to give coordinates to 
distant events via momentum space measurements

Absolute locality

(x,t)=(0,0)

(x,t)=(0,S)

(x,t)=(S/2, S/2)
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Introducing the possibility for momentum space to be non linear
allows us to propose a framework in which locality is relaxed in a 
controlled manner

Absolute locality
As we are going to see the absolute locality hypothesis  is equivalent 
to the assumption that momentum space is a linear manifold.

 The notion of locality is related to hypothesis about 
the geometry of momentum space

What if momentum space is a non linear manifold?

Do we still all infer the same spacetime?
Do we still infer the same spacetime at different energies?

Wednesday, June 22, 2011



Usual Relativistic Dynamics
•Spacetime emerges from the dynamics on momentum space.
•In our limit, we study first classical particle dynamics
•Each process has an action principle worldline formalism

Sprocess =
∑

trajectories,I

Sfree
I +

∑

interactions,α

Sint
α
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Emergence of space-time
Spacetime is an auxiliary concept that emerges from the dynamics 
of particles

Free particle dynamics

4

where J is the set of particles that interact with each other.
We will shortly study the consequences of curvature and

torsion on momentum space for the dynamics of particles. We
will see that the meaning of the curvature of momentum space
is that it implies a limitation of the usefulness of the notion
that processes happen in an invariant spacetime, rather than in
phase space. The hypothesis of a shared, invariant spacetime,
in which all observers agree on the locality of distant interac-
tions, turns out to be a direct consequence of the linearity of
the usual conservation laws of energy and momentum. When
we deform the conservation laws by making them non-linear,
this gives rise to relative locality.

III. THE EMERGENCE OF SPACETIME FROM THE
DYNAMICS OF PARTICLES

We take the point of view that spacetime is an auxiliary
concept which emerges when we seek to define dynamics in
momentum space. If we take the momenta of elementary par-
ticles to be primary, they themselves need momenta, so that a
canonical dynamics can be formulated. The momenta of the
momenta are quantities xa

I that live in the cotangent space of
P n at a point kI

a.

A. Variational principle

Given these we can define the free particle dynamics by

SI
f ree =

∫
ds

(
xa

J k̇J
a +NJC J(k)

)
(17)

where s is an arbitrary time parameter and NJ is the Lagrange
multiplier imposing the mass shell condition

C J(k)≡ D2(k)−m2
J . (18)

We emphasize that the contraction xa
J k̇J

a does not involve a
metric, and the dynamics is otherwise given by constraints
which are functions only of coordinates on P and depend only
the geometry of P . This leads to the Poisson brackets,

{xa
I ,k

J
b}= δa

bδJ
I (19)

We then have a phase space, Γ of a single particle, which
is the cotangent bundle of P . We note that there is neither
an invariant projection from Γ to a spacetime, M nor is there
defined any invariant spacetime metric. Yet this structure is
sufficient to describe the dynamics of free particles. The fact
that there is no invariant projection to a spacetime is related to
the non linearity of momentum space. Indeed under a non lin-
ear redefinition p → F(p) the conjugated coordinates is given
by x → (∂p/∂F)x, so the new canonical coordinate appears to
be momentum space dependent. This is this mixing between
“spacetime” and momentum space that is the basis of the rel-
ative locality. We can call the xa

J Hamiltonian spacetime co-
ordinates because they are defined as being canonically con-
jugate to coordinates on momentum space.

Note that we do not need a spacetime or spacetime metric
to describe how these particles interact. If we consider the
process with n interacting particles we want to impose con-
servation of the non-linear quantities, Ka. We do this by in-
troducing a lagrange multiplier to guarantee conservation (7).
The action is

Stotal = ∑
J

SJ
f ree +Sint (20)

where for the incoming particles

SJ
f ree =

∫ 0

−∞
ds

(
xa

J k̇J
a +NJC J(k)

)
(21)

while for the outgoing particles

SJ
f ree =

∫ ∞

0
ds

(
xa

J k̇J
a +NJC J(k)

)
(22)

The interaction contribution to the action is simply a lagrange
multiplier times the conservation law (7).

Sint = K (k(o))aza (23)

We have set the interaction to take place at affine parameter
s = 0 for each of the particles. At this point za can be just con-
sidered to be a lagrange multiplier to enforce the conservation
of momentum (7) at the interaction where for each particle
s = 0.

We vary the total action. After an integration by parts in
each of the free actions we have

δStotal =

∑
J

∫ s2

s1

(
δxa

J k̇J
a −δkJ

a

[
ẋa

J −NJ
δC J

δkJ
a

]
+δNJC J(k)

)
+R

(24)
Here R contains both the result of varying Sint and the bound-
ary terms from the integration by parts. s1,2 are 0,∞,−∞ de-
pending on whether the term is incoming or outgoing. Before
examining the boundary terms we confirm we have the desired
free parts of the equations of motion

k̇J
a = 0

ẋa
J = NJ

δC J

δkJ
a

C J(k) = 0 (25)

We fix δkJ
a = 0 at s = ±∞ and examine the remainder of the

variation

R = K (k)aδza −
(

xa
J(0)− zb δKb

δkJ
a

)
δkJ

a (26)

Here xa
J and kJ

a are taken for each particle at the parameter
time s = 0. This has to vanish if the variational principle is
to have solutions. From the vanishing of the coefficient of δza

we get the four conservation laws of the interaction (7). From

conjugate part coordinates mass shell

4
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We vary the total action. After an integration by parts in
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(24)
Here R contains both the result of varying Sint and the bound-
ary terms from the integration by parts. s1,2 are 0,∞,−∞ de-
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a
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We fix δkJ
a = 0 at s = ±∞ and examine the remainder of the

variation
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a

)
δkJ

a (26)

Here xa
J and kJ

a are taken for each particle at the parameter
time s = 0. This has to vanish if the variational principle is
to have solutions. From the vanishing of the coefficient of δza

we get the four conservation laws of the interaction (7). From
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The free particle action makes no reference to a metric for spacetime. 
Spacetime geometry is inferred from the geometry of momentum space.
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The interaction imposes the conservation law

p

kq

reads
p1 + p2 −

1
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Γ(p2, p2) = q1 + q2 −+
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· · · stands for order pn+1/mn
p

p1
in = p1

out ⊕ k

k ⊕ p2
in = p2

out

Pin = Npin

Pout = Npout

Ptot = N(p1
in ⊕ p2

pin) = N(p1
out ⊕ p2

out)

= P1 + P2 −
1

NmP
Γ(P1, P2) + · · ·
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4
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Worldline action
The variation of the worldline action gives 

bulk eom

particle coordinates

The interaction is local
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The connection enters the definition of interactions

Nowhere in the previous formulation the geometry of spacetime 
enters! only the properties of momentum space, entered.

Geometry of momentum space

We now suppose that  Energy-momentum space 

2

tional effects may both be neglected, but there may be new
phenomena on scales of momentum or energy given by mp.
At the same time, because lp =

√
h̄GNewton → 0 we expect no

features of quantum spacetime geometry to be relevant.

Since our approximation gives us an energy scale, but not
a length scale, we will begin by presuming that momentum
space is more fundamental than spacetime. This is in accord
with the operational point of view we mentioned in the open-
ing paragraph. So we begin in momentum space by asking
how it may be deformed in a way that is measured by a scale
mp. Once that is established we will derive the properties
of spacetime from dynamics formulated in momentum space.
For convenience we work in first in the limit just described,
after which we will briefly turn on h̄.

By following this logic below, we will find that physics
may be governed by a novel principle, which we call the
Principle of Relative Locality. This states that,

Physics takes place in phase space and there is no invariant
global projection that gives a description of processes in
spacetime. From their measurements local observers can
construct descriptions of particles moving and interacting
in a spacetime, but different observers construct different
spacetimes, which are observer-dependent slices of phase
space.

In the next section we introduce an operational approach to
the geometry of momentum space, which we build on in sec-
tion III to give a dynamics of particles on a curved momentum
space. We see how a modified version of spacetime geometry
is emergent from the dynamics which is formulated on mo-
mentum space. In these sections we consider a general mo-
mentum space geometry, which illuminates a variety of new
phenomena that might be experimentally probed correspond-
ing to the curvature, torsion and non-metricity of momentum
space. However, one advantage of this approach is that with
a few reasonable physical principles the geometry of momen-
tum space can be reduced to three choices, depending on the
sign of a parameter. As we show in section IV, this gives this
framework both great elegance and experimental specificity.
In section V we make some preliminary observations as to
how the geometry of momentum space may be probed exper-
imentally, after which we conclude.

II. AN OPERATIONAL APPROACH TO THE GEOMETRY
OF MOMENTUM SPACE

We take an operational point of view in which we describe
physics from the point of view of a local observer who is
equipped with devices to measure the energy and momenta
of elementary particles in her vicinity. The observer also has
a clock that measures local proper time. We construct the ge-

ometry of momentum space2 P from measurements made of
the dynamics of interacting particles. We assume that to each
choice of calorimeter and other instruments carried by our ob-
server there is a preferred coordinate on momentum space, ka.
But we also assume that the dynamics can be expressed co-
variantly in terms of geometry of P and do not depend on the
choice of calorimeter’s coordinates. We note that the ka mea-
sure the energy and momenta of excitations above the ground
state, hence the origin of momentum space, ka = 0, is physi-
cally well defined.

Our local observer can make two kinds of measurements.
One type of measurement can be done only with a single par-
ticle and it defines, as we will see, a metric on momentum
space. The other type of measurement involve multi particles
and defines a connection. A key mathematical idea underly-
ing our construction is that a connection on a manifold can
be determined by an algebra [2], in the present case this will
be an algebra that determines how momenta combine when
particles interact.

A. The metric geometry of momentum space

First we describe the metric geometry. Our local observer
can measure the rest energy or relativistic mass of a parti-
cle which is a function of the four momenta. She can also
measure the kinetic energy K of a particle of mass m moving
with respect to her, but local to her. We postulate that these
measurements determine the metric geometry of momentum
space. We interpret the mass as the geodesic distance from the
origin, this gives the dispersion relation

D2(p)≡ D2(p,0) = m2. (2)

The measurement of kinetic energy defines the geodesic dis-
tance between a particle p at rest and a particle p′ of identical
mass and kinetic energy K, that is D(p) = D(p′) = m and

D2(p, p′) =−2mK. (3)

The minus sign express the fact that the geometry of momen-
tum space is Lorentzian. From these measurements one can
reconstruct a metric on P 3

dk2 = hab(k)dkadkb. (4)

B. The algebra of interactions

Now we describe the construction of the connection on mo-
mentum space. This is determined by processes in which

2 By which we mean the space of relativistic four-momenta denoted pa with
a = 0,1,2,3.

3 In the standard case of physics in Minkowski spacetime, hab is the dual
Minkowski metric and Ka(k) = ∑I kI

a. A scale mp may be introduced by
deforming the geometry of P so that it is curved. The correspondence
principle (to be introduced below) assures that we recover the standard flat
geometry of P in the limit mp → ∞.

can have a non trivial geometry: a non trivial metric 

a non trivial connection 

Metric enters the propagation of single particle 
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Geometry of momentum space
One postulates that single particle  measurements determine the 
geometry of

2

tional effects may both be neglected, but there may be new
phenomena on scales of momentum or energy given by mp.
At the same time, because lp =

√
h̄GNewton → 0 we expect no

features of quantum spacetime geometry to be relevant.

Since our approximation gives us an energy scale, but not
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space is more fundamental than spacetime. This is in accord
with the operational point of view we mentioned in the open-
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choice of calorimeter’s coordinates. We note that the ka mea-
sure the energy and momenta of excitations above the ground
state, hence the origin of momentum space, ka = 0, is physi-
cally well defined.

Our local observer can make two kinds of measurements.
One type of measurement can be done only with a single par-
ticle and it defines, as we will see, a metric on momentum
space. The other type of measurement involve multi particles
and defines a connection. A key mathematical idea underly-
ing our construction is that a connection on a manifold can
be determined by an algebra [2], in the present case this will
be an algebra that determines how momenta combine when
particles interact.

A. The metric geometry of momentum space

First we describe the metric geometry. Our local observer
can measure the rest energy or relativistic mass of a parti-
cle which is a function of the four momenta. She can also
measure the kinetic energy K of a particle of mass m moving
with respect to her, but local to her. We postulate that these
measurements determine the metric geometry of momentum
space. We interpret the mass as the geodesic distance from the
origin, this gives the dispersion relation

D2(p)≡ D2(p,0) = m2. (2)

The measurement of kinetic energy defines the geodesic dis-
tance between a particle p at rest and a particle p′ of identical
mass and kinetic energy K, that is D(p) = D(p′) = m and
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reconstruct a metric on P 3
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The mass is interpreted as the timelike distance from the origin
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and defines a connection. A key mathematical idea underly-
ing our construction is that a connection on a manifold can
be determined by an algebra [2], in the present case this will
be an algebra that determines how momenta combine when
particles interact.

A. The metric geometry of momentum space

First we describe the metric geometry. Our local observer
can measure the rest energy or relativistic mass of a parti-
cle which is a function of the four momenta. She can also
measure the kinetic energy K of a particle of mass m moving
with respect to her, but local to her. We postulate that these
measurements determine the metric geometry of momentum
space. We interpret the mass as the geodesic distance from the
origin, this gives the dispersion relation

D2(p)≡ D2(p,0) = m2. (2)

The measurement of kinetic energy defines the geodesic dis-
tance between a particle p at rest and a particle p′ of identical
mass and kinetic energy K, that is D(p) = D(p′) = m and

D2(p, p′) =−2mK. (3)

The minus sign express the fact that the geometry of momen-
tum space is Lorentzian. From these measurements one can
reconstruct a metric on P 3

dk2 = hab(k)dkadkb. (4)
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Now we describe the construction of the connection on mo-
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tional effects may both be neglected, but there may be new
phenomena on scales of momentum or energy given by mp.
At the same time, because lp =
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features of quantum spacetime geometry to be relevant.

Since our approximation gives us an energy scale, but not
a length scale, we will begin by presuming that momentum
space is more fundamental than spacetime. This is in accord
with the operational point of view we mentioned in the open-
ing paragraph. So we begin in momentum space by asking
how it may be deformed in a way that is measured by a scale
mp. Once that is established we will derive the properties
of spacetime from dynamics formulated in momentum space.
For convenience we work in first in the limit just described,
after which we will briefly turn on h̄.

By following this logic below, we will find that physics
may be governed by a novel principle, which we call the
Principle of Relative Locality. This states that,

Physics takes place in phase space and there is no invariant
global projection that gives a description of processes in
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Geometry of momentum space
In the multiple particle case we should have a rule to associate a 
total momenta to the combination of particles

We postulate that there exists a composition of momenta

3

n particles interact, nin incoming and nout outgoing, with
n = nin + nout . This proceeds by the construction of an al-
gebra, which then determines the connection.

Associated to each interaction there must be a combination
rule for momentum, which will in general be non-linear. We
denote this rule for two particles by

(p,q)→ p′a = (p⊕q)a (5)

Hence the momentum space P has the structure of an algebra
defined by the product rule ⊕. We assume that more compli-
cated processes are built up by iterations of this product – but
to begin with we assume neither linearity, nor commutativity
nor associativity.

We will also need an operation that turns outgoing momenta
into incoming momenta. This is denoted, p →$p and it sat-
isfies4

($p)⊕ p = 0 (6)

Then we have the conservation law of energy and momen-
tum for any process, giving, for each type of interaction, four
functions on P n, depending on momenta of interacting parti-
cles, which vanish

Ka(kI) = 0 (7)

C. From the algebra of interactions to the connection on
momentum space

Corresponding to the algebra of combinations of momenta
there is a connection on P . The geometry of momentum space
is studied in detail in [2], but the basics are as follows. The
algebra of the combination rule determines a connection on P
by

∂
∂pa

∂
∂qb

(p⊕q)c|q,p=o =−Γab
c (0) (8)

The torsion of Γbc
a is a measure of the asymmetric part of the

combination rule

− ∂
∂pa

∂
∂qb

((p⊕q)c − (p⊕q)c)q,p=o = T ab
c (0) (9)

Similarly the curvature of P is a measure of the lack of asso-
ciativity of the combination rule

2
∂

∂p[a
∂

∂qb]

∂
∂kc

((p⊕q)⊕ k− p⊕ (q⊕ k))d |q,p,k=o = Rabc
d(0)

(10)
where the bracket denote the anti-symmetrisation.

We note that there is no physical reason to expect a com-
bination rule for momentum to be associative, once it is non-
linear. Indeed, the lack of associativity means there is a phys-
ical distinction between the two processes of Figure 1, which

4 And more generally ($p)⊕ (p⊕ k) = k, where $ is a left inverse.

is equivalent to saying there is a definite microscopic causal
structure. That is, causal structure of the physics maps to non-
associativity of the combination rule for momentum which in
turn maps to curvature of momentum space. The curvature
of momentum space makes microscopic causal orders distin-
guishable, and hence meaningful. This gives rise to proposals
to measure the curvature of momentum space which we will
discuss below.

(p!!!!q)!!!!k p!!!!""""q!!!!k)

!

q kp q kp

!

FIG. 1: Curvature of the connection on momentum space produces
non-associativity of composition rule.

To determine the connection, torsion and curvature away
from the origin of momentum space we have to consider trans-
lating in momentum space, ie we can denote

p⊕k q = k⊕ (($k⊕ p)⊕ ($k⊕q)) (11)

the identity for this product is at 0k = k. Then

∂
∂pa

∂
∂qb

(p⊕k q)c|q,p=k =−Γab
c (k) (12)

Thus, the action of adding an infinitesimal momentum dqa
from particle J to a finite momentum pa of particle I defines a
parallel transport on P .

pa ⊕dqa = pa +dqbτb
a(p) (13)

where τ(p) is the parallel transport operation from the identity
to p. It can be expanded around p = 0

τb
a(p) = δb

a −Γbc
a pc −Γbcd

a pc pd + · · · (14)

with

Γbcd
a = ∂d

pΓbc
a −Γdb

i Γic
a −Γdc

i Γbi
a . (15)

The corresponding conservation law thus has the form to sec-
ond order

Ka(k) = ∑
I

kI
a − ∑

I &=J∈J
Γbc

a kJ
bkI

c + ... (16)

We do not assume that it is linear or commutative or associative

More complicated interaction processes are build up by iteration of 
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n = nin + nout . This proceeds by the construction of an al-
gebra, which then determines the connection.

Associated to each interaction there must be a combination
rule for momentum, which will in general be non-linear. We
denote this rule for two particles by

(p,q)→ p′a = (p⊕q)a (5)

Hence the momentum space P has the structure of an algebra
defined by the product rule ⊕. We assume that more compli-
cated processes are built up by iterations of this product – but
to begin with we assume neither linearity, nor commutativity
nor associativity.

We will also need an operation that turns outgoing momenta
into incoming momenta. This is denoted, p →$p and it sat-
isfies4

($p)⊕ p = 0 (6)

Then we have the conservation law of energy and momen-
tum for any process, giving, for each type of interaction, four
functions on P n, depending on momenta of interacting parti-
cles, which vanish

Ka(kI) = 0 (7)

C. From the algebra of interactions to the connection on
momentum space

Corresponding to the algebra of combinations of momenta
there is a connection on P . The geometry of momentum space
is studied in detail in [2], but the basics are as follows. The
algebra of the combination rule determines a connection on P
by
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(p⊕q)c|q,p=o =−Γab
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a is a measure of the asymmetric part of the
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where the bracket denote the anti-symmetrisation.

We note that there is no physical reason to expect a com-
bination rule for momentum to be associative, once it is non-
linear. Indeed, the lack of associativity means there is a phys-
ical distinction between the two processes of Figure 1, which

4 And more generally ($p)⊕ (p⊕ k) = k, where $ is a left inverse.

is equivalent to saying there is a definite microscopic causal
structure. That is, causal structure of the physics maps to non-
associativity of the combination rule for momentum which in
turn maps to curvature of momentum space. The curvature
of momentum space makes microscopic causal orders distin-
guishable, and hence meaningful. This gives rise to proposals
to measure the curvature of momentum space which we will
discuss below.
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Left Loop

(p⊕ q)⊕ k

p1 ⊕ p2 = p1 + p2 +
1

mP
T (p1, p2) + · · ·

τpN
pN⊕pτ

0
PN

= ∂Q((pN ⊕ p)⊕pN Q)|Q=pN ∂q(pN ⊕ q)|q=0 (1)
= ∂q((pN ⊕ p)⊕pN (pN ⊕ q))|q=0 (2)
= ∂q(pN ⊕ (p⊕ q))|q=0 (3)

τ0
pN⊕p = ∂q((pN ⊕ p)⊕ q)|q=0 (4)

pN+1 = pN ⊕ p, p1 = p

pN+1 ⊕ q = pN ⊕ (p⊕ q)

U q
pN

= τ

mono alternaticity is given by

= ∂q(pN ⊕ (p⊕ q))|q=0 (5)
= ∂q((pN ⊕ p)⊕pN (pN ⊕ q)) (6)
= ∂Q((pN ⊕ p)⊕pN Q)|Q=pN⊕q∂q(pN ⊕ q) (7)
= ∂Q(pN ⊕Q)|Q=p⊕q∂q(p⊕ q) (8)
= Up⊕q

pN⊕(p⊕q)U
q
(p⊕q) (9)

U q
(pN⊕p)⊕q = ∂q((pN ⊕ p)⊕ q) (10)

we can use
U q

p⊕q = τp
p⊕qτ

0
p τ q

0 (11)

to compute

Up⊕q
pN⊕(p⊕q)U

q
(p⊕q) = τpN

pN⊕(p⊕q)τ
0
pN

τp⊕q
0 τp

p⊕qτ
0
p τ q

0 (12)

U q
(pN⊕p)⊕q = τpN⊕p

(pN⊕p)⊕qτ
0
pN⊕pτ

q
0 (13)

if mono alternaticity is valid we have the equality

τ
pN+1⊕q
pN τ

pN+1
pN+1⊕q = τ0

pN
τp⊕q
0 τp

p⊕qτ
0
p τ q

0 τ0
q τpN⊕p

0 (14)

= τ0
pN

τp⊕q
0 τp

p⊕qτ
pN+1
p (15)

or equivalentely

h(pN , pN+1 ⊕ q, pN+1) = τ0
pN

h(0, p⊕ q, p)τpN
0 (16)

where h(a, b, c) = τ b
aτ c

b τa
c note that we have

h(0, p⊕ q, p) = #p,q

with #p,q = dΛp,q
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Momenta combine into interactions:  The rule:
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(k, q)→ k′
a = ka ⊕ qa

can be thought as a rule for 
combining geodesics on a curved 
manifold, so it defines  a connection 
or parallel transport.
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Abstract

In this note I describe the geometry of momentum space in more detail

1 Connections and non linear composition

U(p)b
a ≡ ∂b

q(p⊕ q)a|q=0

!, G→ 0

Lk(p) ≡ k ⊕ p

∆θ = T 01
− ∆E

∆S = 0

S2 − S1 = Γ++
− ∆E = N++

− ∆E

= N++
− ∆E

T ∗P %= M × P

xa = zbU(k)a
b
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U(k)b
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δKa

δkb

D(k)2 = k2
0 − $k2
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∫ 0

−∞
(xak̇a −NC(k))

U(p)b
a ≡ ∂b
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(p⊕ (p⊕ p))⊕ q) = p⊕ ((p⊕ p)⊕ q)
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transforms as a map from  

If we restrict to diffeomorphism that preserve the product identity 0 we have

(
τ̂0
p

)α

µ
≡ ∂α

q (p⊕φ q)µ|q=0 =
(

∂pµ

∂φν

)
(p)

(
τ0
φ(p)

)β

ν

(
∂φβ

∂pα

)
(0) (19)

which ca be written shorthandly in terms of the differential of φ as dpφτ̂0
p = τ0

φ(p)d0φ. This
shows that τ0

p is a map from T0P to Tp(P ), where P denote the momentum space manifold and
TpP its tangent space at the point p. Moreover it is clear that τ0

0 = 1 and from the left inverse
property we get that τ0

p is invertible with inverse

τp
0 ≡ ∂α

Q (p#Q)µ|Q=p . (20)

This means that we can identify τ0
p as a paralell transport operator from 0 to p. A vector field

Pµ(p) ∈ TpP is said to be paralel transported from 0 to p if

Pµ(p) = τα
µ (p)Pα(0). (21)

By definition we chose the “geodesics” starting from the origin to be the curves which are
parallel with respect to this transport that is solutions of

ṗµ(t) = τα
µ (p(t))ṗα(0), p(0) = 0. (22)

A vector field Xµ(p) ∈ TpP is said to be parallel transported from 0 to p if

X̃µ(p) =
(
τ0
p

)α

µ
Xα(0). (23)

In the following it will be convenient to denote such field by

X̃(p) = (p⊕X). (24)

whe
It is interesting to trace back to the composition rule this notion of geodesic. This comes

form the definition of a geodesic as the straightest line which adds up consistently under the
composition rule that it it satisfies

pt+dt = (pt ⊕ dp) (25)

indeed we can expand the RHS and get that

pt + ṗtdt = pt + (τ0
p · dp) (26)

which imply the parallel transport condition. We can get a very nice physical picture of a
geodesic starting from 0 as being the curve obtained by adding the same infinitesimal1 dp over
and over again

p(Ndt) = (((· · · (dp⊕ dp)⊕ · · · dp)⊕ dp) (27)

where we add N times the infintesimal dp. While the paralell transport operation can be written
as the addition

p(Ndt) + τ(p(Ndt)) · dq = ((· · · (dq ⊕ dp)⊕ dp)⊕ · · · dp)⊕ dp) (28)
1BY infinitesimal we mean an element dp such that (dp)2 = 0

4

Wednesday, June 22, 2011



Geometry of momentum space
The composition rules defines an affine connection on

2

tional effects may both be neglected, but there may be new
phenomena on scales of momentum or energy given by mp.
At the same time, because lp =

√
h̄GNewton → 0 we expect no

features of quantum spacetime geometry to be relevant.

Since our approximation gives us an energy scale, but not
a length scale, we will begin by presuming that momentum
space is more fundamental than spacetime. This is in accord
with the operational point of view we mentioned in the open-
ing paragraph. So we begin in momentum space by asking
how it may be deformed in a way that is measured by a scale
mp. Once that is established we will derive the properties
of spacetime from dynamics formulated in momentum space.
For convenience we work in first in the limit just described,
after which we will briefly turn on h̄.

By following this logic below, we will find that physics
may be governed by a novel principle, which we call the
Principle of Relative Locality. This states that,

Physics takes place in phase space and there is no invariant
global projection that gives a description of processes in
spacetime. From their measurements local observers can
construct descriptions of particles moving and interacting
in a spacetime, but different observers construct different
spacetimes, which are observer-dependent slices of phase
space.

In the next section we introduce an operational approach to
the geometry of momentum space, which we build on in sec-
tion III to give a dynamics of particles on a curved momentum
space. We see how a modified version of spacetime geometry
is emergent from the dynamics which is formulated on mo-
mentum space. In these sections we consider a general mo-
mentum space geometry, which illuminates a variety of new
phenomena that might be experimentally probed correspond-
ing to the curvature, torsion and non-metricity of momentum
space. However, one advantage of this approach is that with
a few reasonable physical principles the geometry of momen-
tum space can be reduced to three choices, depending on the
sign of a parameter. As we show in section IV, this gives this
framework both great elegance and experimental specificity.
In section V we make some preliminary observations as to
how the geometry of momentum space may be probed exper-
imentally, after which we conclude.

II. AN OPERATIONAL APPROACH TO THE GEOMETRY
OF MOMENTUM SPACE

We take an operational point of view in which we describe
physics from the point of view of a local observer who is
equipped with devices to measure the energy and momenta
of elementary particles in her vicinity. The observer also has
a clock that measures local proper time. We construct the ge-

ometry of momentum space2 P from measurements made of
the dynamics of interacting particles. We assume that to each
choice of calorimeter and other instruments carried by our ob-
server there is a preferred coordinate on momentum space, ka.
But we also assume that the dynamics can be expressed co-
variantly in terms of geometry of P and do not depend on the
choice of calorimeter’s coordinates. We note that the ka mea-
sure the energy and momenta of excitations above the ground
state, hence the origin of momentum space, ka = 0, is physi-
cally well defined.

Our local observer can make two kinds of measurements.
One type of measurement can be done only with a single par-
ticle and it defines, as we will see, a metric on momentum
space. The other type of measurement involve multi particles
and defines a connection. A key mathematical idea underly-
ing our construction is that a connection on a manifold can
be determined by an algebra [2], in the present case this will
be an algebra that determines how momenta combine when
particles interact.

A. The metric geometry of momentum space

First we describe the metric geometry. Our local observer
can measure the rest energy or relativistic mass of a parti-
cle which is a function of the four momenta. She can also
measure the kinetic energy K of a particle of mass m moving
with respect to her, but local to her. We postulate that these
measurements determine the metric geometry of momentum
space. We interpret the mass as the geodesic distance from the
origin, this gives the dispersion relation

D2(p)≡ D2(p,0) = m2. (2)

The measurement of kinetic energy defines the geodesic dis-
tance between a particle p at rest and a particle p′ of identical
mass and kinetic energy K, that is D(p) = D(p′) = m and

D2(p, p′) =−2mK. (3)

The minus sign express the fact that the geometry of momen-
tum space is Lorentzian. From these measurements one can
reconstruct a metric on P 3

dk2 = hab(k)dkadkb. (4)

B. The algebra of interactions

Now we describe the construction of the connection on mo-
mentum space. This is determined by processes in which

2 By which we mean the space of relativistic four-momenta denoted pa with
a = 0,1,2,3.

3 In the standard case of physics in Minkowski spacetime, hab is the dual
Minkowski metric and Ka(k) = ∑I kI

a. A scale mp may be introduced by
deforming the geometry of P so that it is curved. The correspondence
principle (to be introduced below) assures that we recover the standard flat
geometry of P in the limit mp → ∞.

3

n particles interact, nin incoming and nout outgoing, with
n = nin + nout . This proceeds by the construction of an al-
gebra, which then determines the connection.

Associated to each interaction there must be a combination
rule for momentum, which will in general be non-linear. We
denote this rule for two particles by

(p,q)→ p′a = (p⊕q)a (5)

Hence the momentum space P has the structure of an algebra
defined by the product rule ⊕. We assume that more compli-
cated processes are built up by iterations of this product – but
to begin with we assume neither linearity, nor commutativity
nor associativity.

We will also need an operation that turns outgoing momenta
into incoming momenta. This is denoted, p →$p and it sat-
isfies4

($p)⊕ p = 0 (6)

Then we have the conservation law of energy and momen-
tum for any process, giving, for each type of interaction, four
functions on P n, depending on momenta of interacting parti-
cles, which vanish

Ka(kI) = 0 (7)

C. From the algebra of interactions to the connection on
momentum space

Corresponding to the algebra of combinations of momenta
there is a connection on P . The geometry of momentum space
is studied in detail in [2], but the basics are as follows. The
algebra of the combination rule determines a connection on P
by

∂
∂pa

∂
∂qb

(p⊕q)c|q,p=o =−Γab
c (0) (8)

The torsion of Γbc
a is a measure of the asymmetric part of the

combination rule

− ∂
∂pa

∂
∂qb

((p⊕q)c − (p⊕q)c)q,p=o = T ab
c (0) (9)

Similarly the curvature of P is a measure of the lack of asso-
ciativity of the combination rule
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∂
∂kc

((p⊕q)⊕ k− p⊕ (q⊕ k))d |q,p,k=o = Rabc
d(0)

(10)
where the bracket denote the anti-symmetrisation.

We note that there is no physical reason to expect a com-
bination rule for momentum to be associative, once it is non-
linear. Indeed, the lack of associativity means there is a phys-
ical distinction between the two processes of Figure 1, which

4 And more generally ($p)⊕ (p⊕ k) = k, where $ is a left inverse.

is equivalent to saying there is a definite microscopic causal
structure. That is, causal structure of the physics maps to non-
associativity of the combination rule for momentum which in
turn maps to curvature of momentum space. The curvature
of momentum space makes microscopic causal orders distin-
guishable, and hence meaningful. This gives rise to proposals
to measure the curvature of momentum space which we will
discuss below.
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from the origin of momentum space we have to consider trans-
lating in momentum space, ie we can denote

p⊕k q = k⊕ (($k⊕ p)⊕ ($k⊕q)) (11)

the identity for this product is at 0k = k. Then

∂
∂pa

∂
∂qb

(p⊕k q)c|q,p=k =−Γab
c (k) (12)

Thus, the action of adding an infinitesimal momentum dqa
from particle J to a finite momentum pa of particle I defines a
parallel transport on P .

pa ⊕dqa = pa +dqbτb
a(p) (13)

where τ(p) is the parallel transport operation from the identity
to p. It can be expanded around p = 0

τb
a(p) = δb

a −Γbc
a pc −Γbcd

a pc pd + · · · (14)

with

Γbcd
a = ∂d

pΓbc
a −Γdb

i Γic
a −Γdc

i Γbi
a . (15)

The corresponding conservation law thus has the form to sec-
ond order

Ka(k) = ∑
I

kI
a − ∑

I &=J∈J
Γbc

a kJ
bkI

c + ... (16)

transforms as an affine connexion

Torsion measures non commutativity
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Curvature  measures non associativity
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n particles interact, nin incoming and nout outgoing, with
n = nin + nout . This proceeds by the construction of an al-
gebra, which then determines the connection.

Associated to each interaction there must be a combination
rule for momentum, which will in general be non-linear. We
denote this rule for two particles by

(p,q)→ p′a = (p⊕q)a (5)

Hence the momentum space P has the structure of an algebra
defined by the product rule ⊕. We assume that more compli-
cated processes are built up by iterations of this product – but
to begin with we assume neither linearity, nor commutativity
nor associativity.

We will also need an operation that turns outgoing momenta
into incoming momenta. This is denoted, p →$p and it sat-
isfies4

($p)⊕ p = 0 (6)

Then we have the conservation law of energy and momen-
tum for any process, giving, for each type of interaction, four
functions on P n, depending on momenta of interacting parti-
cles, which vanish

Ka(kI) = 0 (7)

C. From the algebra of interactions to the connection on
momentum space

Corresponding to the algebra of combinations of momenta
there is a connection on P . The geometry of momentum space
is studied in detail in [2], but the basics are as follows. The
algebra of the combination rule determines a connection on P
by

∂
∂pa

∂
∂qb

(p⊕q)c|q,p=o =−Γab
c (0) (8)

The torsion of Γbc
a is a measure of the asymmetric part of the

combination rule

− ∂
∂pa

∂
∂qb

((p⊕q)c − (p⊕q)c)q,p=o = T ab
c (0) (9)

Similarly the curvature of P is a measure of the lack of asso-
ciativity of the combination rule

2
∂

∂p[a
∂

∂qb]

∂
∂kc

((p⊕q)⊕ k− p⊕ (q⊕ k))d |q,p,k=o = Rabc
d(0)

(10)
where the bracket denote the anti-symmetrisation.

We note that there is no physical reason to expect a com-
bination rule for momentum to be associative, once it is non-
linear. Indeed, the lack of associativity means there is a phys-
ical distinction between the two processes of Figure 1, which

4 And more generally ($p)⊕ (p⊕ k) = k, where $ is a left inverse.

is equivalent to saying there is a definite microscopic causal
structure. That is, causal structure of the physics maps to non-
associativity of the combination rule for momentum which in
turn maps to curvature of momentum space. The curvature
of momentum space makes microscopic causal orders distin-
guishable, and hence meaningful. This gives rise to proposals
to measure the curvature of momentum space which we will
discuss below.
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FIG. 1: Curvature of the connection on momentum space produces
non-associativity of composition rule.

To determine the connection, torsion and curvature away
from the origin of momentum space we have to consider trans-
lating in momentum space, ie we can denote

p⊕k q = k⊕ (($k⊕ p)⊕ ($k⊕q)) (11)

the identity for this product is at 0k = k. Then

∂
∂pa

∂
∂qb

(p⊕k q)c|q,p=k =−Γab
c (k) (12)

Thus, the action of adding an infinitesimal momentum dqa
from particle J to a finite momentum pa of particle I defines a
parallel transport on P .

pa ⊕dqa = pa +dqbτb
a(p) (13)

where τ(p) is the parallel transport operation from the identity
to p. It can be expanded around p = 0

τb
a(p) = δb

a −Γbc
a pc −Γbcd

a pc pd + · · · (14)

with

Γbcd
a = ∂d

pΓbc
a −Γdb

i Γic
a −Γdc

i Γbi
a . (15)

The corresponding conservation law thus has the form to sec-
ond order

Ka(k) = ∑
I

kI
a − ∑

I &=J∈J
Γbc

a kJ
bkI

c + ... (16)

To define the connection away from 0 we “translate” the addition
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Three aspects of geometry, which can be measured:

•Torsion:  measures non-commutativity of interactions.

•Curvature: measures non-associativity of interactions.

•Non-metricity: if the connection defined by interactions is not the  
metric connection defined from propagation.

T bc
a = Γbc

a − Γcb
a

Rabc
d = ∂aΓbc

d − ∂bΓac
d + ΓΓ

Nabc = ∇agbc

pa ⊕ qa = pa + qa + Γbc
a pbqc + ...

Wednesday, June 22, 2011



Dynamics
•Spacetime emerges from the dynamics on momentum space.
•In our limit, we study first classical particle dynamics
•Each process has an action principle

Sprocess =
∑

trajectories,I

Sfree
I +

∑

interactions,α

Sint
α
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Emergence of space-time
Spacetime is an auxiliary concept that emerges from the dynamics 
of particles

Free particle dynamics

4

where J is the set of particles that interact with each other.
We will shortly study the consequences of curvature and

torsion on momentum space for the dynamics of particles. We
will see that the meaning of the curvature of momentum space
is that it implies a limitation of the usefulness of the notion
that processes happen in an invariant spacetime, rather than in
phase space. The hypothesis of a shared, invariant spacetime,
in which all observers agree on the locality of distant interac-
tions, turns out to be a direct consequence of the linearity of
the usual conservation laws of energy and momentum. When
we deform the conservation laws by making them non-linear,
this gives rise to relative locality.

III. THE EMERGENCE OF SPACETIME FROM THE
DYNAMICS OF PARTICLES

We take the point of view that spacetime is an auxiliary
concept which emerges when we seek to define dynamics in
momentum space. If we take the momenta of elementary par-
ticles to be primary, they themselves need momenta, so that a
canonical dynamics can be formulated. The momenta of the
momenta are quantities xa

I that live in the cotangent space of
P n at a point kI

a.

A. Variational principle

Given these we can define the free particle dynamics by

SI
f ree =

∫
ds

(
xa

J k̇J
a +NJC J(k)

)
(17)

where s is an arbitrary time parameter and NJ is the Lagrange
multiplier imposing the mass shell condition

C J(k)≡ D2(k)−m2
J . (18)

We emphasize that the contraction xa
J k̇J

a does not involve a
metric, and the dynamics is otherwise given by constraints
which are functions only of coordinates on P and depend only
the geometry of P . This leads to the Poisson brackets,

{xa
I ,k

J
b}= δa

bδJ
I (19)

We then have a phase space, Γ of a single particle, which
is the cotangent bundle of P . We note that there is neither
an invariant projection from Γ to a spacetime, M nor is there
defined any invariant spacetime metric. Yet this structure is
sufficient to describe the dynamics of free particles. The fact
that there is no invariant projection to a spacetime is related to
the non linearity of momentum space. Indeed under a non lin-
ear redefinition p → F(p) the conjugated coordinates is given
by x → (∂p/∂F)x, so the new canonical coordinate appears to
be momentum space dependent. This is this mixing between
“spacetime” and momentum space that is the basis of the rel-
ative locality. We can call the xa

J Hamiltonian spacetime co-
ordinates because they are defined as being canonically con-
jugate to coordinates on momentum space.

Note that we do not need a spacetime or spacetime metric
to describe how these particles interact. If we consider the
process with n interacting particles we want to impose con-
servation of the non-linear quantities, Ka. We do this by in-
troducing a lagrange multiplier to guarantee conservation (7).
The action is

Stotal = ∑
J

SJ
f ree +Sint (20)

where for the incoming particles

SJ
f ree =

∫ 0

−∞
ds

(
xa

J k̇J
a +NJC J(k)

)
(21)

while for the outgoing particles

SJ
f ree =

∫ ∞

0
ds

(
xa

J k̇J
a +NJC J(k)

)
(22)

The interaction contribution to the action is simply a lagrange
multiplier times the conservation law (7).

Sint = K (k(o))aza (23)

We have set the interaction to take place at affine parameter
s = 0 for each of the particles. At this point za can be just con-
sidered to be a lagrange multiplier to enforce the conservation
of momentum (7) at the interaction where for each particle
s = 0.

We vary the total action. After an integration by parts in
each of the free actions we have

δStotal =

∑
J

∫ s2

s1

(
δxa

J k̇J
a −δkJ

a

[
ẋa

J −NJ
δC J

δkJ
a

]
+δNJC J(k)

)
+R

(24)
Here R contains both the result of varying Sint and the bound-
ary terms from the integration by parts. s1,2 are 0,∞,−∞ de-
pending on whether the term is incoming or outgoing. Before
examining the boundary terms we confirm we have the desired
free parts of the equations of motion

k̇J
a = 0

ẋa
J = NJ

δC J

δkJ
a

C J(k) = 0 (25)

We fix δkJ
a = 0 at s = ±∞ and examine the remainder of the

variation

R = K (k)aδza −
(

xa
J(0)− zb δKb

δkJ
a

)
δkJ

a (26)

Here xa
J and kJ

a are taken for each particle at the parameter
time s = 0. This has to vanish if the variational principle is
to have solutions. From the vanishing of the coefficient of δza

we get the four conservation laws of the interaction (7). From

conjugate part coordinates mass shell

4
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K1 = %p1 ⊕ (q1 % k1)

xµ
1 = zα

1 ∂µ
p1
K1

α = (z1Ux1)
µ

Ux1 : T ∗0 P → T ∗p1
P

K3 = p1 ⊕ (q2 % k1)

p1 ' 0
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k

m
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(S2 − S1) = ∆z · p̂

(S2 − S1) = zem(Ux2 − Uu1)k − zrec(Ux4 − Uu3)k
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The free particle action makes no reference to a metric for spacetime. 
Spacetime geometry is inferred from the geometry of momentum space.

in the usual case the metric is flat and 
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dist from 0

also the case in Normal coordinates
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Worldline action
The variation of the worldline action gives 

bulk eom

4

The corresponding conservation law thus has the form to sec-
ond order

Ka(k) = ∑
I

kI
a − ∑

J∈J (I)
CI,JΓbc

a kJ
bkI

c + ... (17)

where J (I) is the set of particles that interact with the I’s one
and CI,J are coefficients that depend on the form of the con-
servation law.

We will shortly study the consequences of curvature and
torsion on momentum space for the dynamics of particles. We
will see that the meaning of the curvature of momentum space
is that it implies a limitation of the usefulness of the notion
that processes happen in an invariant spacetime, rather than in
phase space. The hypothesis of a shared, invariant spacetime,
in which all observers agree on the locality of distant interac-
tions, turns out to be a direct consequence of the linearity of
the usual conservation laws of energy and momentum. When
we deform the conservation laws by making them non-linear,
this gives rise to relative locality.

III. THE EMERGENCE OF SPACETIME FROM THE
DYNAMICS OF PARTICLES

We take the point of view that spacetime is an auxiliary
concept which emerges when we seek to define dynamics in
momentum space. If we take the momenta of elementary par-
ticles to be primary, they themselves need momenta, so that a
canonical dynamics can be formulated. The momenta of the
momenta are quantities xa

I that live in the cotangent space of
P n at a point kI

a.

A. Variational principle

Given these we can define the free particle dynamics by

SI
f ree =

∫
ds

(
xa

J k̇J
a +NJC J(k)

)
(18)

where s is an arbitrary time parameter and NJ is the Lagrange
multiplier imposing the mass shell condition

C J(k)≡ D2(k)−m2
J . (19)

We emphasize that the contraction xa
J k̇J

a does not involve a
metric, and the dynamics is otherwise given by constraints
which are functions only of coordinates on P and depend only
the geometry of P . This leads to the Poisson brackets,

{xa
I ,k

J
b}= δa

bδJ
I (20)

We then have a phase space, Γ of a single particle, which
is the cotangent bundle of P . We note that there is neither
an invariant projection from Γ to a spacetime, M nor is there
defined any invariant spacetime metric. Yet this structure is
sufficient to describe the dynamics of free particles. The fact
that there is no invariant projection to a spacetime is related to

the non linearity of momentum space. Indeed under a non lin-
ear redefinition p → F(p) the conjugated coordinates is given
by x → (∂p/∂F)x, so the new canonical coordinate appears to
be momentum space dependent. This is this mixing between
“spacetime” and momentum space that is the basis of the rel-
ative locality. We can call the xa

J Hamiltonian spacetime co-
ordinates because they are defined as being canonically con-
jugate to coordinates on momentum space.

Note that we do not need a spacetime or spacetime metric
to describe how these particles interact. If we consider the
process with n interacting particles we want to impose con-
servation of the non-linear quantities, Ka. We do this by in-
troducing a lagrange multiplier to guarantee conservation (7).
The action is

Stotal = ∑
J

SJ
f ree +Sint (21)

where for the incoming particles

SJ
f ree =

∫ 0

−∞
ds

(
xa

J k̇J
a +NJC J(k)

)
(22)

while for the outgoing particles

SJ
f ree =

∫ ∞

0
ds

(
xa

J k̇J
a +NJC J(k)

)
(23)

The interaction contribution to the action is simply a lagrange
multiplier times the conservation law (7).

Sint = K (k(o))aza (24)

We have set the interaction to take place at affine parameter
s = 0 for each of the particles. At this point za can be just con-
sidered to be a lagrange multiplier to enforce the conservation
of momentum (7) at the interaction where for each particle
s = 0.

We vary the total action. After an integration by parts in
each of the free actions we have

δStotal =

∑
J

∫ s2

s1

(
δxa

J k̇J
a −δkJ

a

[
ẋa

J −NJ
δC J

δkJ
a

]
+δNJC J(k)

)
+R

(25)
Here R contains both the result of varying Sint and the bound-
ary terms from the integration by parts. s1,2 are 0,∞,−∞ de-
pending on whether the term is incoming or outgoing. Before
examining the boundary terms we confirm we have the desired
free parts of the equations of motion

k̇J
a = 0

ẋa
J = NJ

δC J

δkJ
a

C J(k) = 0 (26)

We fix δkJ
a = 0 at s = ±∞ and examine the remainder of the

variation

R = K (k)aδza −
(

xa
J(0)− zb δKb

δkJ
a

)
δkJ

a (27)

simplified by Riemannian 
normal coordinates

7

the dimension of an inverse mass square. When this dual cos-
mological constant is zero we recover usual special relativity,
when it is non zero, momentum space is genuinely curved.

The first principle implies first that the metric of momen-
tum space is a Lorentzian metric ( which we already have
implicitly assumed). It also implies that the torsion and non-
metricity of Γbc

a must be at least of order 1/mp, while curva-
ture must be of order of 1/m2

p.
The weak equivalence principle implies that the combina-

tion of momenta do not depend on the colors or charges of
particles and is the same as the composition for identical par-
ticles. For identical particles there is no operational way to
give an order of the combination rule if we have Bose statis-
tics, therefore taken strongly, that is if we do not allow for any
modification of the statistics of identical particles, this princi-
ple also implies that the product is symmetric and hence the
connection is torsionless.

The strong equivalence principle relates the metric and the
connection of P by imposing that the connection is metric
compatible. The metric determines distance between two
points in momentum space, and hence governs the mass shell
relations of single particles, while the?connection determine
what is the straightest path between two points, and?hence is
determined by interactions which combine momenta. Since
they are given by different physics, they are in principle in-
dependent. However, there are indications, to be discussed
in [3] that, at least in some cases, the non-metricity of the
connection is related to violations of the equivalence between
relativistic energy and mass. It is intriguing that Einstein’s ob-
servation that in a relativistic theory E = mc2 appears to relate
the metric and the connection of momentum space.

The first three principles impose therefore that the geome-
try of momentum space is entirely fixed by a Lorentzian met-
ric. The connection is then the unique connection which is
torsionless and compatible with the metric.

The fourth principle of maximal symmetry is the most re-
strictive. This could be called the principle of ”special relative
locality” since it essentially implies a unique fixed dual geom-
etry on momentum space. What it means in a nutshell is that
the space of Killing vector fields of the metric form a ten di-
mensional Lie algebra. This symmetry algebra also preserve
the connection. This implies that there exists Lorentz trans-
formations Λ acting on P fixing the identity 0 such that

Λ(p⊕q) = Λ(p)⊕Λ(q). (41)

This implies that the conservation law transform covariantly
under Lorentz transformations

K (Λk) = ΛK (k). (42)

Hence, if we impose that the geometry of P is invariant
under Lorentz transformations then we gain an action of the
Lorentz group on the phase space Γ. From this we can con-
clude that there are for each interaction event, a family of local
observers which see the interaction to take place at za = 0 and
hence be local.

There also exist a notion of translations6 Tr such that
Tr(0) = r and

Tr(p⊕k q) = Tr(p)⊕Trk Tr(q) (43)

where ⊕k is the translated combination rule (12).
Here we expand more on how Lorentz invariance can be

made compatible with curved momentum space. First it is
well known that around the identity 0 we can set up a special
set of coordinates: The Riemannian normal coordinates. In
this coordinates the distance from 0 is given by the usual flat
space formula hence the mass shell condition in this coordi-
nates is simply7

C (k) = k2
0 − k2

i −m2 = 0. (44)

The Lorentz transformations that preserves the zero momenta
and the metric therefore acts in the usual manner in this coor-
dinate systems.

Moreover under the hypothesis of homogeneity these coor-
dinates can be extended to cover almost all the manifold P .
The Lorentz generators therefore satisfy the usual algebra. If
we assume in turn that the Lorentz transformations are canon-
ical transformations preserving the Poisson bracket, they also
satisfy the usual Poisson algebra. That is given the boost and
rotation generators Ni and M j, i, j,k = 1,2,3, we have

{Mi,M j}= εi jk Mk, {Mi,Nj}= εi jk Nk, {Ni,Nj}=−εi jk Nk
(45)

and the generators act on the momentum space P through
these brackets. Moreover, as in special relativity, we assume
that the momentum space P splits into collections of orbits of
the Lorentz group: the zero momentum point, which is left in-
variant by Lorentz transformations; the positive and negative
energy mass shells of massive particles; the light cone corre-
sponding to massless particles; and mass shells of tachyons of
imaginary mass. It is a direct consequence of this assumption
that the function C (k) in the mass shell condition (19) must be
a Lorentz scalar, so that all Lorentz observers agree what the
value of the invariant mass m2 is. It follows then that vectors
corresponding to the infinitesimal Lorentz transformations are
Killing vectors of the metric (4), so that the surfaces of con-
stant distance from the origin (the point in P corresponding to
zero momentum) are orbits of action of Lorentz group.

Combining the assumptions of Lorentz symmetry with
translation invariance or, equivalently, homogeneity then
completely determines the geometry of P , up to an overall
scale. Indeed, according to the latter the geometry of a fixed
mass orbit |k|2 +m2 = 0 is the same of all the masses. Thus
the geometry of P is not only invariant under Lorentz trans-
formations acting along the orbits, but also under translations,

6 The algebra of translations on momentum space does not have to be com-
mutative. It can be defined to be the left translation Tr(p)≡ r⊕ p.

7 The distance D2(k,k′) of two points away from the origin do not assume
this simple form (44), which applies only to measurements of distances
from the origin. Consequently, the action of lorentz boosts on the geometry
can be non-trivial even if the action on the coordinates ka in which (44)
holds is linear.
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where J is the set of particles that interact with each other.
We will shortly study the consequences of curvature and

torsion on momentum space for the dynamics of particles. We
will see that the meaning of the curvature of momentum space
is that it implies a limitation of the usefulness of the notion
that processes happen in an invariant spacetime, rather than in
phase space. The hypothesis of a shared, invariant spacetime,
in which all observers agree on the locality of distant interac-
tions, turns out to be a direct consequence of the linearity of
the usual conservation laws of energy and momentum. When
we deform the conservation laws by making them non-linear,
this gives rise to relative locality.

III. THE EMERGENCE OF SPACETIME FROM THE
DYNAMICS OF PARTICLES

We take the point of view that spacetime is an auxiliary
concept which emerges when we seek to define dynamics in
momentum space. If we take the momenta of elementary par-
ticles to be primary, they themselves need momenta, so that a
canonical dynamics can be formulated. The momenta of the
momenta are quantities xa

I that live in the cotangent space of
P n at a point kI

a.

A. Variational principle

Given these we can define the free particle dynamics by

SI
f ree =

∫
ds

(
xa

J k̇J
a +NJC J(k)

)
(17)

where s is an arbitrary time parameter and NJ is the Lagrange
multiplier imposing the mass shell condition

C J(k)≡ D2(k)−m2
J . (18)

We emphasize that the contraction xa
J k̇J

a does not involve a
metric, and the dynamics is otherwise given by constraints
which are functions only of coordinates on P and depend only
the geometry of P . This leads to the Poisson brackets,

{xa
I ,k

J
b}= δa

bδJ
I (19)

We then have a phase space, Γ of a single particle, which
is the cotangent bundle of P . We note that there is neither
an invariant projection from Γ to a spacetime, M nor is there
defined any invariant spacetime metric. Yet this structure is
sufficient to describe the dynamics of free particles. The fact
that there is no invariant projection to a spacetime is related to
the non linearity of momentum space. Indeed under a non lin-
ear redefinition p → F(p) the conjugated coordinates is given
by x → (∂p/∂F)x, so the new canonical coordinate appears to
be momentum space dependent. This is this mixing between
“spacetime” and momentum space that is the basis of the rel-
ative locality. We can call the xa

J Hamiltonian spacetime co-
ordinates because they are defined as being canonically con-
jugate to coordinates on momentum space.

Note that we do not need a spacetime or spacetime metric
to describe how these particles interact. If we consider the
process with n interacting particles we want to impose con-
servation of the non-linear quantities, Ka. We do this by in-
troducing a lagrange multiplier to guarantee conservation (7).
The action is

Stotal = ∑
J

SJ
f ree +Sint (20)

where for the incoming particles

SJ
f ree =

∫ 0

−∞
ds

(
xa

J k̇J
a +NJC J(k)

)
(21)

while for the outgoing particles

SJ
f ree =

∫ ∞

0
ds

(
xa

J k̇J
a +NJC J(k)

)
(22)

The interaction contribution to the action is simply a lagrange
multiplier times the conservation law (7).

Sint = K (k(o))aza (23)

We have set the interaction to take place at affine parameter
s = 0 for each of the particles. At this point za can be just con-
sidered to be a lagrange multiplier to enforce the conservation
of momentum (7) at the interaction where for each particle
s = 0.

We vary the total action. After an integration by parts in
each of the free actions we have

δStotal =

∑
J

∫ s2

s1

(
δxa

J k̇J
a −δkJ

a

[
ẋa

J −NJ
δC J

δkJ
a

]
+δNJC J(k)

)
+R

(24)
Here R contains both the result of varying Sint and the bound-
ary terms from the integration by parts. s1,2 are 0,∞,−∞ de-
pending on whether the term is incoming or outgoing. Before
examining the boundary terms we confirm we have the desired
free parts of the equations of motion

k̇J
a = 0

ẋa
J = NJ

δC J

δkJ
a

C J(k) = 0 (25)

We fix δkJ
a = 0 at s = ±∞ and examine the remainder of the

variation

R = K (k)aδza −
(

xa
J(0)− zb δKb

δkJ
a

)
δkJ

a (26)

Here xa
J and kJ

a are taken for each particle at the parameter
time s = 0. This has to vanish if the variational principle is
to have solutions. From the vanishing of the coefficient of δza

we get the four conservation laws of the interaction (7). From

The interaction imposes the conservation law
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z becomes the location of the interaction:
the interaction coordinate
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In this note I describe the geometry of momentum space in more detail

1 Connections and non linear composition

K a = (p⊕ (q ⊕ k))a

Rabc
d = ∂aΓbc

d − ∂bΓac
d + Γai

d Γbc
i − Γai

d Γbc
i

−∂a
p∂b

q [(p⊕ q)c − (q ⊕ p)c]|p,q=0 = T ab
c (0)

U(p)b
a ≡ ∂b

q(p⊕ q)a|q=0

!, G→ 0

Lk(p) ≡ k ⊕ p

∆θ = T 01
− ∆E

∆S = 0

S2 − S1 = Γ++
− ∆E = N++

− ∆E

= N++
− ∆E

T ∗P %= M × P

xa = zbU(k)a
b

T ∗k P T ∗0 P

U(k)b
a =

δKa

δkb

D(k)2 = k2
0 − $k2

S =
∫ 0

−∞
(xak̇a −NC(k))
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Here xa
J and kJ

a are taken for each particle at the parameter
time s = 0. This has to vanish if the variational principle is
to have solutions. From the vanishing of the coefficient of δza

we get the four conservation laws of the interaction (7). From
the vanishing of the coefficient of δkJ

a we find 4n conditions
which hold at the interaction

xa
J(0) = zb δKb

δkJ
a

(28)

Using (17) this gives conditions

xa
J(0) = za − zb ∑

L∈J (J)
CJ,LΓac

b kL
c + ... (29)

This tells us that to leading order, in which we ignore the
curvature of momentum space, all of the worldlines involved
in the interaction meet at a single spacetime event, za. The
choice of za is not constrained and cannot be, for its variation
gives the conservation laws (7). Thus, we have recovered the
usual notion that interactions of particles take place at single
events in spacetime from the conservation of energy and mo-
mentum. This is good because in quantum field theory con-
servation implies locality, and it is good to have a formulation
of classical interactions where this is also the case.

However when we include terms proportional to za, which
is to say when the observer is not at the interaction event, we
see that the relationship between conservation of energy and
momentum and locality of interactions is realized a bit more
subtly. The interaction takes place when the condition (29)
is satisfied, that is at n separate events, separated from za by
intervals

∆xa
J(0) =−zb ∑

L∈J (J)
CJ,LΓac

b kL
c + ... (30)

These relations (29), (30) illustrate concisely the relativity
of locality. For some fortunate observers the interaction takes
place at the origin of their coordinates, so that za = xa

J(0) = 0
in which case the interaction is observed to be local. Any other
observer, translated with respect to these, has a non-vanishing
za and hence sees the interaction to take place at a distant set
of events. These are centered around za but are not precisely
at the same values of the coordinates. That is the coordinates
of particles involved in an interaction removed from the origin
of the observer by a vector za are spread over a region of order

∆x ≈ |z||Γ|k (31)

The relationship (28) possess a very nice mathematical mean-
ing too. Since the momentum space is in general curved the
proper way to define the conjugate coordinates is as elements
of the cotangent bundle of P . The cotangent space based at
pI and the cotangent space based at 0 are different spaces in
the general curved case. This expresses mathematically the
relativity of locality. The hamiltonian particle coordinate xI
represent an element of T ∗

pI P while the interaction coordi-
nate being dual to the conservation law represent an element
of T ∗

0 P . (28) represent a relation between these two spaces
and remarkably it can be shown [2] that indeed the coefficient

∂K /∂k evaluated when K = 0 is the parallel transport opera-
tor, more precisely

∂b
p(k⊕ p)a|p=&k = (τ(k)−1)b

a (32)

where τ(k) is the parallel transport operator of vectors from 0
to k introduced earlier therefore τ(k)−1 is the parallel transport
operator of covectors from 0 to k.

B. The physical meaning of relative locality

Is this a real, physical non-locality or a new kind of coor-
dinate artifact? It is straightforward to see that it is the latter,
because the ∆xa

J(0) can be made to vanish by making a trans-
lation to the coordinates of another observer. In a canonical
formulation, translations are generated by the laws of conser-
vation of energy and momentum, (7). Given any local ob-
servable in phase space O observed by a local observer, Alice,
we can construct the observable as seen in coordinates con-
structed by another observer, Bob, distant from Alice, by a
translation labeled by parameters ba.

δbO = bb{Kb,O} (33)

Since momentum space is curved, and Kb is non-linear, it fol-
lows that the “spacetime coordinates” xa

J of a particle translate
in a way that is dependent on the energy and momenta of the
particles it interacts with, xa

J → x′aJ (0)= xa
J(0)+δbxa

J(0) where

δbxa
J(0) = bb{Kb,xa

J}=−ba +bb ∑
L∈J (J)

CJ,LΓac
b kL

c + ... (34)

This is a manifestation of the relativity of locality, ie local
spacetime coordinates for one observer mix up with energy
and momenta on translation to the coordinates of a distant ob-
server.

This mixing under translations effect also entirely accounts
for the separation of an interaction into apparently distinct
events, because with bb =−zb, we see that ∆xa

J of (28) is equal
to δbxa

J(0) of (34). Thus, the observer whose new coordinates
we have translated to observes a single interation taking place
at xa

J → x′aJ (0) = 0.
Thus, if I am a local observer and see an interaction to take

place via a collision at my origin of coordinates, a distant ob-
server will generally see it in their coordinates as spread out
in space-time by (28). And vice versa. There is not a physi-
cal non-locality, as all momentum conserving interactions are
seen as happening at a single spacetime event by some family
of observers, who are local to the interaction. But it becomes
impossible to localize distant interactions in an absolute man-
ner. Furthermore, all observers related by a translation agree
about the momenta of the particles in the interaction, because
under translations (33) δbkI

a = 0.
Note that if the curvature and torsion vanish there is no

mixing of spacetime coordinates with momenta under trans-
lations, so there is an invariant definition of spacetime. Thus,
the flatness of momentum space is responsible for the notion
of an absolute spacetime, just as the additivity of velocity al-
lows Newtonian physics to have an absolute time.

particle coordinates interaction coordinates

5

Here xa
J and kJ

a are taken for each particle at the parameter
time s = 0. This has to vanish if the variational principle is
to have solutions. From the vanishing of the coefficient of δza

we get the four conservation laws of the interaction (7). From
the vanishing of the coefficient of δkJ

a we find 4n conditions
which hold at the interaction

xa
J(0) = zb δKb

δkJ
a

(28)

Using (17) this gives conditions

xa
J(0) = za − zb ∑

L∈J (J)
CJ,LΓac

b kL
c + ... (29)

This tells us that to leading order, in which we ignore the
curvature of momentum space, all of the worldlines involved
in the interaction meet at a single spacetime event, za. The
choice of za is not constrained and cannot be, for its variation
gives the conservation laws (7). Thus, we have recovered the
usual notion that interactions of particles take place at single
events in spacetime from the conservation of energy and mo-
mentum. This is good because in quantum field theory con-
servation implies locality, and it is good to have a formulation
of classical interactions where this is also the case.

However when we include terms proportional to za, which
is to say when the observer is not at the interaction event, we
see that the relationship between conservation of energy and
momentum and locality of interactions is realized a bit more
subtly. The interaction takes place when the condition (29)
is satisfied, that is at n separate events, separated from za by
intervals

∆xa
J(0) =−zb ∑

L∈J (J)
CJ,LΓac

b kL
c + ... (30)

These relations (29), (30) illustrate concisely the relativity
of locality. For some fortunate observers the interaction takes
place at the origin of their coordinates, so that za = xa

J(0) = 0
in which case the interaction is observed to be local. Any other
observer, translated with respect to these, has a non-vanishing
za and hence sees the interaction to take place at a distant set
of events. These are centered around za but are not precisely
at the same values of the coordinates. That is the coordinates
of particles involved in an interaction removed from the origin
of the observer by a vector za are spread over a region of order

∆x ≈ |z||Γ|k (31)

The relationship (28) possess a very nice mathematical mean-
ing too. Since the momentum space is in general curved the
proper way to define the conjugate coordinates is as elements
of the cotangent bundle of P . The cotangent space based at
pI and the cotangent space based at 0 are different spaces in
the general curved case. This expresses mathematically the
relativity of locality. The hamiltonian particle coordinate xI
represent an element of T ∗

pI P while the interaction coordi-
nate being dual to the conservation law represent an element
of T ∗

0 P . (28) represent a relation between these two spaces
and remarkably it can be shown [2] that indeed the coefficient

∂K /∂k evaluated when K = 0 is the parallel transport opera-
tor, more precisely

∂b
p(k⊕ p)a|p=&k = (τ(k)−1)b

a (32)

where τ(k) is the parallel transport operator of vectors from 0
to k introduced earlier therefore τ(k)−1 is the parallel transport
operator of covectors from 0 to k.

B. The physical meaning of relative locality

Is this a real, physical non-locality or a new kind of coor-
dinate artifact? It is straightforward to see that it is the latter,
because the ∆xa

J(0) can be made to vanish by making a trans-
lation to the coordinates of another observer. In a canonical
formulation, translations are generated by the laws of conser-
vation of energy and momentum, (7). Given any local ob-
servable in phase space O observed by a local observer, Alice,
we can construct the observable as seen in coordinates con-
structed by another observer, Bob, distant from Alice, by a
translation labeled by parameters ba.

δbO = bb{Kb,O} (33)

Since momentum space is curved, and Kb is non-linear, it fol-
lows that the “spacetime coordinates” xa

J of a particle translate
in a way that is dependent on the energy and momenta of the
particles it interacts with, xa

J → x′aJ (0)= xa
J(0)+δbxa

J(0) where

δbxa
J(0) = bb{Kb,xa

J}=−ba +bb ∑
L∈J (J)

CJ,LΓac
b kL

c + ... (34)

This is a manifestation of the relativity of locality, ie local
spacetime coordinates for one observer mix up with energy
and momenta on translation to the coordinates of a distant ob-
server.

This mixing under translations effect also entirely accounts
for the separation of an interaction into apparently distinct
events, because with bb =−zb, we see that ∆xa

J of (28) is equal
to δbxa

J(0) of (34). Thus, the observer whose new coordinates
we have translated to observes a single interation taking place
at xa

J → x′aJ (0) = 0.
Thus, if I am a local observer and see an interaction to take

place via a collision at my origin of coordinates, a distant ob-
server will generally see it in their coordinates as spread out
in space-time by (28). And vice versa. There is not a physi-
cal non-locality, as all momentum conserving interactions are
seen as happening at a single spacetime event by some family
of observers, who are local to the interaction. But it becomes
impossible to localize distant interactions in an absolute man-
ner. Furthermore, all observers related by a translation agree
about the momenta of the particles in the interaction, because
under translations (33) δbkI

a = 0.
Note that if the curvature and torsion vanish there is no

mixing of spacetime coordinates with momenta under trans-
lations, so there is an invariant definition of spacetime. Thus,
the flatness of momentum space is responsible for the notion
of an absolute spacetime, just as the additivity of velocity al-
lows Newtonian physics to have an absolute time.

if z=0 then x=0 : interaction is local for an observer at the origin

For a distant observer there is a dispersion

5

Here xa
J and kJ

a are taken for each particle at the parameter
time s = 0. This has to vanish if the variational principle is
to have solutions. From the vanishing of the coefficient of δza

we get the four conservation laws of the interaction (7). From
the vanishing of the coefficient of δkJ

a we find 4n conditions
which hold at the interaction

xa
J(0) = zb δKb

δkJ
a

(28)

Using (17) this gives conditions

xa
J(0) = za − zb ∑

L∈J (J)
CJ,LΓac

b kL
c + ... (29)

This tells us that to leading order, in which we ignore the
curvature of momentum space, all of the worldlines involved
in the interaction meet at a single spacetime event, za. The
choice of za is not constrained and cannot be, for its variation
gives the conservation laws (7). Thus, we have recovered the
usual notion that interactions of particles take place at single
events in spacetime from the conservation of energy and mo-
mentum. This is good because in quantum field theory con-
servation implies locality, and it is good to have a formulation
of classical interactions where this is also the case.

However when we include terms proportional to za, which
is to say when the observer is not at the interaction event, we
see that the relationship between conservation of energy and
momentum and locality of interactions is realized a bit more
subtly. The interaction takes place when the condition (29)
is satisfied, that is at n separate events, separated from za by
intervals

∆xa
J(0) =−zb ∑

L∈J (J)
CJ,LΓac

b kL
c + ... (30)

These relations (29), (30) illustrate concisely the relativity
of locality. For some fortunate observers the interaction takes
place at the origin of their coordinates, so that za = xa

J(0) = 0
in which case the interaction is observed to be local. Any other
observer, translated with respect to these, has a non-vanishing
za and hence sees the interaction to take place at a distant set
of events. These are centered around za but are not precisely
at the same values of the coordinates. That is the coordinates
of particles involved in an interaction removed from the origin
of the observer by a vector za are spread over a region of order

∆x ≈ |z||Γ|k (31)

The relationship (28) possess a very nice mathematical mean-
ing too. Since the momentum space is in general curved the
proper way to define the conjugate coordinates is as elements
of the cotangent bundle of P . The cotangent space based at
pI and the cotangent space based at 0 are different spaces in
the general curved case. This expresses mathematically the
relativity of locality. The hamiltonian particle coordinate xI
represent an element of T ∗

pI P while the interaction coordi-
nate being dual to the conservation law represent an element
of T ∗

0 P . (28) represent a relation between these two spaces
and remarkably it can be shown [2] that indeed the coefficient

∂K /∂k evaluated when K = 0 is the parallel transport opera-
tor, more precisely

∂b
p(k⊕ p)a|p=&k = (τ(k)−1)b

a (32)

where τ(k) is the parallel transport operator of vectors from 0
to k introduced earlier therefore τ(k)−1 is the parallel transport
operator of covectors from 0 to k.

B. The physical meaning of relative locality

Is this a real, physical non-locality or a new kind of coor-
dinate artifact? It is straightforward to see that it is the latter,
because the ∆xa

J(0) can be made to vanish by making a trans-
lation to the coordinates of another observer. In a canonical
formulation, translations are generated by the laws of conser-
vation of energy and momentum, (7). Given any local ob-
servable in phase space O observed by a local observer, Alice,
we can construct the observable as seen in coordinates con-
structed by another observer, Bob, distant from Alice, by a
translation labeled by parameters ba.

δbO = bb{Kb,O} (33)

Since momentum space is curved, and Kb is non-linear, it fol-
lows that the “spacetime coordinates” xa

J of a particle translate
in a way that is dependent on the energy and momenta of the
particles it interacts with, xa

J → x′aJ (0)= xa
J(0)+δbxa

J(0) where

δbxa
J(0) = bb{Kb,xa

J}=−ba +bb ∑
L∈J (J)

CJ,LΓac
b kL

c + ... (34)

This is a manifestation of the relativity of locality, ie local
spacetime coordinates for one observer mix up with energy
and momenta on translation to the coordinates of a distant ob-
server.

This mixing under translations effect also entirely accounts
for the separation of an interaction into apparently distinct
events, because with bb =−zb, we see that ∆xa

J of (28) is equal
to δbxa

J(0) of (34). Thus, the observer whose new coordinates
we have translated to observes a single interation taking place
at xa

J → x′aJ (0) = 0.
Thus, if I am a local observer and see an interaction to take

place via a collision at my origin of coordinates, a distant ob-
server will generally see it in their coordinates as spread out
in space-time by (28). And vice versa. There is not a physi-
cal non-locality, as all momentum conserving interactions are
seen as happening at a single spacetime event by some family
of observers, who are local to the interaction. But it becomes
impossible to localize distant interactions in an absolute man-
ner. Furthermore, all observers related by a translation agree
about the momenta of the particles in the interaction, because
under translations (33) δbkI

a = 0.
Note that if the curvature and torsion vanish there is no

mixing of spacetime coordinates with momenta under trans-
lations, so there is an invariant definition of spacetime. Thus,
the flatness of momentum space is responsible for the notion
of an absolute spacetime, just as the additivity of velocity al-
lows Newtonian physics to have an absolute time.

Locality is relative
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Abstract

In this note I describe the geometry of momentum space in more detail

1 Connections and non linear composition

xa = zbU(k)a
b

T ∗k P T ∗0 P
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ka=0

kaP

T*0
za

Phase space = T*P

T*kxa (0)

U

Paralell transport operator

No canonical projection from phase space to space time. 
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each particle carries its own momentum dependent spacetime
related by parallel transport to the interaction spacetime

reads
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Two kinds of spacetime coordinates

particle coordinates interaction coordinates
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Paralell transport operator

If the conservation law is linear then W =1 and x=z      local int.
Otherwise the interaction is only relatively local  i-e x=0 if z=0

x is a commutative coordinate 
z is a non commutative coordinate 

{za, zb} = T ab
d zd + Rabc

dpcz
d + · · ·

W ν
µ (k) =

δKµ

δkν

1 2 p12 p12

ẋµ
I = N Ik

µ
I
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e.g 3d quantum gravity N=R=0.

The paralell transport operator is determined by the connection 
and a path from   to    which is determined by the interaction vertex
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Experimental test

The geometry of momentum space should be measured 
rather than assumed

A new phenomenological sets of questions opens up

Two types of search: theoretical or purely phenomelogical

Given the maximally symmetric model: N=T=0 R= cst
 find a clean measure of the dual cosmological constant 

Test the 4 principles:
Torsion, non metricity, Lorentz invariance, homogeneity

Theorists propose but experiments decide.
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Experimental tests

•Measure of the curvature of momentum space
A thomas precession analogy
A system in orbit ( electron ,part at the LHC)
encloses a loop in momentum space at each period of revolution
The localisation of the orbiting particle will be shifted with 
respect to the particle at rest, it experiences a boost

9

found, if a dedicated research effort is inspired by our pro-
posal. The simplicity of the scheme described in Figure 2
serves the purpose of showing very clearly that the geometry
of momentum space can manifest itself in measurable quanti-
ties. The procedure sketched in Figure 2 is also representative
of a whole class of strategies for measuring non-associativity
and/or non-commutativity of the law of composition of mo-
menta, which, as we have shown, are expressed respectively
by the curvature and torsion of a connection on P .

It is interesting to note also that there is a simple anal-
ogy between the non-linear composition of momenta we have
discussed here and the nonlinear law of composition of ve-
locities, in Special Relativity. It is not always stressed that
the composition law of velocities in special relativity is non-
associative [5]. This non-associativity is absent for addition
of co-linear velocities but is measured in Thomas procession
[6]. This suggest an experiment inspired by the Thomas pre-
cession experiment [7]. The idea is to follow a system in orbit
(an electron in an atom or a particle circling in the LHC). Such
a system is enclosing a loop in momentum space at each pe-
riod of revolution, which enclose the curvature in momentum
space. At each period the localization of the orbiting parti-
cle will be shifted compared to the localization of a particle at
rest. Effectively, the particle will experience an infinitesimal
boost Ni at each period given by

Ni =
∆Acd

m2
P

Rcda
i pa ≈

∆Acd

m2
P

mRcd0
i (47)

where ∆Acd is the area of the loop in momentum space and m
the mass of the particle. One should be able to observe then
a spacetime displacement due to relative locality effect. Even
if this effect is tiny this type of observation possess a huge
potential since it is a cumulative effect and we can use the
large number of orbits that develop over time.

These experiments represent ways to measure the curva-
ture of momentum space, which is the main effect that needs
to be probed. We can also test more broadly the solidity of
the strong and weak dual equivalence principle. The metric-
ity of the connection could be tested by looking for violations
of the equivalence between mass and rest energy. There are
numerous nuclear physics experiments that rely on the equiv-
alence between mass and energy, the accuracy that is achieved
in these experiments is not Planckian, but they clearly deserve
a closer scrutiny in light of the new principle we propose.

It will be also important to have a direct experimental bound
on the momentum space torsion. One way to probe it is
to put Bose statistics under experimental scrutiny, since we
have argued that a non vanishing torsion will in effect corre-
spond to a modification of the statistics8. This issue deserves
a deeper analysis in order to propose specific effects to look
for. Also one could imagine a momentum space Eötvos ex-

8 The usual argument in favor of the standard statistics uses crucially the
existence of an absolute spacetime, and the independence of the state of a
system on its momentum space history. Logically, this derivation should
be revisited in light of the relative locality principle

periment showing that all type of matter add momentum in
the same way.

We can add that a non-trivial geometry of momentum space
can in the most general form produce deformations of well
tested symmetries of quantum field theory including CPT
and crossing symmetry[4]. This is because they imply non-
linearities in conservation laws, which would show up as vio-
lations of the linear form of those laws. For example, we ex-
pect that standard arguments on crossing symmetry in which
an incoming particle with four momentum ka is replaced by
an outgoing antiparticle with four momentum −ka will be de-
formed so the antiparticle has instead momentum #ka. This
will introduce non-linearities which will show up as violations
of the usual crossing symmetry. Thus the tight experimental
constraints on these symmetries constrains the geometry of
momentum space. This is expressed by the correspondence
principle we discussed in the previous section. Thus, a first
task for phenomenologists will be to understand the bounds
on the mass scale mc from existing tests of fundamental sym-
metries in quantum field theory [4].

These examples illustrates that the principles proposed here
open a new type of investigation, both experimental and theo-
retical, into the geometry of momentum space.

VI. CONCLUSIONS

The passage from special relativistic locality to relative lo-
cality reminds us of the passage we navigated a century ago
from absolute space to spacetime. The additivity of velocity
implies there is an absolute time by which velocity is mea-
sured. If we hypothesize that the combinations of velocity
might become non-linear, without weakening the principle of
the relativity of inertial frames, we need an invariant scale, to
measure the scale of the non-linearities, which must be a ve-
locity itself. Hence there is an invariant velocity we call c.
This then allows us to interchange distances and times, which
makes possible the existence of an absolute spacetime, which
replaces the notion of absolute space. Space itself remains, but
as an observer dependent concept, because of the relativity of
the simultaneity of distant events.

Similarly, as we observed above, the additivity of momenta
and energy implies the existence of an absolute spacetime.
When we contemplate weakening that to a non-linear com-
bination rule for momenta in physical interactions, we need
an invariant momentum scale. We have taken this scale to
be mp but of course from a phenomenological point of view
it should be taken as having a free value to be constrained
by experiment. This, together with h̄ makes it possible to in-
terchange distances and momenta, which makes possible the
mixing of spacetime coordinates with energy and momenta,
so that the only invariant structure is the phase space. We saw
above explicitly how non-linearity in conservation of energy
and momentum directly forces translations of spacetime coor-
dinates to depend on momenta and energies. Local spacetime
remains, but as an observer dependent concept, because of the
relativity of the locality of distant events.

Relative locality suggests novel points of departure for

small displacement in space and time, cumulative.
It pulls itself by the bootstraps!

motivated by Girelli, Livine

•Experiment that follows from modified localisation 
equation: Gamma Rays experiment:  see following.

•Interferometry in momentum space
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Gamma ray exp
The process of localising a distant object is momentum 
dependent

The experiment a distant star emits two photons
One of low energy and one of high energy

If the photons are emitted at the same time for an observer local 
to the star are they observed arriving at the same time by us ?

Not necessarily !  
even if the photons have the same speed  

photon 1,  E1~0

photon 2,  E2

atom in 

atom 
in

T1

T2

S1

S2

Wednesday, June 22, 2011



Localisation
In SR we use the eom are used to relate the position of the 
interaction vertex with the momenta and proper time:

reads
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ẋµ
I = N Ik

µ
I

k̇I
µ = 0

D2(kI) = m2
I

k2
I = m2

I

p12 p23 p13

1 2 3

5

W ν
µ (k) =

δKµ

δkν

1 2 p12 p12

ẋµ
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Relative Localisation
In RL the eom gives a modified relation between  the interaction 
coordinate with  the momenta and proper time:

edge holonomy
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H is the composition of particle holonomies
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ẋµ
I = NIk

µ
I

xµ
I = zµ

z1 − z2 = p12T12

0 k

p = mẋ
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p12T12 + p23T23 = p13T13

z2 − z1H12 = P12T12

H12 = W1W
−1
2

∈ T ∗
0P → T ∗

0P

(W1)ν
µ =

∂K1
µ

∂p12
ν

,

(W2)ν
µ =

∂K2
µ

∂p12
ν

∈ T ∗
0P → T ∗

kP
P12 = p12W

−1
2

T12p12 + T23p23H12 − T13p13H12H23 = z1(1−HL)

xa
k = zbW a

b (k)

W b
a(k) =

δKa

δkb

1 2 p12 p12

4

and

reads
p1 + p2 −

1
mP

Γ(p2, p2) = q1 + q2 −+
1

mP
Γ(q1, q1) (17)

! ! ! stands for order pn+1/mn
p

p1
in = p1

out ⊕ k

k ⊕ p2
in = p2

out

Pin = Npin

Pout = Npout

Ptot = N(p1
in ⊕ p2

pin) = N(p1
out ⊕ p2

out)

= P1 + P2 −
1

NmP
Γ(P1, P2) + ! ! !

p⊕ p = 2p
mP → Nmp

Sint = (p + q + k)µzµ

ẋµ
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Relative Localisation 2
For a closed loop the relation  between momenta is now

vanish if the curvature 
of the connection is 0

The curvature vanish at first order so the first order effect are 
controlled by non-metricity and Torsion.

Is there a way to relate curvature effect in momentum space to 
curvature effect in space?

time delay and dual gravitational effects  

Kappa Poincare and 3d gravity are example of zero curvature, non 
vanishing torsion geometry...
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dressed momenta
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FIG. 1: An invariant description of the time of flight measurement

III. THE EXPERIMENTAL SET UP

Let us consider the experiment displayed in Figure (III).
This is a model of an observation where two photons of dif-
ferent energies are emitted by a gammay-ray burst and, after
traveling for a very long time, T , arrive at a detector. We
will include the case where the photons are emitted simulta-
neously, in an invariant sense. This will be clearer if we begin
with the case in which there are delays between the emissions
and the detection of the two photons, and then take the limit
where the invariant proper time between the emission events
is taken to zero.

As shown in Figure (??) an emitter with initial four momen-
tum q1

a emits a photon at an event E1 with a small momentum
p1

a, leaving the detector with momentum k1
a. This occurs at an

interaction coordinate za
1, the momentum is transfered from

the emitter at position xa
1, and the new world-line of the detec-

tor begins at ua
1. The photon is created at ya

1. After a proper
time s1 in the frame of the emitter, it emits a second, and more
energetic photon, with momentum p2

a at an event E2. The in-
teraction coordinate of this second emission is za

2, the momen-
tum is transfered from the emitter at position xa

2, and the new
world-line of the detector begins at ua

2. The photon is created
at ya

2. The detector is left with momentum r1
a.

The first photon travels for a time T1 in the rest frame of the
emitter, at which time it is absorbed by a detector, which is at
rest with respect to the emitter and has initially momentum-
energy, q2

a and, after the detection, momentum k2
a. This ab-

sorption of the first photon by the detector is event E3. The
interaction coordinate of this third emission is za

3, the photon
is absorbed at event ya

3, the detector jumps from position xa
3 to

ua
3 when it absorbs the photon.
Then, after a proper time s2 in the state k2

a, the detector ab-
sorbs the second photon at a fourth event, E4. This leaves
the detector with momentum r2

a. The fourth interaction coor-
dinate associated with the detection of the second photon is
za

4, the photon dissapears at event ya
4, the detector jumps from

coordinate xa
4 to ua

4 when its momentum changes from k2
a to

r2
a.

The time the second photon traveled was T2.

IV. THE DYNAMICS

We describe the experiment in terms of solutions to the vari-
ational principle, which are of the form

Stotal = ∑
worldlines,α

S f ree
α + ∑

interaction,I
Sint

I (25)

The free part of the action is given by

SI
f ree =

Z
ds

(
xa

J k̇J
a +NJC J(k)

)
(26)

where s is an arbitrary time parameter and NJ is the Lagrange
multiplier imposing the mass shell condition

C J(k)≡ D2(k)−m2
J . (27)

The range of integration is from the initial to the final event of
each worldline.

We assume, following[? ] that Riemann normal coordi-
nates can be chosen so that

D2(k) = ηabkakb (28)

The interactions are described by

Sint
I = K I

a za
I (29)

where the K I
a give four energy-momentum conservation laws

for each interaction, which are functions of the momenta at the
vertex. We will take for the definition of the trivalent vertices
the form (20) discussed in the previous section.

The za
I ’s are lagrange multipliers whose variation yields the

conservation laws. They become the ”interaction coordinates,
which are where the interation takes place in spacetime ac-
cording to observers local to it.

Before going further we have to point out some subtleties
of the geometry, which are a consequence of the curvature of
momentum space P . First, notice that the metric of spacetime
appears nowhere in the action. We see that in (26), the co-
ordinates of the free particle trajectories xa

I arise as conjugate

Gamma ray exp
The setting Results:

The leading order effect
is due to non-metricity.

For a metric connection the next effect is due to the torsion 
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Abstract

In this note I describe the geometry of momentum space in more detail

1 Connections and non linear composition

∆S = 0

S2 − S1 = Γ++
− ∆E = N++

− ∆E

= N++
− ∆E

T ∗P "= M × P

xa = zbU(k)a
b

T ∗k P T ∗0 P

U(k)b
a =

δKa

δkb

D(k)2 = k2
0 − "k2

S =
∫ 0

−∞
(xak̇a −NC(k))

U(p)b
a ≡ ∂b

q(p⊕ q)a|q=0

T ∗P = M × P T ∗0P
(p⊕ (p⊕ p))⊕ q) = p⊕ ((p⊕ p)⊕ q)

(p⊕ p)⊕ q = p⊕ (p⊕ q)

D(Λ(p),Λ(q)) = D(p, q)

D(Tr(p), Tr(q)) = D(p, q)

Tr(p) = r ⊕ p
K1 = &p1 ⊕ (q1 & k1)
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no time delay 

photons of different energies appear to come from different locations

but

dual gravitational lensing
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Abstract

In this note I describe the geometry of momentum space in more detail

1 Connections and non linear composition

K a = (p⊕ (q ⊕ k))a

Rabc
d = ∂aΓbc

d − ∂bΓac
d + Γai

d Γbc
i − Γai

d Γbc
i

−∂a
p∂b

q [(p⊕ q)c − (q ⊕ p)c]|p,q=0 = T ab
c (0)

U(p)b
a ≡ ∂b

q(p⊕ q)a|q=0

!, G→ 0

Lk(p) ≡ k ⊕ p

∆θ = T∆ET 01
−

∆S = 0

S2 − S1 = −T∆EN+++

= N++
− ∆E

T ∗P %= M × P

xa = zbU(k)a
b

T ∗k P T ∗0 P

U(k)b
a =

δKa

δkb

D(k)2 = k2
0 − $k2

S =
∫ 0

−∞
(xak̇a −NC(k))
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Abstract

In this note I describe the geometry of momentum space in more detail

1 Connections and non linear composition

K a = (p⊕ (q ⊕ k))a

Rabc
d = ∂aΓbc

d − ∂bΓac
d + Γai

d Γbc
i − Γai

d Γbc
i

−∂a
p∂b

q [(p⊕ q)c − (q ⊕ p)c]|p,q=0 = T ab
c (0)

U(p)b
a ≡ ∂b

q(p⊕ q)a|q=0

!, G→ 0

Lk(p) ≡ k ⊕ p

∆θ =
1
2
(E1 + E2)

√
T+a
− ηabT

+b
−

∆S = 0

S2 − S1 = −T∆EN+++

= N++
− ∆E

T ∗P %= M × P

xa = zbU(k)a
b

T ∗k P T ∗0 P

U(k)b
a =

δKa

δkb

D(k)2 = k2
0 − %k2

S =
∫ 0

−∞
(xak̇a −NC(k))
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Soccer ball issue
If one modifies the law of addition of momenta with a scale mp
how come we do not see strange effects for soccer balls?

The main point is that the effective mass scale for the interaction 
of two  soccer balls of  size N is N mp

The geometry of momentum space
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Abstract

In this note I describe the geometry of momentum space in more detail

1 Connections and non linear composition

T ∗P = M × P T ∗
0P

(p⊕ (p⊕ p))⊕ q) = p⊕ ((p⊕ p)⊕ q)

(p⊕ p)⊕ q = p⊕ (p⊕ q)

D(Λ(p),Λ(q)) = D(p, q)

D(Tr(p), Tr(q)) = D(p, q)

Tr(p) = r ⊕ p
K1 = #p1 ⊕ (q1 # k1)

xµ
1 = zα

1 ∂µ
p1
K1

α = (z1Ux1)
µ

Ux1 : T ∗
0 P → T ∗

p1
P

K3 = p1 ⊕ (q2 # k1)

p1 % 0

(x2 − u1) = k̂1S1 (x4 − u3) = k̂2S2

k̂ =
k

m
p̂ · k̂ = 1

(T2 − T1) = ∆z · (p̂− k̂)

(S2 − S1) = ∆z · p̂

(S2 − S1) = zem(Ux2 − Uu1)k − zrec(Ux4 − Uu3)k

∼ (zrec − zem)µTαβ
µ pαkβ

p1 ⊕ p2 = p1 + p2 +
1

mP
T (p1, p2) + · · ·

∗lfreidel@perimeterinstitute.ca

1

Wednesday, June 22, 2011



Soccer ball issue
The argument is as follows:
Supose that two rigid bodies 1, 2 both composed of N particles 
interact such that each atom of 1 exchanges a photon with an 
atom of 2

Lets also assume that all atoms of 1, 2 have the same momenta

2 soccer ball problem

p1 ⊕ p2 = p1 + p2 −
1

mP
Γ(p1, p2) + · · ·

#p = −p− 1
mP

Γ(p, p) + · · ·

p1 # q1 = p1 − q1 +
1

mP
Γ(p1 − q1, q1) + · · ·

One can check that at this order (p1 # q1)⊕ q1 = p1 also

(#p2)⊕ q2 = q2 − p2 +
1

mP
Γ(p2, q2 − p2) + · · ·

the conservation rule
p1 # q1 = q2 # p2

reads
p1 + p2 −

1
mP

Γ(p2, p2) = q1 + q2 −+
1

mP
Γ(q1, q1) (17)

· · · stands for order pn+1/mn
p

p1
in = p1

out ⊕ k

k ⊕ p2
in = p2

out

Definition 1. A left invertible composition law on a manifold P is a C∞ map

⊕ : P × P → P

(p, q) → (p⊕ q) (18)

which satisfies the following three properties:
1- It possesses a unit element denoted 0 such that (0⊕ p) = p = (p⊕ 0)
2- It possess a left inversion # : P → P such that (#p⊕ p) = 0
3-This inversion provides a left inverse for the composition i-e

p⊕ (#p⊕ q) = q = #p⊕ (p⊕ q).

Note that we do not assume at this stage that this composition law is either commutative
or associative. Suppose that we define the left multiplication operator Lp : P → P by

Lp(q) ≡ (p⊕ q). (19)

This definition imply that L0 is the identity operator and that Lp(0) = p. It also imply that Lp

is invertible with inverse given by
L−1

p = L#p.

3
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p⊕ p = 2p

Definition 1. A left invertible composition law on a manifold P is a C∞ map

⊕ : P × P → P

(p, q) → (p⊕ q) (18)

which satisfies the following three properties:
1- It possesses a unit element denoted 0 such that (0⊕ p) = p = (p⊕ 0)
2- It possess a left inversion # : P → P such that (#p⊕ p) = 0
3-This inversion provides a left inverse for the composition i-e

p⊕ (#p⊕ q) = q = #p⊕ (p⊕ q).
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normal coord.

2 soccer ball problem
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Definition 1. A left invertible composition law on a manifold P is a C∞ map

⊕ : P × P → P

(p, q) → (p⊕ q) (18)

which satisfies the following three properties:
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There is no soccer ball prob !
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Conclusion

New framework in which we can relax the notion of absolute 
locality in a controlled manner

Momentum space possess a non trivial geometry (metric, 
connection) that can and should be probed experimentally

Under general principles a preferred class of momentum space 
geometries can be proposed 

Many interesting and extremely surprising experimental 
consequences 

Interesting new math: connection between algebra and geometry

No soccer ball problem
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Conclusion

Field theory description: Follows from the worldline formalism

Is there a way to prove the Born principle?

Any theory of quantum gravity should imply that momentum space 
is dynamical. 

What is the source of curvature in momentum space?

 It is true for 3d gravity. Is it true in string theory? In Loop 
Quantum gravity?
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