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Quantum theory and relativity

Main topic of this conference:

Combination of quantum theory and general relativity
(quantum gravity)

This talk: Let’s take a step back and reconsider

Combination of quantum theory and special relativity
(quantum field theory)

Also in quantum theory + special relativity, some fundamental
problems are unsolved (construction of models)
Some connections between the two settings by noncommutative
geometry
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Construction of models in quantum field theory

Models of QFT can be formulated in any approach. Known models:
! Free field theories (any dimension)
! perturbative quantum field theories (any dimension)
! Rigorous construction beyond perturbation theory (“constructive

qft”): ... Fröhlich, Glimm, Hepp, Jaffe, Jost, Nelson, Osterwalder, Schrader, Segal, Wightman, ...

→ completely constructed models in d = 1 + 1 and d = 2 + 1
spacetime dimensions

! conformal/chiral field theories (see talk of Longo )
! Integrable QFT models in d = 1 + 1 dimensions
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Construction of models in quantum field theory

However, in d = 1 + 3,
% No non-perturbative construction of interacting models yet!

In this sense, we don’t yet have a proof for the compatibility of quantum
theory and special relativity.

In this talk, I want to present a new approach to this problem, using
operator-algebraic methods.
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Algebraic formulation of QFT on Minkowski space

As usual in quantum theory,
observables are modelled as operators A on a Hilbert space H,
constitute observable algebra
states are modelled by unit vectors Ψ ∈ H and corresponding
expectation value functionals

A 7−→ 〈Ψ, AΨ〉

(or mixtures thereof)

Particular state in QFT: Vacuum Ω. Consider a unitary representation
U with positive energy of the Poincaré group P↑+ on H, and demand
U(x,Λ)Ω = Ω for all (x,Λ) ∈ P↑+.
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Algebraic formulation of QFT on Minkowski space

Physically realizable experiments are localized in space and time. To
any region O ⊂ IRd, there corresponds a localized observable algebra
A(O) ⊂ B(H).

Formally: φ(x) ∈ A(O) for x ∈ O.

QFT properties of the correspondence O 7−→ A(O):
larger laboratories contain more observables: A(O1) ⊂ A(O2) if
O1 ⊂ O2

Poincaré covariance:

U(x,Λ)A(O)U(x,Λ)−1 = A(ΛO + x)

Einstein causality: Spacelike separated observables commute,

A(O1) ⊂ A(O2)′ if O1 ⊂ O′2 .

Gandalf Lechner (Vienna) QFT deformations Zürich 2011 5 / 21



Gandalf Lechner (Vienna) QFT deformations Zürich 2011 6 / 21



Given data ({A(O)}O⊂IRd ,U,Ω), one can investigate the physics of this
model and compute

Particle content, scattering states, S-matrix
Short distance behaviour, associated quantum fields, OPE
charge structure
...

However, it is difficult to construct examples (construction of interacting
quantum field theories).

Rest of the talk: New constructive ideas within this setting
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A strategy for constructing models

Two steps:
1 Define the particle content of the model

Fix a representation U of P↑+ on some Hilbert space H.
Scattering theory:→ may work with second quantized
representation on a Fock space of scattering states without
restriction.

2 Construct the observable algebras A(O)

Uncertainty principle: The stricter the localization of the
observables, the more involved are the momentum-space
properties of these operators (particle production).
→ Consider “weakly localized” observables first and obtain sharper
localization by exploiting covariance and algebraic structure.
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Localization regions

localization in spacetime point x
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Localization regions

localization in bounded region – for constructive purposes essentially
the same as points
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Localization regions

localization in unbounded region (wedge = causal completion of half
space)

W0 := {x = (x0, ..., xd−1) ∈ IRd : x1 > |x0|}
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Localization regions

localization in unbounded region (wedge = causal completion of half
space)

W0 := {x = (x0, ..., xd−1) ∈ IRd : x1 > |x0|}

Gandalf Lechner (Vienna) QFT deformations Zürich 2011 9 / 21



Wedge algebras

Conditions for a v. Neumann algebraM⊂ B(H) to be localized in W0:

U(x,Λ)MU(x,Λ)−1 ⊂M for (x,Λ) ∈ P↑+ with ΛW0 + x ⊂ W0

U(x,Λ)MU(x,Λ)−1 ⊂M′ for (x,Λ) ∈ P↑+ with ΛW0 + x ⊂ W ′0
MΩ ⊂ H dense

→ call then (M,U,Ω) a causal triple.

Causal triples generate QFT models: Define

A(W0) :=M
A(ΛW0 + x) := U(x,Λ)MU(x,Λ)−1

A(
⋂

k

Wk) :=
⋂

k

A(Wk)
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Theorem:

This definition yields a Poincaré covariant, local net on IRd.

In principle, every QFT can be described in this way.
Controlling the size of the intersections? Model-independent
effective criteria presently only known in d = 1 + 1 (von Neumann
type, Reeh-Schlieder property) Buchholz/GL 2004 GL 2008

Gandalf Lechner (Vienna) QFT deformations Zürich 2011 11 / 21



Constructive algebraic quantum field theory

Problem of constructive algebraic QFT

Find von Neumann algebrasM such that (M,U,Ω) is a causal triple.

Modular (Tomita-Takesaki) construction of interaction-free nets
Brunetti/Guido/Longo 2002

Algebraic construction of integrable models on IR2 Schroer 1997-2001

GL 2003-2006 Buchholz/GL 2004

Constructions of QFT on non-commutative Minkowski space
Grosse/GL 2007, Grosse/GL 2008

Deformations of quantum field theories Buchholz/Summers 2008

Buchholz/GL/Summers 2010 Dappiaggi/GL/Morfa-Morales 2010 Longo/Witten 2010

Dybalski/Tanimoto 2010 GL 2011 Morfa-Morales 2011 Bostelmann/GL/Morsella 2011
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A concrete example of a QFT deformation

Recall Rieffel’s deformations of C∗-dynamical systems Rieffel 1992 :
C∗-algebra A with strongly continuous IRd-action α by
automorphisms of A.
For given antisymmetric (d × d)-matrix Q, introduce new product

A×Q B := (2π)−d
∫

dp dx e−ipx αQp(A)αx(B)

Integral defined in an oscillatory sense for smooth elements A,B

Product is associative, compatible with unit and ∗-involution of A
A×0 B = AB, deformation of noncommutative dynamical systems
Used in deformation quantization, noncommutative geometry (NC
tori), and models of noncommutative spacetimes (generalizes
Moyal product)
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A concrete example of a QFT deformation

Analogous deformation of Hilbert space operators (“warped
convolution”)

GL/Grosse 2007 Buchholz/Summers 2008 Buchholz/GL/Summers Comm.Math.Phys. 304, 95-123, 2011

Take αx(A) = U(x)AU(x)−1 and A ⊂ B(H) suitable smooth
subalgebra (i.e. x 7→ U(x)AU(x)−1 is smooth in norm)
Deform operators A ∈ A according to

AQ := (2π)−d
∫

dp dx e−i(p,x) U(Qp)AU(−Qp)U(x)

Convergence of integral can be controlled on a dense domain,
then extension to full Hilbert space
Q: antisymmetric (d × d)-matrix, deformation parameter.
Analytic control over oscillatory integral ∼ summation of
perturbation series
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Properties of the deformation map A 7→ AQ

AQ := (2π)−d
∫

dp dx e−i(p,x) U(Qp)AU(−Qp)U(x)

A0 = A (deformation)
A 7→ AQ is linear
(AQ)∗ = (A∗)Q observables stay observables
Representation of deformed product (A,×Q):

AQBQ = (A×Q B)Q

Theorem
The map A 7→ AQ extends to a faithful representation of Rieffel’s
deformed C∗-algebra (A,×Q).
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Interplay of deformation with covariance and locality

Covariance: U(x,Λ) Poincaré transformation, A observable. Then

U(x,Λ)AQU(x,Λ)−1 =
(
U(x,Λ)AU(x,Λ)−1)

ΛQΛ−1

→ in a Lorentz covariant theory, cannot restrict to a single
deformation parameter Q Doplicher/Fredenhagen/Roberts 1995 GL/Grosse 2007

Vacuum: AQΩ = AΩ.
Locality: Assume A,B ∈ A satisfy

[U(Qp)AU(Qp)−1, U(−Qq)BU(−Qq)−1] = 0

for all p, q ∈ SpU. Then [AQ, B−Q] = 0. Buchholz/Summers 2008
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Application to causal triples

Assume a causal triple (M,U,Ω) is given. Define

MQ := {AQ : A ∈M smooth}′′

and keep U,Ω,H unchanged.

Which Q? Dictated by symmetries of localization wedge W0.
Take

Q :=


0 κe 0 0
κe 0 0 0
0 0 0 κm
0 0 −κm 0

 , κm ∈ IR, κe ≥ 0 .

Then
ΛW0 ⊂ W0 ⇐⇒ ΛQΛ−1 = Q
ΛW0 ⊂ W ′0 ⇐⇒ ΛQΛ−1 = −Q
QSpU ⊂ W0
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Theorem:
Let (M,U,Ω) be a causal triple and Q a matrix of the specified form.
Then also (MQ,U,Ω) is a causal triple. (MQ

′ =M′−Q)

Deformed causal triple generates a deformed quantum field theory.
Application to triple of free field theory yields new models.

Properties of the deformed theories:

Hamiltonian unchanged under deformation; interaction encoded in
position ofMQ in B(H)

Deformed theory fully Poincaré covariant

Localization in wedges: explicit observables AQ. Localization in
sub-wedge regions: Indirect characterization of observables via
intersections of algebras (but Reeh-Schlieder locally violated)

Deformation induces interaction: Two-particle scattering matrix depends
on Q via phase factors eipQq.

Effect of the deformation on thermal aspects under investigation Huber
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Generalized deformation procedures GL 2011, arXiv: 1104.1948

Warped convolution can be generalized to a large family of
deformation procedures
(by making use of the Borchers-Uhlmann tensor algebra)

→ deformed quantum fields on Fock space

φK(x) :=

∫
dp dy ei(p,y) U(y)φ(x)U(y)−1K(p)

with specific operator-valued kernels K,

(K(p)Ψ)n(q1, ..., qn) = kn(p; q1, ..., qn) ·Ψn(q1, ..., qn)

analyticity properties of the kn imply wedge-localization of φK .
produces an infinite family of causal triples (MK ,U,Ω), K ∈ K.
Examples of interacting covariant quantum field theories in
d = 1 + 3 which are at least wedge-local.
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Generalized deformation procedures

Two-particle scattering can be computed; two particle S-matrix
involves k2

2.
Resulting S-matrix “too simple” for a local interacting theory in
d > 1 + 1 (no particle production) Åks 1965

→ Need to replace multiplication operator kernels kn by integral
operators

(K(p)Ψ)n(q1, .., qn)

=
∑

m

∫
dq′1 · · · dq′m knm(p; q1, .., qn; q′1, ..., q

′
m) Ψm(q′1, .., q

′
m)

Situation under investigation (joint project with J. Schlemmer).

In d = 1 + 1, deformations reproduce known integrable models
(Sinh-Gordon,...). Schroer 1997 GL 2006
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Conclusions

Unsolved problem in QFT: Non-perturbative construction of
interacting models in d = 1 + 3

Algebraic approach gives new perspective on the construction
problem
complementary to other approaches
First models obtained by operator-algebraic deformations
General theory of deformations of nets of von Neumann algebras
wanted (“landscape of all QFTs with given particle content”)
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