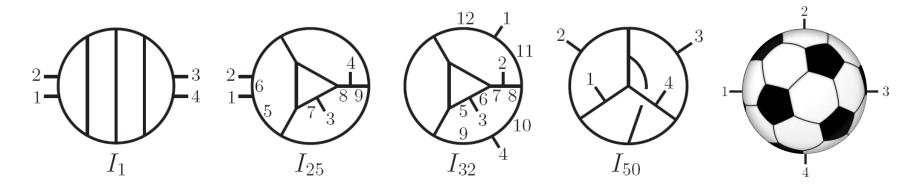
Ultraviolet behavior of quantum (super)gravity through four loops



Lance Dixon (CERN & SLAC)

ETH Zürich Conference on

Quantum Theory and Gravitation

based on work with Z. Bern, J.J. Carrasco, H. Johansson, R. Roiban 0905.2326, 1008.3327, 110?.????

Introduction

• Quantum gravity is nonrenormalizable by power counting: the coupling, Newton's constant, $G_N = 1/M_{Pl}^2$ is dimensionful

• String theory cures the divergences of quantum gravity by introducing a new length scale, the string tension, at which particles are no longer pointlike.

• Is this necessary? Or could enough symmetry,

e.g. **N=8** supersymmetry, allow a point particle theory of quantum gravity to be perturbatively ultraviolet finite?

• N=8 supergravity (ungauged) DeWit, Freedman (1977); Cremmer, Julia, Scherk (1978); Cremmer, Julia (1978,1979)

• Other point-like proposals include flow to (conjectured?) nontrivial fixed points:

- asymptotic safety program

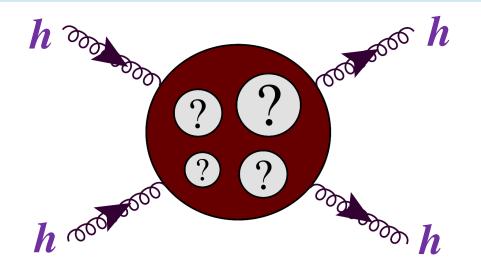
Weinberg (1977); ...; Niedermaier, Reuter, Liv. Rev. Rel. 9, 5 (2006)

- UV theory could be Lorentz asymmetric, but renormalizable Hořava, 0812.4287, 0901.3775

• Here we will perturb around a (conjectured?) Gaussian fixed point

Graviton Scattering: a Gedanken Experiment

"Mathematics is the part of physics where experiments are cheap" – V.I. Arnold



N=8 UV behavior @ 4 loops

Why gravity should behave badly

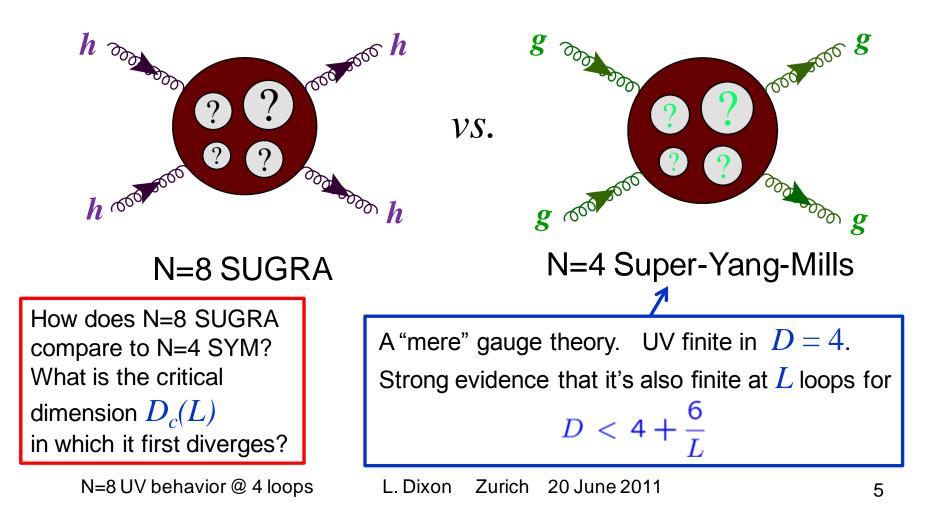
gauge theory (spin 1) renormalizable

$$\int_{g}^{g} \partial \eta \nabla g \supset \ell^{\mu} \eta^{\nu \rho} + \cdots$$

N=8 UV behavior @ 4 loops

L. Dixon Zurich 20 June 2011

Strategy for Assessing N=8 Supergravity



Counterterm Basics

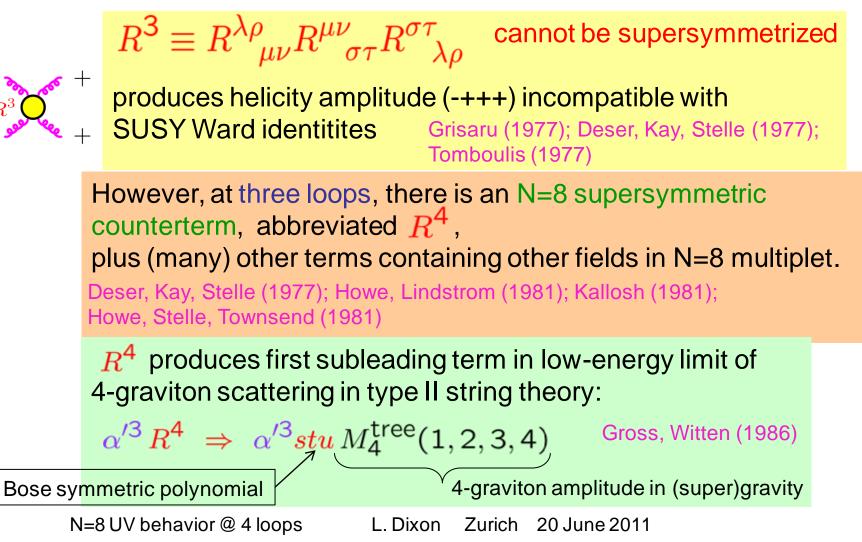
- Divergences associated with local counterterms
- On-shell counterterms are generally covariant, built out of products of Riemann tensor $R_{\mu\nu\sigma\rho}$ (& derivatives \mathcal{D}_{μ})
- Terms containing Ricci tensor $R_{\mu\nu}$ and scalar Rremovable by nonlinear field redefinition in Einstein action

$$\begin{split} R^{\mu}_{\nu\sigma\rho} &\sim \partial_{\rho} \Gamma^{\mu}_{\nu\sigma} \sim g^{\mu\kappa} \partial_{\rho} \partial_{\nu} g_{\kappa\sigma} & \text{has mass dimension 2} \\ G_N &= 1/M_{\text{Pl}}^2 & \text{has mass dimension -2} \end{split}$$

Each additional $R_{\mu\nu\sigma\rho}$ or $\mathcal{D}^2 \leftrightarrow 1$ more loop (in D=4)

One-loop $\rightarrow R_{\mu\nu\sigma\rho}R^{\mu\nu\sigma\rho}$ However, $R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\sigma\rho}R^{\mu\nu\sigma\rho}$ is Gauss-Bonnet term, total derivative in four dimensions. So pure gravity is UV finite at one loop (but not with matter) 't Hooft, Veltman (1974)

Pure supergravity ($N \ge 1$): Divergences deferred to at least three loops



$\mathcal{N} = 8$ Constraints on Counterterms

Elvang, Freedman, Kiermaier (2010)

- Use locality of on-shell amplitudes + powerful N=8 SUSY
 Ward identitites
 Also related work by Kallosh
- N=8 SWI for maximally helicity violating (MHV) amplitudes:

 $\frac{M_n(++\cdots+-_i+\cdots+-_j+\cdots+)}{\langle i\,j\rangle^8} = \text{Bose symmetric}$

• N=8 SWI for non-MHV amplitude – solved recently Elvang, Freedman, Kiermaier, 0911.3169

 $\mathcal{D}^{2k}R^4 \rightarrow 4$ -point $\rightarrow MHV$ \rightarrow amounts to classifying Bose-symmetric polynomials P(s, t, u)

 $\mathcal{D}^{2k}R^5 \rightarrow \text{still MHV} \rightarrow \text{can still use Bose-symmetry}$

 $\mathcal{D}^{2k}R^{6,7} \rightarrow$ next-to-MHV analysis required

N=8 UV behavior @ 4 loops L. Dixon Zurich 20 June 2011

N=8 allowed

Chart of potential counterterms

L				Analytic	proofs:			
3	<mark>R⁴</mark> мн∨ ∃!				ⁿ MHV $ i delta$ for $n > 4$ ⁿ NMHV $ i delta$ for $n >$	-	_	
4	<i>D</i> ² <i>R</i> ⁴ мн∨	<i>R</i> ⁵		ond, Heslop, , 0906.3495	Howe, Kerstan,	, th/0305202;		
5	<mark>D⁴ R⁴</mark> мн∨ ∃!	D ² R ⁵ мн∨ ∌	<i>R</i> ⁶ (N)МН∨ ∄					
6	D ⁶ R ⁴ MHV ∃!	D ⁴ R ⁵ мн∨ ∄	D ² R ⁶ (N)МН∨ ∄	<i>R</i> ⁷ (N)МН∨ ∄	Until 7 loop show up in	•	•	
7	<i>D⁸ R</i> ⁴ мн∨ ∃!	<i>D⁶ R⁵</i> мн∨ ∌	<i>D⁴R⁶</i> мн∨ ∄ мн∨	<i>D</i> ² <i>R</i> ⁷ (N)мн∨ ∄	R ⁸ (N)MHV ∄ N ² MHV?			
8	<i>D</i> ¹⁰ <i>R</i> ⁴ мн∨ ∃!	<mark>D⁸ R⁵</mark> мн∨ ∃!	<i>D⁶R⁶</i> мн∨ ∄ ммн∨?	<i>D⁴ R⁷</i> мн∨	D ² R ⁸ (N)MHV ∄ N ² MHV?	R ⁹ (N)MHV ∄ N²MHV?		
9	$D^{12}R^4$ 2×MHV	$D^{10}R^5$?×MHV	D ⁸ R ⁶ 2×MHV NMHV?	<i>D⁶ R⁷</i> мн∨	D ⁴ R ⁸ MHV ∄ N or N ² MHV?	D ² R ⁹ (N)MHV ∄ ^{N2} MHV?	R ¹⁰ (N)MHV ∄ N ² or N ³ MHV?	
	• red: not excluded • green: ? • gray: excluded							
	N=8 UV behavior @ 4 loops L. Dixon Zurich 20 June 2011						9	

Elvang, Freedman, Kiermaier (2010)

$E_{7(7)}$ Constraints on Counterterms

- N=8 SUGRA has continuous symmetries: noncompact form of E_7 . ٠
- 70 scalars \rightarrow coset $E_{7(7)}/SU(8)$. Non-SU(8) part realized nonlinearly. • Cremmer, Julia (1978,1979) quantum level: Bossard, Hillmann, Nicolai, 1007.5472
- $E_{7(7)}$ also implies amplitude Ward identities, associated with limits as one or two scalars become soft Bianchi, Elvang, Freedman, 0805.0757; Arkani-Hamed, Cachazo, Kaplan, 0808.1446; Kallosh, Kugo, 0811.3414
- Single-soft limit of NMHV 6-point matrix element of R^4 doesn't Vanish; violates $E_{7(7)}$ Elvang, Kiermaier, 1007.4813 Similar arguments also rule out $\mathcal{D}^4 R^4$ and $\mathcal{D}^6 R^4$
- However, $\mathcal{D}^8 R^4$ is allowed (L=7 for D=4) Beisert et al., 1009.1643
- Same conclusions reached by other methods

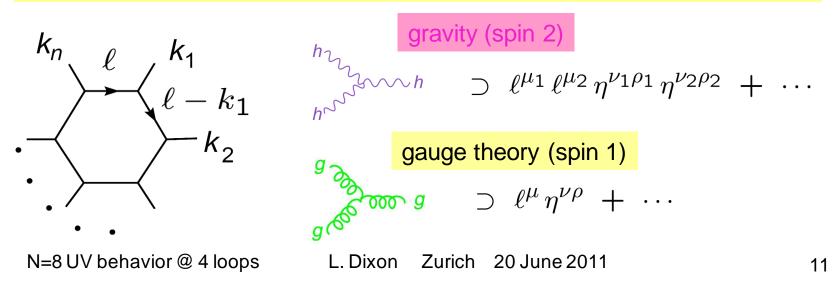
Bossard, Howe, Stelle, 1009.0743

Volume of full N=8 superspace is same dimension as $\mathcal{D}^8 R^4$ ۲ -but it vanishes! Invariant candidate $\mathcal{D}^8 R^4$ counterterm exists. but not full superspace integral. Bossard, Howe, Stelle, Vanhove, 1105.6087

One-loop multi-leg "no triangle" property

Bjerrum-Bohr et al., hep-th/0610043; Bern, Carrasco, Forde, Ita, Johansson, 0707.1035 (pure gravity); Kallosh, 0711.2108; Bjerrum-Bohr, Vanhove, 0802.0868 **Proofs:** Bjerrum-Bohr, Vanhove, 0805.3682; Arkani-Hamed, Cachazo, Kaplan, 0808.1446

- Statement about UV behavior of N=8 SUGRA amplitudes at one loop but with arbitrarily many external legs: "N=8 UV behavior no worse than N=4 SYM at one loop"
- Samples arbitrarily many powers of loop momenta
- Necessary but not sufficient for excellent multi-loop behavior
- Implies specific multi-loop cancellations Bern, LD, Roiban, th/0611086



$\mathcal{N} = 8$ VS. $\mathcal{N} = 4$ SYM

DeWit, Freedman (1977); Cremmer, Julia, Scherk (1978); Cremmer, Julia (1978,1979)

 $2^8 = 256$ massless states, ~ expansion of $(x+y)^8$ $\mathcal{N} = 8: \quad 1 \leftrightarrow 8 \leftrightarrow 28 \leftrightarrow 56 \leftrightarrow 70 \leftrightarrow 56 \leftrightarrow 28 \leftrightarrow 8 \leftrightarrow 1$ helicity : $-2 \quad -\frac{3}{2} \quad -1 \quad -\frac{1}{2} \quad 0 \quad \frac{1}{2}$ 3 1 2 SUSY $h^ \psi_i^ v_{ij}^ \chi_{ijk}^ s_{ijkl}$ χ_{ijk}^+ v_{ij}^+ ψ_i^+ h^+ N = 4 SYM : 1 4 6 $g^ \lambda_A^ \phi_{AB}$ λ_A^+ g^+ $2^4 = 16$ states all in adjoint representation ~ expansion of $(x+y)^4$ $= 8] = [\mathcal{N} = 4] \otimes [\mathcal{N} = 4]$

Kawai-Lewellen-Tye relations

Derived from relation between open & closed string amplitudes.

Low-energy limit gives N=8 supergravity amplitudes M_n^{tree} as quadratic combinations of N=4 SYM amplitudes A_n^{tree} , consistent with product structure of Fock space, $[\mathcal{N} = 8] = [\mathcal{N} = 4] \otimes [\mathcal{N} = 4]$

$$M_{3}^{\text{tree}}(1,2,3) = [A_{3}^{\text{tree}}(1,2,3)]^{2}$$

$$M_{4}^{\text{tree}}(1,2,3,4) = -i s_{12} A_{4}^{\text{tree}}(1,2,3,4) A_{4}^{\text{tree}}(1,2,4,3)$$

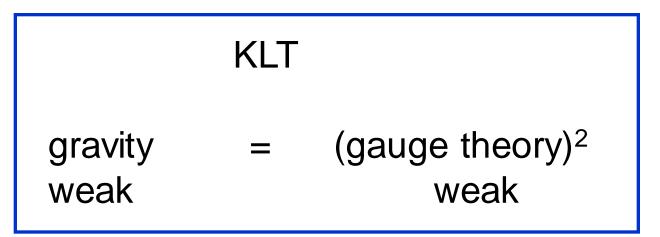
$$M_{5}^{\text{tree}}(1,2,3,4,5) = i s_{12} s_{34} A_{5}^{\text{tree}}(1,2,3,4,5) A_{5}^{\text{tree}}(2,1,4,3,5)$$

$$+ (2 \leftrightarrow 3)$$

 $M_6^{\text{tree}}(1,2,3,4,5,6) = \cdots$

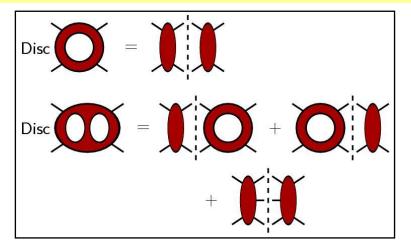
AdS/CFT vs. KLT

AdS	=	CFT
gravity weak	=	gauge theory strong



KLT and perturbative unitarity

S-matrix a unitary operator between in and out states
 Junitarity relations (cutting rules) for amplitudes

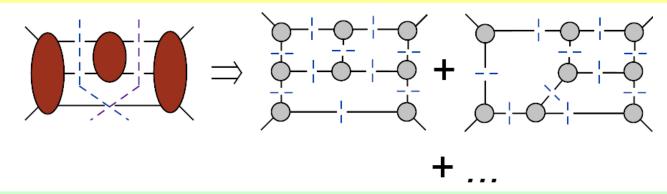


• Reconstruction of multi-loop amplitudes from cuts very efficient, due to simple structure of tree and lower-loop helicity amplitudes

• Generalized unitarity (more propagators open) necessary to reduce everything to trees (in order to apply KLT relations)

Method of maximal cuts

Complex cut momenta make sense out of all-massless 3-point kinematics – can chop an amplitude entirely into 3-point trees \rightarrow maximal cuts



Maximal cuts are maximally simple, yet give excellent starting point for constructing full answer

For example, in planar (leading in N_c) N=4 SYM they find all terms in the complete answer for 1, 2 and 3 loops

Remaining terms found **systematically**: Let 1 or 2 propagators collapse from each maximal cut → **near-maximal cuts**

Multi-loop "KLT copying"

Bern, LD, Dunbar, Perelstein, Rozowsky (1998)

- N=8 SUGRA cuts are products of N=8 SUGRA trees, summed over all internal states.
- KLT relations let us write N=8 cuts very simply as:

sums of products of two copies of N=4 SYM cuts

$$[\mathcal{N}=8] = [\mathcal{N}=4] \otimes [\mathcal{N}=4] \implies$$

$$\sum_{\mathcal{N}=8} = \sum_{\mathcal{N}=4} \sum_{\mathcal{N}=4}$$

• Need both **planar** (large N_c) and **non-planar** terms in corresponding multi-loop N=4 SYM amplitude

KLT copying at 3 loops

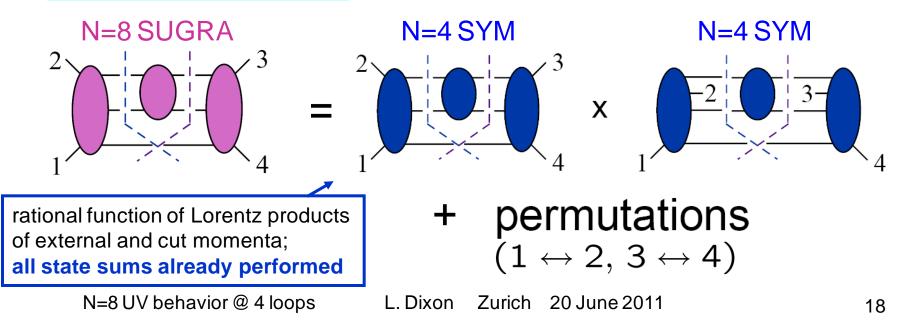
Using

$$M_{4}^{\text{tree}}(1,2,3,4) = -i \frac{st}{u} [A_{4}^{\text{tree}}(1,2,3,4)]^{2}$$

$$M_{5}^{\text{tree}}(1,2,3,4,5) = -i s_{51} s_{23} A_{5}^{\text{tree}}(1,2,3,4,5) A_{5}^{\text{tree}}(1,4,2,3,5)$$

$$+ (1 \leftrightarrow 2)$$

it is easy to see that



New gravity = gauge² relations

• KLT relations involve permuted products of gauge amplitudes. Makes it non-trivial to reconstruct the N=8 SUGRA integrand from the information provided by the twisted double copy of the gauge theory cuts.

- Also, ambiguities in this reconstruction beyond two loops.
- Initial integrands we found for the 3 and 4 loop 4-graviton amplitudes in N=8 SUGRA were not UV-optimal:

individual integrals were worse-behaved in the UV than the full amplitude (sum of all terms).

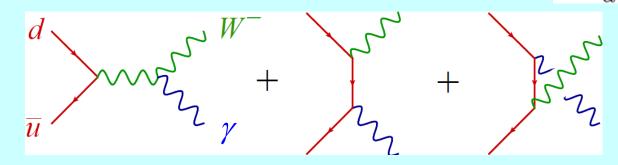
• A new way to write gravity amplitudes, as sums of squares of gauge theory terms, provides a much more efficient way to construct the supergravity amplitudes.

- Relies on the existence of a color-kinematic duality for gauge theory amplitudes Bern, Carrasco, Johansson, 0805.3993
- Also simplifies construction of N=4 SYM amplitude.

N=8 UV behavior @ 4 loops L. Dixon Zurich 20 June 2011

Radiation Zeroes

• In 1979, Mikaelian, Samuel and Sahdev computed $\frac{d\sigma(d\bar{u} \rightarrow W)}{d\sigma(d\bar{u} \rightarrow W)}$



- They found a "radiation zero" at $\cos \theta = -(1 + 2Q_d) = -1/3$
- Held independent of (W, γ) helicities
- Implies a connection between "color" (here ~ electric charge Q_d) and kinematics (cos θ)

Radiation Zeroes and Color-Kinematic Duality

- MSS result generalized to other 4-point non-Abelian gauge theory amplitudes by Zhu (1980), Goebel, Halzen, Leveille (1981).
- Massless adjoint gauge theory result:

$$\mathcal{A}_{4}^{\text{tree}} = \frac{n_s C_s}{s} + \frac{n_t C_t}{t} + \frac{n_u C_u}{u}$$

• Group theory \rightarrow 3 terms are not independent (Jacobi identity):

$$C_t - C_u = C_s$$

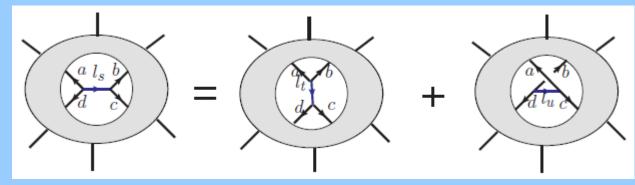
• In a suitable "gauge", one finds: $n_t - n_u = n_s$ Same structure can be extended to an arbitrary number of legs and provides a new "KLT-like" relation to gravity:

$$M_4^{\text{tree}} = \frac{n_s^{(L)} n_s^{(R)}}{s} + \frac{n_t^{(L)} n_t^{(R)}}{t} + \frac{n_u^{(L)} n_u^{(R)}}{u}$$

Bern, Carrasco, Johansson, 0805.3993

Color-Kinematic Duality at loop level

• Consider any 3 graphs connected by a Jacobi identity



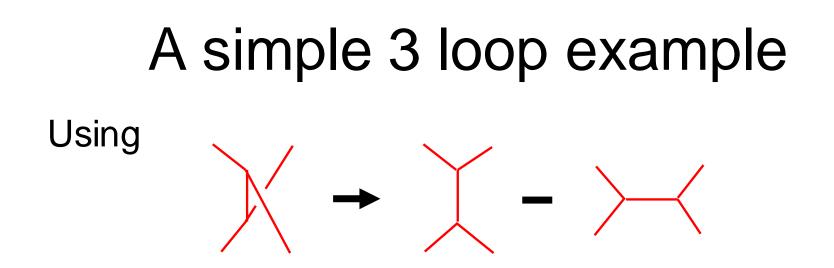
• Color factors obey

$$C_s = C_t - C_u$$

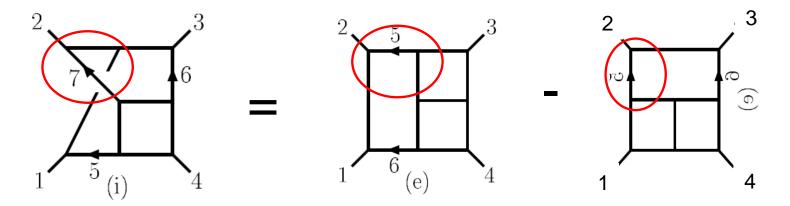
Duality requires

$$n_s = n_t - n_u$$

• Very strong constraint on structure of integrands; only a handful of independent integral numerators left after imposing it.



we can relate non-planar topologies to planar ones

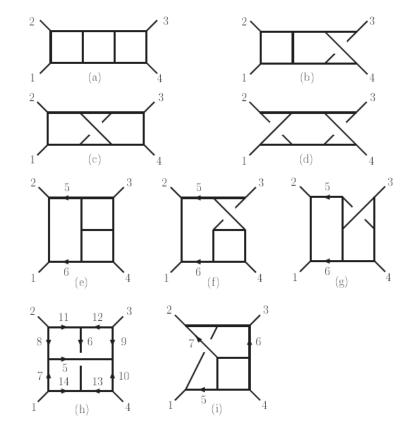


Amplitudes & UV Behavior of N=8

L. Dixon Eurostrings 6/14/2010

3 loop amplitude before color-kinematics duality

Bern, Carrasco, LD, Johansson, Kosower, Roiban, th/0702112 Bern, Carrasco, LD, Johansson, Roiban, 0808.4112

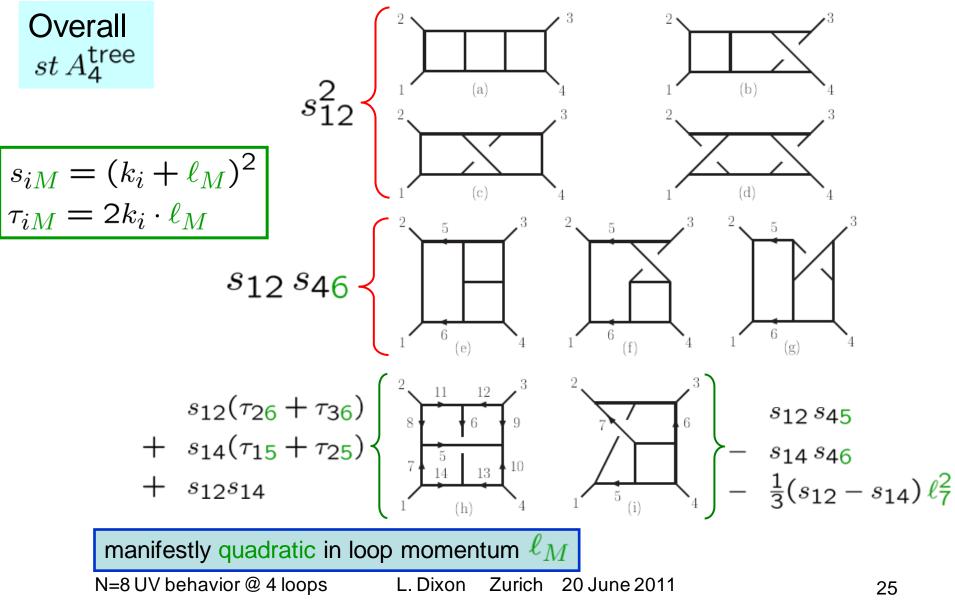


Nine basic integral topologies

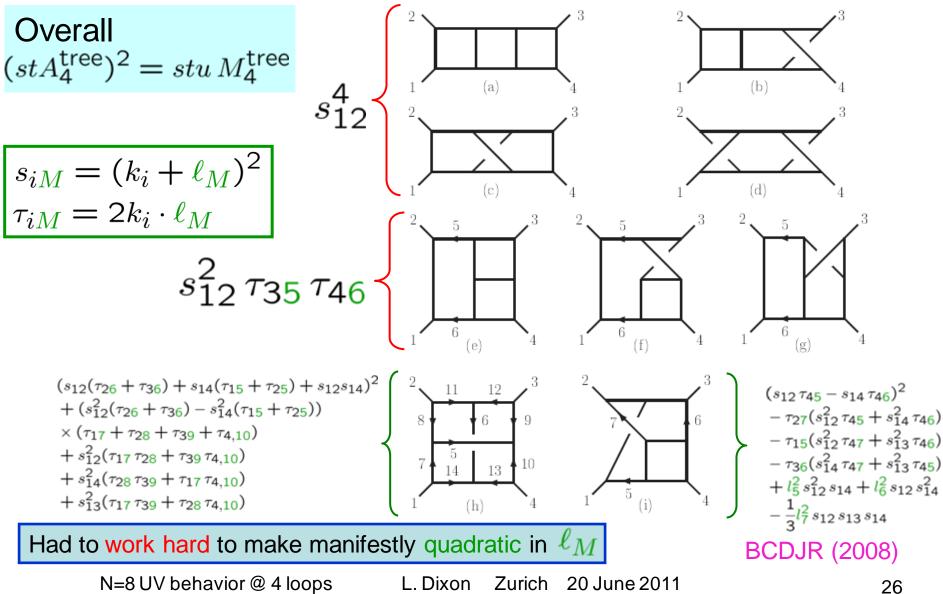
N=8 UV behavior @ 4 loops

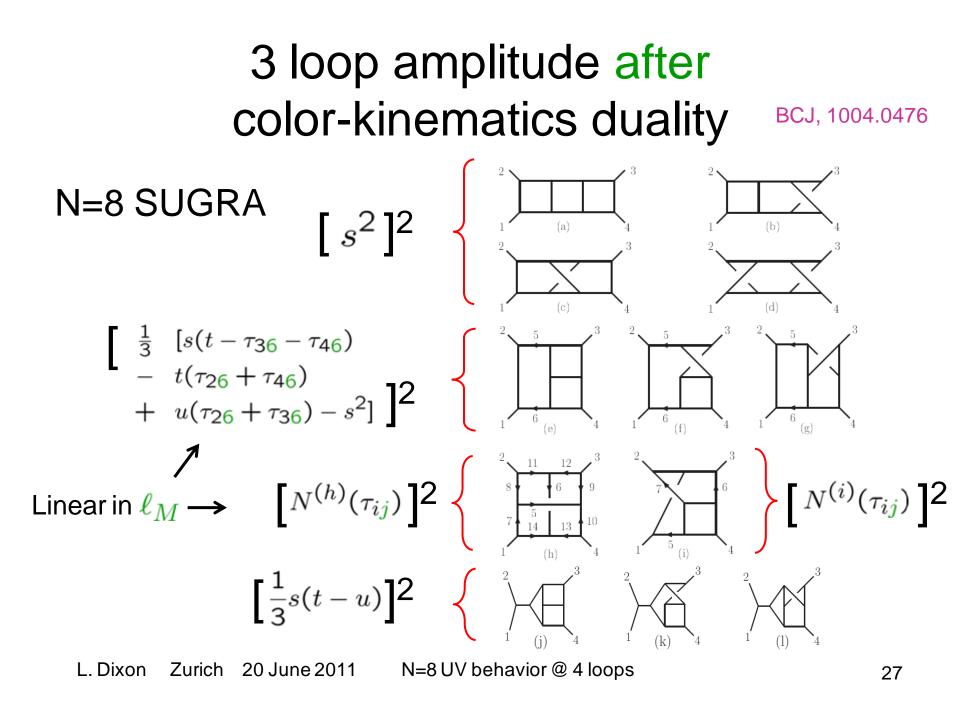
L. Dixon Zurich 20 June 2011

Old N=4 numerators at 3 loops



Old N=8 numerators at 3 loops





N=8 no worse than N=4 SYM in UV

Manifest quadratic representation at 3 loops – same behavior as N=4 SYM – implies same critical dimension (as for L = 2):

$$D_c \le 4 + \frac{6}{L} = 6$$

Evaluate UV poles in integrals
→ no further cancellation
At 3 loops, D_c = 6 for N=8 SUGRA as well as N=4 SYM:

$$M_4^{(3),D=6-2\epsilon}\Big|_{\text{pole}} = \frac{1}{\epsilon} \frac{5\zeta_3}{(4\pi)^9} \left(\frac{\kappa}{2}\right)^8 (s_{12}s_{13}s_{14})^2 M_4^{\text{tree}}$$

$$\mathcal{D}^6 R^4$$
 counterterm

Also recovered via string theory (up to factor of 9?)

Green, Russo, Vanhove, 1002.3805

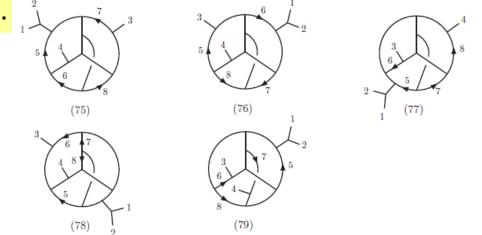
N=8 UV behavior @ 4 loops

L. Dixon Zurich 20 June 2011

4 loops

- Computed first without using color-kinematics duality
- →50 nonvanishing cubic 4-point graphs BCDJR, 0905.2326, 1008.3327
- From this form we could show N=8 SUGRA no worse behaved than N=4 SYM using this representation.
- But actually extracting the numerical coefficient of the $D^8 R^4$ divergence in the critical dimension, $D_c(4) = 4 + 6/4 = 11/2$, was too difficult.
- Now we have a dual form for the N=4 SYM amplitude, from which we can compute the divergence. $\frac{1}{2}$

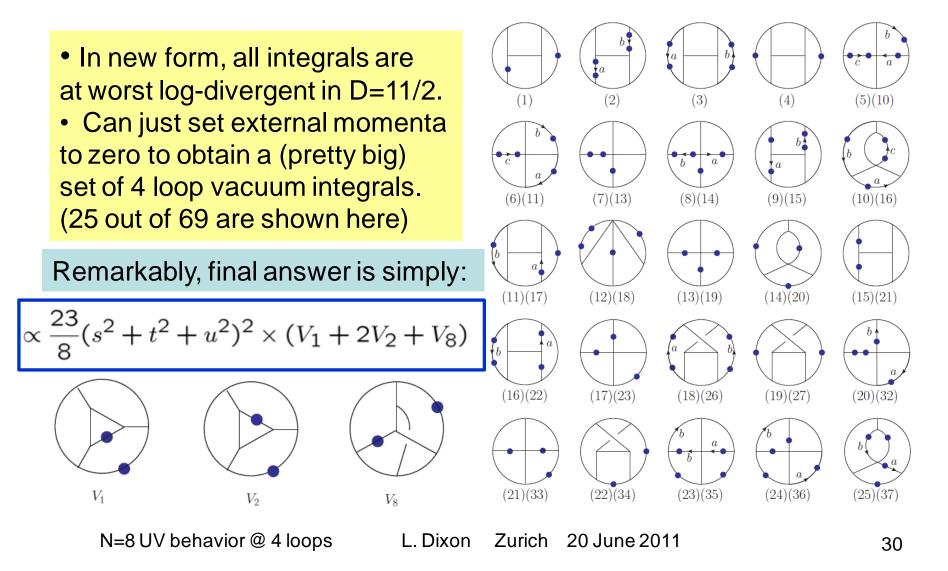
35 new, 1-particle-reducible cubic graphs, analogs of (j), (k), (l) at 3 loops



N=8 UV behavior @ 4 loops

L. Dixon Zurich 20 June 2011

4 loop UV divergence in D=11/2



N=4 SYM in UV at 4 loops

• Remarkable because subleading-color part of UV divergence of N=4 SYM depends on precisely the same linear combination of vacuum integrals:

N=8 UV behavior @ 4 loops

L. Dixon Zurich 20 June 2011

What about L = 5?

• Motivation: Various arguments point to 7 loops as the possible first divergence for N=8 SUGRA in D=4, associated with a $D^{8}R^{4}$ counterterm:

Howe, Lindstrom, NPB181, 487 (1981); Bossard, Howe, Stelle, 0908.3883; Kallosh, 0903.4630; Green, Russo, Vanhove, 1002.3805; Bjornsson, Green, 1004.2692; Bossard, Howe, Stelle, 1009.0743; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger, 1009.1643

- Same $D^{8}R^{4}$ counterterm shows up at L = 4 in D = 5.5
- Does 5 loops $\rightarrow D^{10}R^4$ (same UV as N=4 SYM)? or $\rightarrow D^8R^4$ (worse UV as N=4 SYM)?
- 5 loops would be a very strong indicator for 7 loops
- Now 100s of nonvanishing cubic 4-point graphs!

Implications if N=8 perturbatively finite

- Suppose N=8 SUGRA is finite to all loop orders.
- Does this mean it is a nonperturbatively consistent theory of quantum gravity?
- No!
- At least two reasons it might need a nonperturbative completion:
 - Likely L! or worse growth of the order L coefficients, ~ L! $(s/M_{Pl}^2)^L$
 - **Different** $E_{7(7)}$ behavior of the perturbative series (invariant!) compared with the $E_{7(7)}$ behavior of the mass spectrum of black holes (non-invariant!)

Is N=8 SUGRA "only" as good as QED?

- QED is renormalizable, but its perturbation series has zero radius of convergence in α : ~ *L*! α^{L}
- UV renormalons associated with UV Landau pole
- But for small α it works pretty well:
- $g_{\rm e}$ 2 agrees with experiment to 10 digits
- Also, tree-level (super)gravity works well for $s << M_{Pl}^2$
- Many pointlike nonperturbative UV completions for QED: asymptotically free GUTs

• What is/are nonperturbative UV completion(s) for N=8 SUGRA? Is the only possibility superstring theory? Or could some be pointlike too?

Outlook

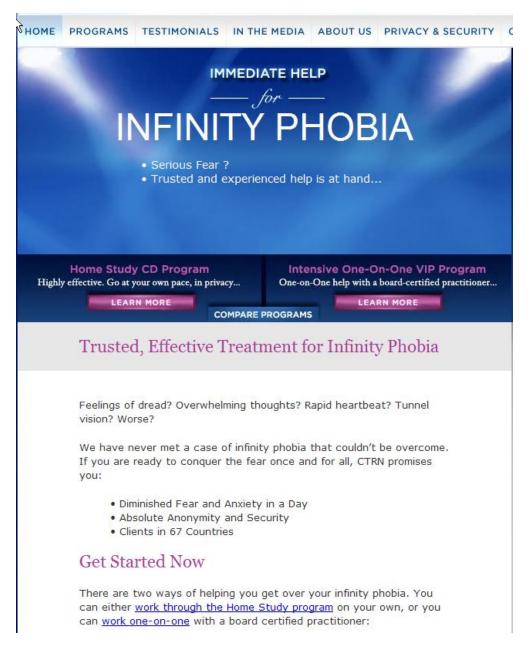
• Through 4 loops, the 4-graviton scattering amplitude of N=8 supergravity has UV behavior no worse than the corresponding 4-gluon amplitude of N=4 SYM.

• Will the same continue to happen at higher loops? 5 loops will provide a strong test! If so, then N=8 supergravity would be a finite, point-like theory of quantum gravity.

• We need a new way to look at the problem, rather than loop by loop! Is there a deep symmetry responsible?

• N=8 supergravity is still only a "toy model" for quantum gravity – we don't see any way to use it to describe the strong and weak interactions.

• Still, could it point the way to other, more realistic, finite point-like theories? (A big challenge, but maybe N=8 gaugings \rightarrow N<8 can be a first step...)



N=8 UV behavior @ 4 loops

L. Dixon Zurich 20 June 2011