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Mission Statement

To understand and describe quantitatively the 
structure and dynamics of spacetime on all scales.

In other words, to find a theory of Quantum Gravity. 



Some unresolved fundamental questions

• What are the (quantum) origins of space,                                   
time and our universe?

•  What is the microstructure of spacetime? 

•  What are the relevant degrees of freedom                                    
at the Planck scale?

•  Can their dynamics explain the observed                                 
large-scale structure of our universe, that of                                     
an approximate Minkowski de Sitter space?

•  Which aspects of spacetime are dynamical                                     
at the Planck scale: geometry? topology?                        
dimensionality?

•  Are “space”, “time”, and “causality”                                 
fundamental or emergent?



Quantum Gravity from Causal Dynamical Triangulation 
(QG from CDT)

CDT is a no-frills nonperturbative implementation of the gravitational path 
integral, much in the spirit of lattice quantum field theory, but based on 
dynamical lattices, reflecting the dynamical nature of spacetime geometry.

A key result that puts QG from CDT on the 
map as a possible quantum theory of gravity is 
the fact that it can generate dynamically a 
background geometry with semiclassical 
properties from pure quantum excitations, in an 
a priori background-independent formulation. 
(C)DT has also given us crucial new insights 
into nonperturbative dynamics and pitfalls.

(PRL 93 (2004) 131301, PRD 72 (2005) 064014, PLB 607 (2005) 205)

my presentation is mainly based on joint work with 
J. Ambjørn, J. Jurkiewicz, T. Budd, A. Görlich and S. Jordan
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recall Jan Ambjørn’s talk from last week:

 how “quantum gravity” may exist as a theory despite the perturbative 
non-renormalizability of gravity

 how we can find evidence for this from investigating the continuum limit 
of a nonperturbative lattice formulation in terms of causal dynamical 
triangulations

 how we can analyze the scaling behaviour of (bare) couplings and try to 
relate them to a RG treatment (c.f. talks by Martin Reuter and Daniel Litim)

today’s talk:

 recap some of the essentials

 nature of the dynamically generated quantum universe

 the issue of “observables”



Basic tool: the good old path integral

Textbook example: the nonrelativistic particle (h.o.) in one dimension

Quantum superposition principle: the transition amplitude from xi(ti) 
to xf(tf) is given as a weighted sum over amplitudes exp iS[x(t)] of all 
possible trajectories, where S[x(t)] is the classical action of the path.

(here, time is discretized in steps of length a, and the trajectories are piecewise linear)



By ev.$;cit_ cor^stnrhor4 r t ritI glr<- wr!-ahi^g to the-

n 
Su wr ov er tntst"l-re-s"

a.k. a, $ ravitali oua[ P+ i,tteSra-L
o'11'dr'^ ,s*,ln 4)

7(9.n,d) - JD? e- '
.r.JK-;^IF. 

ffi:???

" C-ausa.L D

I C n,r,,,b;o(^t T. ilrrKia^1i.3 , R,L.. ef a"1,. ]

ut^ah^icaL Triaurqul xfio^s " (CDf )
J--()

causa\ , Lorenfuiaw
gaouerhries

vrohp"rtr'lr loatiu!-

" t^and le "

4o e-urLuate- Zo)
I
c%
6.

Q.uahtq,ff\ 6,r-avibl

c'F) b1 Hounfe Carto sitr,rutattohs ( for CDT

Vnnode\s itr d=2,3 J,uave qtso, erac-t Sf'#. t ecL.

Sotut-ion nnethods I see e.g. .

D Benerlelt-; ' rF.b^puhi ,?.L.,Q?'D?6Ct-oo+7 )

" ytZw Kld. ott

iU'Q- b|,qdlc-"

40 4 o2-L

The same superposition principle, applied to gravity

Each “path” is now a four-dimensional, curved spacetime geometry 
g, which can be thought of as a three-dimensional, spatial geometry 
developing in time. The weight associated with each g is given by the 
corresponding Einstein-Hilbert action SEH[g], 
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How can we make Z(GN,Λ) into a meaningful, well-defined quantity?
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Elementary four-simplex, building block 
for a causal dynamical triangulation:

a ~ edge length; diffeomorphism-
invariant UV regulator

Micro-causality is essential! This does 
not work in Euclidean signature - get 
only branched polymers (~mid-90s). CDT’s proper-time slicing

Regularizing the path integral via CDT

‘democratic’, regularized 
sum over piecewise flat 
spacetimes, doesn’t need 
coordinates (Regge); 
continuum limit required 
to obtain universal 
results independent of 
the regularization 
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Wick rotation and analogy with statistical mechanics

 each regularized Lorentzian geometry T allows for a rotation to a unique 
regularized Euclidean geometry Teu, such that the Feynman amplitude of a path 
is turned into a Boltzmann weight, as in statistical mechanics

 this turns the quantum amplitude Z into a partition function Zeu and allows 
us to use powerful numerical methods from statistical mechanics, like Monte 
Carlo simulations

 a ‘classical trajectory’ is an average over quantum trajectories in the 
statistical ensemble of trajectories (the Euclideanized ‘sum over histories’)

 taking the continuum limit of this regularized theory means studying the 
critical behaviour of the underlying statistical theory

 performing an ‘inverse Wick rotation’ on quantities computed in the 
continuum limit is in general nontrivial

eiSRegge(T ) → e−SRegge
eu (Teu)



The phase diagram of Causal Dynamical Triangulations

λ  ~ cosmological constant
κ0 ~ 1/GN inverse Newton’s     
        constant
Δ  ~ relative time/space scaling
 c  ~ numerical constant, >0
Ni ~ # of triangular building 
        blocks of dimension i

The partition function is defined for λ > λcrit (κ0,Δ); 
approaching the critical surface = taking infinite-volume limit. 
red lines ~ phase transitions 

(J. Ambjørn, J. Jurkiewicz, RL, PRD 72 (2005) 064014;
J. Ambjørn,  A. Görlich, S. Jordan, J. Jurkiewicz, RL, PLB 690 (2010) 413;
definite phase transition analysis: work with S. Jordan, to appear)
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The phase diagram of CDT in the κ0-Δ plane

(data taken at N4=80.000)

Similar to a Lifshitz phase diagram (cf. P. Hořava’s anisotropic gravities), where Φ 
is an order parameter of a mean field Lifshitz theory, with free energy

Conjecture: this phase structure is generic for Lorentzian higher-dim. geometries.

F = a2φ
2 + a4φ

4 + · · · + c2(∂xφ)2 + d2(∂tφ)2 + . . .
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The dynamical emergence of spacetime as we know it

CDT is the so far only candidate theory of nonperturbative 
quantum gravity where a classical extended geometry is generated 
from nothing but Planck-scale quantum excitations. 

This happens by a nonperturbative, entropic  mechanism:

Magically, the many microscopic building blocks in the quantum 
superposition arrange themselves into an extended quantum spacetime 
whose macroscopic shape is that of a well known cosmology.

When, from all the gravitational degrees of freedom present, we 
monitor only the spatial three-volume <V3(t)> of the universe as a 
function of proper time t, we find a distinct “volume profile”.

entropy = number of microscopic geometric realizations of a given value of the action



Dynamically generated four-dimensional quantum universe, 
obtained from a path integral over causal spacetimes

time

3-volume

This is a Monte Carlo “snapshot” - still need to average to obtain the 
expectation value of the volume profile.



(A solution to the classical Einstein equations in the presence 
of “dark energy” - a.k.a. a cosmological constant Λ.)
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           a very nontrivial test of the classical limit;
strong flavour of condensed matter phenomena

Our “self-organized quantum spacetime” has the shape 
of a de Sitter universe!

(J. Ambjørn,  A. Görlich, J. Jurkiewicz, RL, PRL 100 (2008) 091304, PRD 78 (2008) 
063544, NPB 849 (2011) 144 (w/ J. Gizbert-Studnicki, T. Trzesniewski)



The volume profile <V3(t)>, as function of Euclidean proper time t=iτ, perfectly 
matches that of a Euclidean de Sitter space, with scale factor a(t)2 given by

What is the concrete evidence for de Sitter space? 
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N.B.: we are not doing quantum cosmology 
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Remarkably, having started from the Wick-rotated path integral,
∫
D[g] e−Seu , Seu =

∫
dt (− V̇ 2

3

V3
− V 1/3

3 + . . . )

by integrating out everything but the global conformal mode V3(t), we obtain 
an effective dynamics for V3(t), given by

e−Seff
eu , Seff

eu =
∫

dt (+
V̇ 2

3

V3
+ V 1/3

3 + . . . )

This is entirely due to nonperturbative, entropic effects (the PI measure).

In addition, expanding the minisuperspace action around the de Sitter solution,

Seu(V3) = S(V dS
3 ) + κ

∫
dt δV3(t)ĤδV3(t)

the eigenmodes of     match well with those extracted from the simulations:Ĥ
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(N.B.: no further 
fitting necessary)
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Try to match to an extended effective action 
with kinetic terms

Going beyond the global conformal (“Friedmann”) 
mode 

Interesting toy model with global metric d.o.f.: studying the effective action
for a CDT path integral for 2+1 gravity on spatial tori

ds2 = e2φ(x)ḡµνdxµdxν ḡµν =
1
τ2

(
1 τ1

τ1 τ2
1 + τ2

2

)

(1/2− λ)
V̇ 2

2

V2
+ α[V2, ·] τ̇

2
1 + τ̇2

2

τ2
2

where λ appears in the Wheeler-de Witt metric

Gµνρσ
(λ) =

√
g

4

(
1
2
(gµρgνσ + gµσgνρ)− λgµνgρσ

)
(T. Budd, RL, to appear)
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Getting a handle on Planckian physics
(or, another nonperturbative surprise!)

A diffusion process is sensitive to the dimension of the 
medium where the “spreading” takes place. We have 
implemented such a process on the quantum superposition 
of spacetimes. By measuring a suitable “observable”   , we 
have extracted the spectral dimension Ds of the quantum 
spacetime.
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(J. Ambjorn, J. Jurkiewicz, RL, 
PRL 95 (2004) 171301)

Quite remarkably, we find that it depends on the length scale probed: Ds 

changes smoothly from 4 on large scales to ~2 on short scales.
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quantum spacetime generated by CDT

classical spacetime manifold

DS(σ) probes properties of the geometry on linear length scales ~ σ1/2 :

           on short scales, our “ground 
state of geometry” is definitely not a 
classical manifold.

Instead, we find evidence for the 
presence of a random fractal 
structure.

Intriguingly, the same short-scale “dynamical dimensional reduction” has since 
been found in a couple of disparate, (also quantum field-theoretic) approaches:

  nonperturbative renormalization group flow analysis                                     
(M. Reuter, O. Lauscher, JHEP 0510:050, 2005)

  nonrelativistic “Lifshitz quantum gravity” (P. Hořava, PRL 102 (2009) 161301)

(J. Ambjørn,  A. Görlich, J. Jurkiewicz, 
RL, PLB 690 (2010) 420)

3d: relating the curve DS(σ) of CDT (D. Benedetti, J. Henson, PRD 80 (2009)
124036) to dispersion relations of suitable differential operators on 3d flat 
space (T. Sotiriou, M. Visser, S. Weinfurtner, arXiv:1105.5646)
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The quest for observables

  DS(σ) is the “dimension felt by a scalar test particle” - not really a true 
observable near the Planck scale in the sense of phenomenological implications                                   

  still useful and “covariantly defined” (meaningful in the sum over geometries 
and after averaging over the starting point of the diffusion process) and can be 
computed; characteristically nonlocal

 can play an important role in discriminating between different candidate 
theories of quantum gravity, akin to the computation of “black hole entropy” 
S=A/4, but arguably one that probes the nonperturbative structure, not just 
semiclassical properties 

 various computations of DS(σ) on short scales for nonclassical geometries: 
noncommutative geometry/κ-Minkowski space (D. Benedetti, PRL 102 (2009) 
111303), three-dimensional CDT (D. Benedetti, J. Henson, PRD 80 (2009) 
124036), from area operator in loop quantum gravity (L. Modesto, CQG 26 
(2009) 242002), possible relation with strong-coupling limit of WdW equation 
(S. Carlip, arXiv: 1009.1136), modelling from dispersion relations on flat spaces 
(T. Sotiriou, M. Visser, S. Weinfurtner, arXiv: 1105.6098), modelling by multifractal 
spacetimes (G. Calcagni, arXiv: 1106.0295)
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Causal Dynamical Triangulations - Summary & Outlook

CDT is a path integral formulation of gravity, which incorporates the dynamical 
and causal nature of geometry. It depends on a minimal number of assumptions 
and ingredients and has few free parameters. Its associated toolbox provides 
us with an “experimental lab” - a nonperturbative calculational handle on 
(near-)Planckian physics (c.f. lattice QCD).

          We have begun to make quantitative statements/predictions.

          We can in principle also test nonperturbative predictions from other 
          fundamental theories containing gravity.
           Many nonperturbative lessons learned so far: relevance of metric  
          signature in the path integral; tendency of geometric superpositions 
          to degenerate; dynamical nature of “dimension”; emergence of  
          classicality from quantum dynamics; crucial role of “entropy”; cure of 
          the conformal divergence; role of “time” and “causality” as 
          fundamental, and not emergent quantities 
             Hopefully we are seeing glimpses of an essentially unique quantum 
          theory of gravity; is your approach seeing the same? - Watch this space!



Where to learn more 

• CDT light: “The self-organizing quantum universe”, by J. Ambjørn, 
J. Jurkiewicz, RL (Scientific American, July 2008)

• A nontechnical review in Contemp. Phys. 47 (2006) [arxiv: hep-th/
0509010]

• recent reviews/lecture notes: arXiv 0906.3947, 1004.0352, 
1007.2560, Physics Report to appear

• links to both review and popular science material can be found on 
my homepage http://www.phys.uu.nl/~loll

http://www.phys.uu.nl/~loll
http://www.phys.uu.nl/~loll


 Nonperturbative Highlights 
on 

Quantum Gravity 
from 

Causal Dynamical Triangulations 

Zürich, 
22 Jun 2011

The End



SEH =
1

GN

∫
d4x

√
−det g(R[g, ∂g, ∂2g]− 2Λ)



(*) in d=4 by Monte Carlo simulations (for CDT models in lower dimensions also 
have exact stat. mech. solutions methods, see e.g. D. Benedetti, F. Zamponi, R.L., PRD 
76 (2007) 104022; in d=2, the problem becomes purely combinatorial)

classical problem: approximate a 
curved surface through triangulation A typical path 

integral history 
(2d quantum gravity) 

Regularizing gravity by “dynamical triangulations”

quantum theory: approximate the space of all 
curved geometries by a space of triangulations
and subsequently integrate over this space(*)

triangulation = regularization

N.B.: no coordinates!
(T. Regge’s 1961 idea of
“GR without coordinates”)
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  Phase A: (sufficiently large κ0=1/GN) 
inhomogeneous in time, a Lorentzian version of 
conformal factor dominance, individual 
“universes” remain small

  Phase B: (small κ0, small Δ) phase of “no 
geometry” - collapse along the time direction, 
but also space is “crumpled”, without linear 
extension (Hausdorff dimension dH≈∞!)

  Phase C: (small κ0, large Δ) physical phase of 
extended geometry! - canonical scaling in the 
large,〈T〉∝N41/4,〈V3〉∝N43/4 , dH≈4

time

3-
vo

lu
m

e
typical path integral histories  
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The semiclassical limit of CDT quantum gravity which gives rise to the de 
Sitter universe is truly nonperturbative: it is located in a region of coupling 
constant space where the entropy of the geometric configurations is as 
important as the contribution from the exponential of the action. 

This is similar to what happens at a Kosterlitz-Thouless transition in the 
XY model of 2D spins on a two-dimensional lattice.

a single vortex has E = κ ln(R/a)

Nonperturbative semiclassicality

R

a

Z = e−F/kBT =
∑

spin configs

e−E[spin]/kBT !
(

R

a

)2

e−[κ ln(R/a)]/kBT

F = E − ST = (κ− 2kBT ) ln(R/a)

(J. Ambjørn,  A. Görlich, J. Jurkiewicz, J. Gizbert-
Studnicki, T. Trzesniewski, RL, NPB 849 (2011) 144) 

F=0 is far away from the naive weak coupling limit.
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CDT - fresh from the press 

 analyzing the phase structure of QG from CDT, establishing order of 
critical transition lines/points (J. Ambjørn,  A. Görlich, S. Jordan, J. Jurkiewicz, 
RL, PLB 690 (2010) 413, and ongoing work)  

 establishing further aspects of the correct semiclassical limit of the 
nonperturbative CDT formulation (J. Ambjørn,  A. Görlich, J. Jurkiewicz, RL, J. 
Gizbert-Studnicki, T. Trzesniewski, to appear in Nucl. Phys. B),

  studying matter coupling (influence of matter on geometry, extract 
Newton’s law, the early universe coupled to a scalar field) -                       
we have recently been able to quantify the expected effect of a single 
pointlike mass on the volume profile of CDT’s de Sitter background           
(I. Khavkine, P. Reska, RL, Class. Quant. Grav. 27 (2010) 185025)

 investigating short-scale quantum structure of spacetime, and coming up      
with an effective description of Planckian dynamics - we have recently 
analyzed the fractality of the quantum geometry by using geodesic shell 
decompositions (J. Ambjørn,  A. Görlich, J. Jurkiewicz, RL, PLB 690 (2010) 420)  


