
Introduction Scalar theory Gauge theory Review and perspectives

Renormalizability of noncommutative quantum
field theories

Axel de Goursac
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Essence of NCG

Correspondence between spaces and commutative algebras
(fields)

Gelfand-Naimark thm: topological spaces X � commutative
C*-algebras C (X ) = {X → C continuous}
Noncommutative algebras: viewed as associated to a
“noncommutative space”

NCG: generalize geometrical constructions and properties to
noncommutative algebras

NCG could be adapted to the unification of quantum physics
with gravitation as an extension of differential geometry
(classical QFT, general relativity) within an operator algebras’
framework (quantum physics)
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NCG in Physics

classical Standard Model coupled with gravitation: spectral
action principle on C∞(M)⊗ (C⊕H⊕M3(C))
(Chamseddine Connes ’07) (non-abelianity)

Quantum space-time at Planck scale (Doplicher et. al. ’94)

(fuzzy structure)

Emergent gravity from nc gauge theory (Steinacker ’07, Yang ’09)

Relationship with string theory (Seiberg Witten ’99) and quantum loop
gravity (Freidel Livine ’06, Noui ’08)

other approaches are possible...
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Quantum spaces

Important class of nc algebras: deformations of (Poisson)
manifolds M: (C∞(M), ?θ)
such that f ?θ g → f ·g and 1

θ [f , g ]? → {f , g}PB
QFT: construct an action by replacing commutative product
with ?θ

Renormalizability of QFT: consistency of the theory for a
change of scale

various examples of lorentzian and riemannian deformed
spaces

In this talk: Moyal space in the euclidean framework,
deformation quantization of R4

→ Existence of renormalizable gauge theories on this nc space is
a crucial question
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Presentation of the Moyal space

Algebra of functions f : R4 → C (fields)

Deformed Moyal product:

(f ?g)(x) =
1

π4θ4

∫
d4yd4z f (x + y)g(x + z)e−2iyΘ−1z

Θ = θΣ, Σ =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


Limit θ = 0: (f ? g)(x) = f (x)·g(x)

The Moyal space is the nc space associated to this algebra.
Scalar fields are elements of this deformed algebra and will be
multiplied by using ?.

Tracial property:
∫

d4x (f ? g)(x) =
∫

d4x f (x)g(x)
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Construction of the nc scalar theory

Real scalar field theory on the euclidean Moyal space:

S [φ] =

∫
dDx

(1

2
(∂µφ)2 +

m2

2
φ2 + λφ?φ?φ?φ

)
Feynman rules in impulsions (Filk ’96):

λδ
( 4∑

i=1

pi

)
7→ λe i

θ2

2
(p1Θ−1p2+p1Θ−1p3+p2Θ−1p3)δ

( 4∑
i=1

pi

)
Vertex symmetries: only cyclic permutations

⇒ Ribbon Feynman graphs (genus: 2− 2g = N
2 − V + F )

g = 0 g = 1
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UV-IR mixing

(Minwalla et al. ’00)

Tadpole (F = B = 2, g = 0): 2 broken faces

λ

∫
d4k

e ikΘp

k2 + m2
∝|p|→0

1

θ2p2

Amplitude is finite but singular for p → 0

Generic behavior for graphs with B ≥ 2

When inserted many times in higher order graphs, p is an
internal impulsion ⇒ IR divergence in p (coming from the UV
sector of k)

→ Non-renormalizability of the theory
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Harmonic theory

Addition of a harmonic term to the action:

S [φ] =

∫
d4x

(1

2
(∂µφ)2 +

Ω2

2
x̃2φ2 +

m2

2
φ2 + λφ ? φ ? φ ? φ

)
where x̃ = 2Θ−1x

Propagator: Mehler kernel (Gurau Rivasseau Vignes ’06)

Power counting

ω = 4− N − 4(2g + B − 1)

Primitively divergent graphs: planar, B = 1, N = 2, 4

⇒ Renormalizability of the theory to all orders (Grosse Wulkenhaar ’05)

Loss of translation-invariance: essential here for the removing
of the UV-IR mixing
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Properties

Covariant under Langmann-Szabo duality (Langmann Szabo ’02):

S [φ,m, λ,Ω] = Ω2 S
[
φ̂,

m

Ω
,
λ

Ω2
,

1

Ω

]
where φ̂ is a symplectic Fourier transformation

New properties of the flow at the fixed point Ω = 1: βλ = 0
(Grosse Wulkenhaar ’04, Disertori Gurau Magnen Rivasseau ’06)

→ Towards a constructive version of the nc φ4 harmonic model
(Grosse Wulkenhaar ’09, Rivasseau Wang ’11)

Vacua of the theory (A.G. Tanasa Wallet ’08)

Rotational invariance at the quantum level if Θ is a tensor
(A.G. Wallet ’11)
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Supergeometrical interpretation

(Bieliavsky A.G. Tuynman ’10)

Non-formal deformation of Rp|q: Moyal ⊗ Clifford Cl(q,C)

Product on R4|1: if Φ(x , ξ) = φ0(x) + φ1(x)ξ,

(Φ?Ψ)(x , ξ) =
(
φ0 ?ψ0 +

iθ

4
φ1 ?ψ1 + (φ0 ?ψ1 +φ1 ?ψ0)ξ

)
(x)

Trace: Tr(Φ) =
∫

d4x Φ(x , 0)

Reduction: Φ(x , ξ) = (1 + bξ)φ(x) with b ∈ R
Standard action on the deformed R4|1:

tr
(1

2
|[− i

2
x̃µ(1 + bξ),Φ]?|2 +

m2

2
Φ?2 + λΦ?4

)
=

∫
d4x

(1

2
(∂µφ)2+

b4

8
x2φ2+

m2

2
φ2+λ(1+

b4θ

16
)φ?φ?φ?φ

)
→ Philosophy: change the space not the action.

LS duality: grading exchange (A.G. ’10)
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Construction of the nc gauge theory

Nc gauge potential: Aµ (real)

Gauge transformation: g † ? g = g ? g † = 1

Aµ 7→ g ? Aµ ? g
† + ig ? ∂µg

†

Field strength: Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ]?

Covariant coordinate: Aµ = Aµ+ 1
2 x̃µ

Yang-Mills action:

S [A] =

∫
d4x

1

4
Fµν ? Fµν

UV-IR mixing (Matusis et al. ’00)

Polarization tensor (with B = 2):

ΠIR
µν(p) ∝|p|→0

p̃µp̃ν
p4
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Harmonic theory

Gauge-invariant harmonic action: (Aµ = Aµ + 1
2
x̃µ)

S [A] =

∫
d4x
(1

4
Fµν ? Fµν +

β

4
{Aµ,Aν}2

? +
κ

2
Aµ ?Aµ

)

Coupled to the Grosse-Wulkenhaar model at the 1 loop order
(A.G. Wallet Wulkenhaar ’07, Grosse Wohlgenannt ’07)

Quadratic part:
∫ (

1
2 (∂µAν)2 + β

2 x̃
2AνAν + κ

2AνAν
)

.

⇒ Good candidate to renormalizability

Mass term for gauge fields without Higgs mechanism

Not Langmann-Szabo covariant

Problem: no trivial vacuum
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Vacua of the theory

Equation of motion: (Aµ = Aµ + 1
2
x̃µ)

[[Aµ,Aν ]?,Aν ]? + β{{Aµ,Aν}?,Aν}? + κAµ = 0

→ No trivial vacuum Aµ = 0

Solution Aµ = −1
2 x̃µ: matrix model without dynamic

Computation of the other solutions (product of Bessel,
gaussian and hypergeometric functions) (A.G. Wallet Wulkenhaar ’08)

→ Too complicated for an analytic expansion of the theory

A particular gauge fixing permits to give a trivial vacuum to
the theory (in progress)

Ghost sector remains to be fully understood (Blaschke Grosse Kronberger

Schweda Wohlgenannt ’09)
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Supergeometrical interpretation

(A.G. Masson Wallet ’08)

Reduced gauge potential on the deformed R4|1: (1 + bξ)Aµ(x)

Same gauge transformations

Graded curvature:

F (1)
µν = Fµν(x), F (2)

µν = 2bFµν(x)ξ, F (3)
µν =

b2θ

4
{Aµ,Aν}?(x)

+ other part

Standard Yang-Mills action:

Tr
(∑

i

(F (i)
µν )2

)
=

∫
d4x
(1

4
(1 +

b2θ

2
)(Fµν)2

+
b4θ2

16
{Aµ,Aν}2

? + (
80

θ
+ 20b2 +

θ

2
)(Aµ)2

)
Symmetry: grading exchange
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Graded curvature:

F (1)
µν = Fµν(x), F (2)

µν = 2bFµν(x)ξ, F (3)
µν =

b2θ

4
{Aµ,Aν}?(x)

+ other part

Standard Yang-Mills action:

Tr
(∑

i

(F (i)
µν )2

)
=

∫
d4x
(1

4
(1 +

b2θ

2
)(Fµν)2

+
b4θ2

16
{Aµ,Aν}2

? + (
80

θ
+ 20b2 +

θ

2
)(Aµ)2

)
Symmetry: grading exchange
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Another renormalizable scalar theory

Amplitude of the tadpole: singular in 1
p2

Addition to the standard φ4 action the term

a

2θ2

∫
d4p

1

p2
φ̂(−p)φ̂(p)

Renormalizable to all orders (Gurau Magnen Rivasseau Tanasa ’09)

Translation invariant

Same flow as in the commutative theory, finite
renormalization for a

Study of the commutative limit (Magnen Rivasseau Tanasa ’09)

Associated gauge models (Blaschke Gieres Kronberger Schweda Wohlgenannt ’08)
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Other theories

Another interpretation of the harmonic term:
noncommutative scalar curvature (Buric Wohlgenannt ’10)

Complex φ4-orientable scalar theory: renormalizable

S [φ] =

∫
dDx

(1

2
|∂µφ|2 +

m2

2
|φ|2 + λφ† ? φ ? φ† ? φ

)

φ3 scalar theories in 2,4,6 dimensions (Grosse Steinacker ’06)

Fermionic theories of type Gross-Neveu in 2 dimensions
(Vignes-Tourneret ’07)

UV-IR mixing generic for isospectral deformations (Gayral ’05)
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Conclusion

About the theory with harmonic term

Renormalizable theory

New properties of the flow

Interpretation in terms of a nc supergeometry

Good candidate for the gauge theory

Understand BRST formalism

Relation between renormalizability and nc supergeometry

Generalization to other nc spaces
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