Renormalisation group and the Planck scale

Daniel F Litim Department of Physics and Astronomy

University of Sussex

Quantum Theory and Gravitation ETHZ, June 23, 2011

gravitation

physics of classical gravity

Einstein's theory $G_N = 6.7 \times 10^{-11} \frac{m^3}{\text{kg } s^2}$ classical action

$$S_{\rm EH} = \frac{1}{16\pi G_N} \int \sqrt{\det g} (-R(g_{\mu\nu}) + 2\Lambda)$$

long distances

gravity not tested beyond $10^{28} \mathrm{cm}$

short distances

gravity not tested below $10^{-2} \mathrm{cm}$

gravitation

physics of classical gravity

Einstein's theory
$$G_N = 6.7 \times 10^{-11} \frac{m^3}{\log s^2}$$

physics of quantum gravity

Planck length $\ell_{\rm Pl} = \left(\frac{\hbar G_N}{c^3}\right)^{1/2} \approx 10^{-33} \, {\rm cm}$ Planck mass $M_{\rm Pl} \approx 10^{19} {\rm GeV}$ Planck time $t_{\rm Pl} \approx 10^{-44} \, {\rm s}$ Planck temperature $T_{\rm Pl} \approx 10^{32} \, {\rm K}$

expect quantum modifications at energy scales $M_{\rm Pl}$

gravitation

physics of classical gravity

Einstein's theory
$$G_N = 6.7 \times 10^{-11} \frac{m^3}{\log s^2}$$

physics of quantum gravity

- [G] > 0: superrenormalisable
- [G] = 0: renormalisable
- [G] < 0: dangerous interactions

perturbative non-renormalisability

gravity with matter interactions pure gravity (Goroff-Sagnotti term)

effective expansion parameter: $g_{\rm eff} \equiv G_N \, \mu^2 \approx \frac{\mu^2}{M_{\rm Pl}^2}$

 $[G_N] = 2 - d$

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

asymptotic freedom of the strong force

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

running couplings

quantum fluctuations modify interactions couplings depend on eg. energy or distance

gravitation

UV fixed point implies weakly coupled gravity at high energies

$$\mu \to \infty : \quad G(\mu) \to g_* \mu^{2-D} \ll G_N$$

renormalisation group

integrating-out momentum degrees of freedom: "top-down" (Wilson '71)

`coarse-graining' of quantum fields

renormalisation group

renormalisation group

`coarse-graining' of quantum fields

effective action

$$\Gamma_{k} = \int \sqrt{g} \left(\frac{-R + 2\Lambda_{k}}{16\pi G_{k}} + \cdots \right) + S_{\text{matter},k} + S_{\text{gf},k} + S_{\text{ghosts},k}$$

effective action

$$\Gamma_{k} = \int \sqrt{g} \left(\frac{-R + 2\Lambda_{k}}{16\pi G_{k}} + \cdots \right) + S_{\text{matter},k} + S_{\text{gf},k} + S_{\text{ghosts},k}$$

Einstein-Hilbert theory

$$\beta_g = (D-2+\eta)g \qquad g_k = G_k k^{D-2} \qquad \eta = \frac{g b_1(\lambda)}{1+g b_2(\lambda)}$$

$$\beta_\lambda = (-2+\eta)\lambda + g(a_1 - \eta a_2) \qquad \lambda_k = \Lambda_k/k^2$$

$$a_{1} = \frac{D(D-1)(D+2)}{2(1-2\lambda)} + \frac{D(D+2)}{1-2\alpha\lambda} - 2D(D+2)$$

$$a_{2} = \frac{D(D-1)}{2(1-2\lambda)} + \frac{D}{1-2\alpha\lambda}$$

$$b_{1} = -\frac{1}{3}(1+\frac{2}{D})(D^{3}+6D+12) - \frac{(D+2)(D^{3}-4D^{2}+7D-8)}{(D-1)(1-2\lambda)^{2}} + \frac{D(D+2)(D^{3}-2D^{2}-11D-12)}{12(D-1)(1-2\lambda)} - \frac{2(D+2)(\alpha D^{2}-2\alpha D-D-1)}{D(1-2\alpha\lambda)^{2}} + \frac{(D+2)(D^{2}-6)}{6(1-2\alpha\lambda)}$$

$$b_{2} = -\frac{D^{3}-4D^{2}+7D-8}{(D-1)(1-2\lambda)^{2}} + \frac{(D+2)(D^{3}-2D^{2}-11D-12)}{12(D-1)(1-2\lambda)} - \frac{2(\alpha D^{2}-2\alpha D-D-1)}{D(1-2\alpha\lambda)^{2}} + \frac{(D+2)(D^{2}-6)}{6D(1-2\alpha\lambda)}$$
(DL'03)

effective action

$$\Gamma_{k} = \int \sqrt{g} \left(\frac{-R + 2\Lambda_{k}}{16\pi G_{k}} + \cdots \right) + S_{\text{matter},k} + S_{\text{gf},k} + S_{\text{ghosts},k}$$

Einstein-Hilbert theory

 $\Lambda_k = \lambda \, k^2$ $G_k = g/k^2$

(DL '03)

effective action

$$\Gamma_{k} = \int \sqrt{g} \left(\frac{-R + 2\Lambda_{k}}{16\pi G_{k}} + \cdots \right) + S_{\text{matter},k} + S_{\text{gf},k} + S_{\text{ghosts},k}$$

Einstein-Hilbert theory

 $\Lambda_k = \lambda \, k^2$ $G_k = g/k^2$

effective action

$$\Gamma_{k} = \int \sqrt{g} \left(\frac{-R + 2\Lambda_{k}}{16\pi G_{k}} + \cdots \right) + S_{\text{matter},k} + S_{\text{gf},k} + S_{\text{ghosts},k}$$

Einstein-Hilbert theory

 $\Lambda_k = \lambda \, k^2$ $G_k = g/k^2$

effective action

$$\Gamma_{k} = \int \sqrt{g} \left(\frac{-R + 2\Lambda_{k}}{16\pi G_{k}} + \cdots \right) + S_{\text{matter},k} + S_{\text{gf},k} + S_{\text{ghosts},k}$$

higher dimensions

 $\Lambda_k = \lambda \, k^2$ $G_k = g/k^2$

Einstein-Hilbert, extensions (DL '03, Fischer, DL '05)

$$\lambda_* = \frac{D^2 - D - 4 - \sqrt{2D(D^2 - D - 4)}}{2(D - 4)(D + 1)}$$
$$g_* = \Gamma(\frac{D}{2} + 2)(4\pi)^{D/2 - 1} \frac{(\sqrt{D^2 - D - 4} - \sqrt{2D})^2}{2(D - 4)^2(D + 1)^2}$$

RG connected with perturbative infrared regime

(Folkerts, DL, Pawlowski '11)

effective action

$$\Gamma_k = \int \sqrt{g} \left(\frac{Z_{N,k}}{16\pi G_N} - \frac{R + 2\bar{\Lambda}_k}{16\pi G_N} + \frac{Z_{A,k}}{4g_s^2} F^a_\mu F^\mu_a \right)$$

does asymptotic freedom persist?

1-loop and effective theory: asymptotic freedom persists

$$\beta_{\rm YM}|_{\rm grav} = -\frac{3I}{2\pi} g_s^2 G_N E^2 < 0$$

Robinson, Wilzcek ('05) Pietrykowski ('06) Toms ('07, '10) Ebert, Plefka, Rodigast ('07) Daum, Harst, Reuter ('09) Folkerts, DL, Pawlowski ('11)

(Folkerts, DL, Pawlowski '11)

effective action

$$\Gamma_k = \int \sqrt{g} \left(\frac{Z_{N,k}}{16\pi G_N} - \frac{R + 2\bar{\Lambda}_k}{16\pi G_N} + \frac{Z_{A,k}}{4g_s^2} F^a_\mu F^\mu_a \right)$$

background field flow

 $R_k[\bar{\phi}] = \Gamma_k^{(2)}[\bar{\phi}] r[\bar{\phi}]$

$$r^{gg} = r^{gg}(-\Delta_{\bar{g}}) \quad r^{\bar{\eta}\eta} = -r^{\eta\bar{\eta}} = r^{\bar{\eta}\eta}(-\Delta_{\bar{g}})$$

$$r^{AA} = r^{AA}(-\Delta_{\bar{g}}(A) \quad r^{\bar{C}C} = -r^{C\bar{C}} = r^{\bar{C}C}(-\Delta_{\bar{g}}(A))$$

result: no graviton contribution at one-loop

$$\beta_{g}|_{1-\text{loop}} = \beta_{g,\text{YM}}|_{1-\text{loop}}$$

(Folkerts, DL, Pawlowski '11)

effective action

$$\Gamma_{k} = \int \sqrt{g} \left(Z_{N,k} \frac{-R + 2\bar{\Lambda}_{k}}{16\pi G_{N}} + \frac{Z_{A,k}}{4g_{s}^{2}} F_{\mu}^{a} F_{a}^{\mu} \right)$$
flat background
kinematical identity
 $T_{\mu\nu\delta\lambda}$
 $T_{\mu\nu\delta\lambda}$
 $T_{\mu\nu\delta\lambda}$
 $T_{\mu\nu\delta\lambda}$
 $T_{\mu\nu\delta\lambda}$
 $\Omega_{p} = \frac{1}{2}$

result

$$I = \int_0^\infty dx \; \frac{1+\alpha}{1+r_g(x)} \left(1 - \frac{1}{1+r_A(x)}\right) \ge 0$$

(Folkerts, DL, Pawlowski '11)

effective action

$$\Gamma_{k} = \int \sqrt{g} \left(Z_{N,k} \frac{-R + 2\bar{\Lambda}_{k}}{16\pi G_{N}} + \frac{Z_{A,k}}{4g_{s}^{2}} F_{\mu}^{a} F_{\mu}^{\mu} \right)$$
flat background
kinematical identity
$$T_{\mu\nu\delta\lambda}$$

beyond 1-loop + CC

 $\beta_{\rm YM}|_{\rm grav} \le 0$

(Folkerts, DL, Pawlowski '11)

effective action

$$\Gamma_k = \int \sqrt{g} \left(\frac{Z_{N,k}}{16\pi G_N} - \frac{R + 2\bar{\Lambda}_k}{16\pi G_N} + \frac{Z_{A,k}}{4g_s^2} F^a_\mu F^\mu_a \right)$$

YM contribution to gravity

further directions

higher derivative gravity

1-loopCodello, Percacci ('05) Niedermaier ('09)1-loop and beyondBenedetti, Machado, Saueressig ('09)

conformal symmetry

Weyl coupling
$$\frac{1}{\sigma} \int d^4x \sqrt{g} \, C_{\mu\nu\rho\tau} \, C^{\mu\nu\rho\tau}$$

asymptotically `free' fixed point $\sigma_*=0$ DL, Rahmede ('11) entails $g_*>0$ $\lambda_*
eq 0$

$$\beta_{\rm YM}|_{\rm grav} \le 0$$

conclusions and outlook

quantum theory and gravitation

increasing evidence for asymptotically safe gravity extended approximations quantitative and structural insights

particle physics

towards a Standard Model including quantum gravity

challenges

lattice \leftrightarrow RG \leftrightarrow loops \leftrightarrow strings \leftrightarrow other

cosmology

late-time acceleration, IR fixed points very early universe, inflation asymptotically safe cosmology

phenomenology

low-scale quantum gravity: signatures at colliders black hole physics