Covariant and local deformations of quantum field theories

Gandalf Lechner

University of Vienna

Quantum Theory and Gravitation June 20, 2011

Quantum theory and relativity

Main topic of this conference:

Combination of quantum theory and general relativity (quantum gravity)

• This talk: Let's take a step back and reconsider

Combination of quantum theory and special relativity (quantum field theory)

- Also in quantum theory + special relativity, some fundamental problems are unsolved (construction of models)
- Some connections between the two settings by noncommutative geometry

Models of QFT can be formulated in any approach. Known models:

- ✓ Free field theories (any dimension)
- ✓ perturbative quantum field theories (any dimension)
- Rigorous construction beyond perturbation theory ("constructive gft"):

 ... Fröhlich, Glimm, Hepp, Jaffe, Jost, Nelson, Osterwalder, Schrader, Segal, Wightman, ...

 \rightarrow completely constructed models in d=1+1 and d=2+1 spacetime dimensions

- ✓ conformal/chiral field theories (see talk of Longo)
- ✓ Integrable QFT models in d = 1 + 1 dimensions

However, in d = 1 + 3,

X No non-perturbative construction of interacting models yet!

In this sense, we don't yet have a proof for the compatibility of quantum theory and special relativity.

In this talk, I want to present a new approach to this problem, using operator-algebraic methods.

As usual in quantum theory,

- observables are modelled as operators *A* on a Hilbert space *H*, constitute observable algebra
- states are modelled by unit vectors $\Psi \in \mathcal{H}$ and corresponding expectation value functionals

$$A\longmapsto \langle \Psi, A\Psi
angle$$

(or mixtures thereof)

Particular state in QFT: Vacuum Ω . Consider a unitary representation U with positive energy of the Poincaré group $\mathcal{P}^{\uparrow}_{+}$ on \mathcal{H} , and demand $U(x, \Lambda)\Omega = \Omega$ for all $(x, \Lambda) \in \mathcal{P}^{\uparrow}_{+}$.

Algebraic formulation of QFT on Minkowski space

Physically realizable experiments are localized in space and time. To any region $O \subset \mathbb{R}^d$, there corresponds a localized observable algebra $\mathcal{A}(O) \subset \mathcal{B}(\mathcal{H})$.

Formally: $\phi(x) \in \mathcal{A}(O)$ for $x \in O$.

QFT properties of the correspondence $O \mapsto \mathcal{A}(O)$:

- larger laboratories contain more observables: $\mathcal{A}(O_1) \subset \mathcal{A}(O_2)$ if $O_1 \subset O_2$
- Poincaré covariance:

$$U(x,\Lambda)\mathcal{A}(O)U(x,\Lambda)^{-1} = \mathcal{A}(\Lambda O + x)$$

• Einstein causality: Spacelike separated observables commute,

$$\mathcal{A}(O_1) \subset \mathcal{A}(O_2)' \quad \text{if } O_1 \subset O'_2 \,.$$

Given data $(\{\mathcal{A}(O)\}_{O \subset \mathbb{R}^d}, U, \Omega)$, one can investigate the physics of this model and compute

- Particle content, scattering states, S-matrix
- Short distance behaviour, associated quantum fields, OPE
- charge structure
- ...

However, it is difficult to construct examples (construction of interacting quantum field theories).

Rest of the talk: New constructive ideas within this setting

Two steps:

- Define the particle content of the model
 - Fix a representation U of $\mathcal{P}^{\uparrow}_{+}$ on some Hilbert space \mathcal{H} .
 - Scattering theory: → may work with second quantized representation on a Fock space of scattering states without restriction.

2 Construct the observable algebras $\mathcal{A}(O)$

- Uncertainty principle: The stricter the localization of the observables, the more involved are the momentum-space properties of these operators (particle production).
- $\bullet \to \mbox{Consider}$ "weakly localized" observables first and obtain sharper localization by exploiting covariance and algebraic structure.

localization in spacetime point x

localization in bounded region – for constructive purposes essentially the same as points

localization in unbounded region (wedge = causal completion of half space)

$$W_0 := \{ x = (x_0, ..., x_{d-1}) \in \mathbb{R}^d : x_1 > |x_0| \}$$

localization in unbounded region (wedge = causal completion of half space)

$$W_0 := \{ x = (x_0, ..., x_{d-1}) \in \mathbb{R}^d : x_1 > |x_0| \}$$

Wedge algebras

Conditions for a v. Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ to be localized in W_0 :

- $U(x,\Lambda)\mathcal{M}U(x,\Lambda)^{-1} \subset \mathcal{M}$ for $(x,\Lambda) \in \mathcal{P}^{\uparrow}_{+}$ with $\Lambda W_0 + x \subset W_0$
- $U(x,\Lambda)\mathcal{M}U(x,\Lambda)^{-1} \subset \mathcal{M}'$ for $(x,\Lambda) \in \mathcal{P}^{\uparrow}_{+}$ with $\Lambda W_0 + x \subset W'_0$
- $\mathcal{M}\Omega \subset \mathcal{H}$ dense
- \rightarrow call then (\mathcal{M}, U, Ω) a causal triple.

Causal triples generate QFT models: Define

$$\mathcal{A}(W_0) := \mathcal{M}$$

 $\mathcal{A}(\Lambda W_0 + x) := U(x, \Lambda) \mathcal{M} U(x, \Lambda)^{-1}$
 $\mathcal{A}(\bigcap_k W_k) := \bigcap_k \mathcal{A}(W_k)$

Wedge algebras

Conditions for a v. Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ to be localized in W_0 :

- $U(x,\Lambda)\mathcal{M}U(x,\Lambda)^{-1} \subset \mathcal{M}$ for $(x,\Lambda) \in \mathcal{P}_+^{\uparrow}$ with $\Lambda W_0 + x \subset W_0$
- $U(x,\Lambda)\mathcal{M}U(x,\Lambda)^{-1} \subset \mathcal{M}'$ for $(x,\Lambda) \in \mathcal{P}^{\uparrow}_+$ with $\Lambda W_0 + x \subset W'_0$
- $\mathcal{M}\Omega \subset \mathcal{H}$ dense
- \rightarrow call then (\mathcal{M}, U, Ω) a causal triple.

Causal triples generate QFT models: Define

$$\mathcal{A}(W_0) := \mathcal{M}$$

 $\mathcal{A}(\Lambda W_0 + x) := U(x, \Lambda)\mathcal{M}U(x, \Lambda)^{-1}$
 $\mathcal{A}(\bigcap_k W_k) := \bigcap_k \mathcal{A}(W_k)$

Theorem:

This definition yields a Poincaré covariant, local net on \mathbb{R}^d .

- In principle, every QFT can be described in this way.
- Controlling the size of the intersections? Model-independent effective criteria presently only known in d = 1 + 1 (von Neumann type, Reeh-Schlieder property) • Buchholz/GL 2004 • GL 2008

Problem of constructive algebraic QFT

Find von Neumann algebras \mathcal{M} such that (\mathcal{M}, U, Ω) is a causal triple.

Modular (Tomita-Takesaki) construction of interaction-free nets

Brunetti/Guido/Longo 2002

- Algebraic construction of integrable models on ℝ² → Schroer 1997-2001
 GL 2003-2006 → Buchholz/GL 2004
- Constructions of QFT on non-commutative Minkowski space

Grosse/GL 2007, Grosse/GL 2008

Deformations of quantum field theories

 Buchholz/Summers 2008

Buchholz/GL/Summers 2010
 Dappiaggi/GL/Morfa-Morales 2010
 Longo/Witten 2010

 Dybalski/Tanimoto 2010
 GL 2011
 Morfa-Morales 2011
 Bostelmann/GL/Morsella 2011

A concrete example of a QFT deformation

Recall Rieffel's deformations of C^* -dynamical systems • Rieffel 1992 :

- C*-algebra A with strongly continuous ℝ^d-action α by automorphisms of A.
- For given antisymmetric $(d \times d)$ -matrix Q, introduce new product

$$A \times_Q B := (2\pi)^{-d} \int dp \, dx \, e^{-ipx} \, \alpha_{Qp}(A) \alpha_x(B)$$

- Integral defined in an oscillatory sense for smooth elements A, B
- Product is associative, compatible with unit and *-involution of A
- $A \times_0 B = AB$, deformation of noncommutative dynamical systems
- Used in deformation quantization, noncommutative geometry (NC tori), and models of noncommutative spacetimes (generalizes Moyal product)

A concrete example of a QFT deformation

Analogous deformation of Hilbert space operators ("warped convolution")

Take α_x(A) = U(x)AU(x)⁻¹ and A ⊂ B(H) suitable smooth subalgebra (i.e. x → U(x)AU(x)⁻¹ is smooth in norm)

GL/Grosse 2007 Buchholz/Summers 2008 Buchholz/GL/Summers Comm.Math.Phys. 304, 95-123, 2011

• Deform operators $A \in \mathcal{A}$ according to

$$A_Q := (2\pi)^{-d} \int dp \, dx \, e^{-i(p,x)} \, U(Qp) A U(-Qp) U(x)$$

Convergence of integral can be controlled on a dense domain, then extension to full Hilbert space

- *Q*: antisymmetric $(d \times d)$ -matrix, deformation parameter.
- Analytic control over oscillatory integral ~ summation of perturbation series

Properties of the deformation map $A \mapsto A_Q$

$$A_Q := (2\pi)^{-d} \int dp \, dx \, e^{-i(p,x)} \, U(Qp) A U(-Qp) U(x)$$

- $A_0 = A$ (deformation)
- $A \mapsto A_Q$ is linear
- $(A_Q)^* = (A^*)_Q$ observables stay observables
- Representation of deformed product (\mathcal{A}, \times_Q) :

$$A_Q B_Q = (A \times_Q B)_Q$$

Theorem

The map $A \mapsto A_Q$ extends to a faithful representation of Rieffel's deformed C^* -algebra (\overline{A}, \times_Q) .

Gandalf Lechner (Vienna)

Interplay of deformation with covariance and locality

• Covariance: $U(x, \Lambda)$ Poincaré transformation, A observable. Then

$$U(x,\Lambda)A_{\mathcal{Q}}U(x,\Lambda)^{-1} = \left(U(x,\Lambda)AU(x,\Lambda)^{-1}\right)_{\Lambda O\Lambda^{-1}}$$

 \rightarrow in a Lorentz covariant theory, cannot restrict to a single deformation parameter Q \bullet Doplicher/Fredenhagen/Roberts 1995 \bullet GL/Grosse 2007

- Vacuum: $A_Q \Omega = A \Omega$.
- Locality: Assume $A, B \in \mathcal{A}$ satisfy

$$[U(Qp)AU(Qp)^{-1}, U(-Qq)BU(-Qq)^{-1}] = 0$$

for all $p,q\in\operatorname{Sp} U.$ Then $[A_Q,B_{-Q}]=0.$ lacksquare Buchholz/Summers 2008

Application to causal triples

Assume a causal triple (\mathcal{M}, U, Ω) is given. Define

 $\mathcal{M}_Q := \{A_Q : A \in \mathcal{M} \text{ smooth}\}^{\prime\prime}$

and keep U, Ω, \mathcal{H} unchanged.

Which *Q*? Dictated by symmetries of localization wedge *W*₀.
Take

$$Q := \begin{pmatrix} 0 & \kappa_{\mathsf{e}} & 0 & 0 \\ \kappa_{\mathsf{e}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \kappa_{\mathsf{m}} \\ 0 & 0 & -\kappa_{\mathsf{m}} & 0 \end{pmatrix}, \qquad \kappa_{\mathsf{m}} \in \mathbb{R}, \ \kappa_{\mathsf{e}} \ge 0.$$

Then

- $\Lambda W_0 \subset W_0 \iff \Lambda Q \Lambda^{-1} = Q$
- $\Lambda W_0 \subset W_0' \iff \Lambda Q \Lambda^{-1} = -Q$
- QSp $U \subset W_0$

Theorem:

Let (\mathcal{M}, U, Ω) be a causal triple and Q a matrix of the specified form. Then also $(\mathcal{M}_Q, U, \Omega)$ is a causal triple. $(\mathcal{M}_Q' = \mathcal{M}'_{-Q})$

Deformed causal triple generates a deformed quantum field theory. Application to triple of free field theory yields new models.

Properties of the deformed theories:

- Hamiltonian unchanged under deformation; interaction encoded in position of $\mathcal{M}_{\mathcal{Q}}$ in $\mathcal{B}(\mathcal{H})$
- Deformed theory fully Poincaré covariant
- Localization in wedges: explicit observables A_Q. Localization in sub-wedge regions: Indirect characterization of observables via intersections of algebras (but Reeh-Schlieder locally violated)
- Deformation induces interaction: Two-particle scattering matrix depends on Q via phase factors e^{ipQq}.
- Effect of the deformation on thermal aspects under investigation

 Huber

Generalized deformation procedures • GL 2011, arXiv: 1104.1948

- Warped convolution can be generalized to a large family of deformation procedures (by making use of the Borchers-Uhlmann tensor algebra)
- ullet ightarrow deformed quantum fields on Fock space

$$\phi_K(x) := \int dp \, dy \, e^{i(p,y)} \, U(y) \phi(x) U(y)^{-1} K(p)$$

with specific operator-valued kernels K,

$$(K(p)\Psi)_n(q_1,...,q_n) = k_n(p;q_1,...,q_n) \cdot \Psi_n(q_1,...,q_n)$$

analyticity properties of the k_n imply wedge-localization of ϕ_K .

- produces an infinite family of causal triples $(\mathcal{M}_K, U, \Omega), K \in \mathcal{K}$.
- Examples of interacting covariant quantum field theories in d = 1 + 3 which are at least wedge-local.

Generalized deformation procedures

- Two-particle scattering can be computed; two particle S-matrix involves k_2^2 .
- Resulting S-matrix "too simple" for a local interacting theory in d > 1 + 1 (no particle production) Aks 1965
- → Need to replace multiplication operator kernels k_n by integral operators

$$(K(p)\Psi)_n(q_1,..,q_n) = \sum_m \int dq'_1 \cdots dq'_m k_{nm}(p;q_1,..,q_n;q'_1,...,q'_m) \Psi_m(q'_1,..,q'_m)$$

Situation under investigation (joint project with J. Schlemmer).

 In d = 1 + 1, deformations reproduce known integrable models (Sinh-Gordon,...). Schroer 1997 GL 2006

- Unsolved problem in QFT: Non-perturbative construction of interacting models in d = 1 + 3
- Algebraic approach gives new perspective on the construction problem
- complementary to other approaches
- First models obtained by operator-algebraic deformations
- General theory of deformations of nets of von Neumann algebras wanted ("landscape of all QFTs with given particle content")