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Group Field Theory formalism

general introductions:
L. Freidel, [arXiv: hep-th/0505016]
D. Oriti, [arXiv: gr-qc/0512103]
D. Oriti, [arXiv: gr-qc/0607032].
D. Oriti, [arXiv: 0912.2441 [hep-th]]
V. Rivasseau, [arXiv:1103.1900 [gr-qc]]
D. Oriti, in Foundations of space and time, G. Ellis, J. Marugan, A. Weltman (eds.),
Cambridge University Press (2011)

work by:
Baratin, Ben Geloun, Bonzom, Boulatov, Carrozza, De Pietri, Fairbairn, Freidel,
Girelli, Gurau, Livine, Louapre, Krajewski, Krasnov, Magnen, Noui, Ooguri, Oriti,
Perez, Raasakka, Reisenberger, Riello, Rivasseau, Rovelli, Ryan, Sindoni, Smerlak,
Tanasa, Vitale, .......

..... growing area of research .......
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PLAN OF THE TALK

GFT: roots

GFT: basic idea and main open issues/directions

GFT models: 3d gravity - 4d constructions

a brief survey of recent and current developments

conclusions
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GFT: roots

Loop Quantum Gravity meets Discrete (Simplicial) Quantum Gravity ......
(and non-commutative geometry).........
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FIRST ROOT: MATRIX MODELS

(quantum) 2d spacetime as a (statistical) superposition ofdiscrete surfaces
building block of space:Mi

j i, j = 1, ...,N N× N hermitian matrix
microscopic dynamics:
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simplicial intepretation:
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Γ≃ 2d simplicial complex∆ (triangulation)
≃ 2d discrete spacetime

fundamental building blocks are 1d simplices with no additional data;
microscopic dynamics: no GR, pure 2d combinatorics & geometry
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FIRST ROOT: MATRIX MODELS

discretization of (Riemannian) 2d GR: replace surfaceSwith equilateral
triangles of areaa:
S2d

GR =
R

S d2x
√

g (−R(g) + Λ) = −4π χ + Λ AS → S∆ =

− 4π
G χ + Λa

G t

from matrix model (withλ = e−
Λa
G andN = e+ 4π

G ):

Z =
X

Γ

λ
VΓ Nχ =

X

∆

e+ 4π
G χ(∆)− aΛ

G t∆ ≃
Z

Dg∆ e− S∆(g)

(trivial) sum over histories of discrete GR on given 2d complex
plus sum over all possible 2d complexesof all topologies
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MATRIX MODELS AND CONTINUUM 2D GR

control over sum over triangulations/topologies?
large-N limit - sum governed by topological parameters

Z =
X

∆

λt∆ N2−2h =
X

h

N2−2h Zh(λ) = N2 Z0(λ) + Z1(λ) + N−2 Z2(λ) + .....

N → ∞ (semi-classical approx)→ only planar diagrams contribute

does it match results from continuum 2d gravity path integral?
re-sum Feynman expansion in large-N limit
expectation value of area of surface:
〈A〉 = a〈t∆〉 = 〈VΓ〉 = a ∂

∂λ
ln Z0(λ) ≃ a

(λ−λc)γ−1 , for VΓ >> 1,γ = 1/2

continuum limit: area of trianglesa → 0 and numbert∆ = VΓ → ∞, λ→ λc,
with finite continuum macroscopic area (phase transition of discrete system)
results match continuum 2d gravity path integral(Liouville gravity):
loop correlations and SD equations≃ Wheeler-De Witt eqns
(GR as effective field theory)

can also define continuum limit with contributions from non-trivial topologies -
double scaling limit
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GOING UP IN DIMENSION: TENSORMODELS

generalize in (combinatorial) dimension from 1d objects (edges) to 2d objects
(triangles) - from 2d simplicial complexes as FD to 3d ones

Mi
j → Tijk N × N × N tensor

i

j

i

j

k

S(T) = 1
2 trT2 − λ trT4 = 1

2

P
i,j,k TijkTkji − λ

P
ijklmn TijkTklmTmjnTnli

Z =
R
DT e−S(T) =

P
Γ λ

VΓ ZΓ

Feynman diagrams are dual to 3d simplicial complexes
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n

n'

quantum spacetime from sum over all simplicial complexes (manifolds and
pseudo-manifolds, any topology)?
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TENSOR MODELS

not so simple:
no topological expansion of amplitudes - no control over topology of diagrams
no way to separate manifolds from pseudo-manifolds
no direct/nice relation with 3d simplicial (classical and quantum) gravity - not
enough structure/data in the amplitudes, and in boundary states

in d > 2, topology of simplicial complexes and gravity are -much- less
trivial.........

two possible ways forward:

define ‘constructively’restricted sum over triangulations⇒ (causal) dynamical
triangulations (see talks by Ambjorn and Loll)
need to add (pre-geometric) data and d.o.f.⇒ Group Field Theory (see this talk)
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ASIDE: QUANTUM REGGE CALCULUS

Adding data on a simplicial complex, to define quantum gravity path integral......

discrete spacetime obtained by gluing d-simplices

metric discretized to set of edge lengths{Le}, in units of lattice scalea

theory defined by:

Z(Λ, a,G,∆) =
Y

e

Z
dµ(Le) e− SRegge(∆,a,{Le},G,Λ)

∆ = triangulation (fixed topology),SRegge= Regge action, with measuredµ(Le)

spin foam models are analogous, with different data, closerto gauge theory
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SECOND ROOT: LOOPQUANTUM GRAVITY

which kind of d.o.f should be added?
what are the fundamental, pre-geometric d.o.f. of quantum spacetime? how to
characterize its fundamental quantum building blocks?
results from Loop Quantum Gravity(talks by Rovelli, Ashtekar, Lewandowski, Speziale)

geometry= local frames and parallel transports→ diffeo invariant gauge theory

fundamental excitations of quantum space: graphs endowed with: fluxes/triads
↔ group elements (connection)↔ spins (quantum numbers)

h
Êi

e, ĥe

i
∝ Ri

⊲ ĥ
h

Êi
e, Ê

j
e′

i
= iǫij

kδe,e′ Ê
k
e

h
ĥe′ , ĥe

i
= 0

1

2

3

4

Γ g
g

g

23

12

34
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k
e

h
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k
e

h
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j
e′

i
= iǫij

kδe,e′ Ê
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results from Loop Quantum Gravity(talks by Rovelli, Ashtekar, Lewandowski, Speziale)

geometry= local frames and parallel transports→ diffeo invariant gauge theory

fundamental excitations of quantum space: graphs endowed with: fluxes/triads
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geometric interpretation: elementary quantum cells of dynamical geometry
full state space: all possible graphs and all possible associated data
history of basic excitations: spin foam↔ cellular complex with same data
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j
e′

i
= iǫij

kδe,e′ Ê
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j
e′

i
= iǫij

kδe,e′ Ê
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SECOND ROOT: LOOPQUANTUM GRAVITY
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geometric interpretation: elementary quantum cells of dynamical geometry

full state space: all possible graphs and all possible associated data

history of basic excitations: spin foam↔ cellular complex with same data

full quantum dynamics: all possible histories⇒ spin foam model↔ sum over
complexes weighted by lattice gauge theory↔ discrete gravity path integral
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GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

SECOND ROOT: LOOPQUANTUM GRAVITY

Whence the GFT idea (from LQG perspective)?
want quantum theory of dynamics of (very) many d.o.f.⇒ natural QFT framework
quantum of space: graph vertex↔ elementary cell

1

2

3

4

g

g g

g

g

g
1

1

1

1

2

2

2

2

3

3

1 2

quantum field theory for vertices/cells⇒ GFT ϕ(g1, g2, g3) ↔ ϕ(x1, x2, x3)

where to look for quantum dynamics of spacetime (e.g. LQG)?

microscopic dynamics can be quite different from continuumclassical dynamics
dynamics of single interaction process/history of fundamental excitations→
GFT Feynman amplitudes
(any spin foam model (given complex) is a GFT Feynman amplitude)
full (discrete) quantum dynamics→ GFT n-point functions and associated eqns
(Ward ids, SD eqns)
full continuum quantum dynamics→ same eqns but in continuum limit: critical
points, effective actions, etc
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GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

GFT: BASIC IDEA

group field theoriesare combinatorially non-local field theories on (Lie) groups
or algebras which

bring the fundamental d.o.f. of quantum space, as identifiedby canonical LQG
in the general framework ofmatrix/tensor models for simplicial quantum gravity

GFT fieldφ = 2nd quantized spinnet vertex or simplex→
→ quantum field theory of spin networks≃ of simplicial geometry

tentative definition ofcomplete dynamics of quantum space, from microscopic,
pre-geometric, quantum to macroscopic, geometric, (semi-)classical

can be studied using (almost) standard QFT methods

classical dynamicsS(φ)

quantum dynamics: perturbation theory around no-space vacuumφ = 0:

Z =

Z
[dφ] e− S(φ) =

X

Γ

A(Γ)

Γ = possible interaction/evolution process of spin networks/simplices=
cellular complex of arbitrary topology and complexity

A(Γ) = spin foam model or, equivalently, discrete gravity path integral
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GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

GFT: MAIN QUESTIONS AND DIRECTIONS

define interestingmodels for quantum gravity, i.e. S(φ) and thusA(Γ)
any spin foam construction has a direct GFT counterpart
same issues can be tackled from simplicial gravity path integral side
main strategy (up to now) 4d gravity as BF theory+ constraints
matter coupling, gauge theory, etc

understand encoding of quantum geometry and its GFT dynamics
geometric d.o.f. andsymmetriesin S(φ) and inA(Γ)
statistics (what is the statistics of spin networks?)
n-point functions, Ward identities and Schwinger-Dyson equations (here is WdW
equation)

control over perturbative expansion and perturbative renormalization
topology of diagrams, dependence of amplitudes on topology
GFT scaling and power counting
(perturbative) GFT renormalization

non-perturbative aspects and continuum/thermodynamic limit
(Borel) summability at least in some sector of full theory?
quantum dynamics in continuum limit: can take into account all d.o.f. of the theory?
analysis of different phases and phase transitions - a smooth 4d spacetime?

effective (classical and quantum) dynamics (and new physics?)
extract effective dynamics for geometry and matter in appropriate phase
simplified models
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(COLORED) GFT FOR 3D EUCLIDEAN GRAVITY

(Boulatov, hep-th/9202074) (Gurau, arXiv:0907.2582 [hep-th])

4 fieldsϕℓ for ℓ = 1, .., 4 function on SO(3)⊗3, subject to gauge invariance:

∀h ∈ SO(3), ϕℓ(hg1, hg2, hg3) = ϕℓ(g1, g2, g3)

actionS[ϕℓ] = Skin[ϕℓ] + Sint[ϕℓ]:

Skin[ϕℓ] =

Z
[dgi ]

3
4X

ℓ=1

ϕℓ(g1, g2, g3)ϕℓ(g1, g2.g3),

Sint[ϕℓ] = λ

Z
[dgi ]

6
ϕ1(g1, g2, g3)ϕ2(g3, g4, g5)ϕ3(g5, g2, g6)ϕ4(g6, g4, g1)

+λ

Z
[dgi ]

6
ϕ4(g1, g4, g6)ϕ3(g6, g2, g5)ϕ2(g5, g4, g3)ϕ1(g3, g2, g1)

spin network representationobtained by Peter-Weyl expansion (j ∈ N)

ϕℓ(g1, g2, g3) =
X

Cj1,j2,j3
m1,m2,m3

φ
j1,j2,j3
ℓ,n1,n2,n3

Dj1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

field↔ spin network vertex
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COLORED GFT FOR 3D EUCLIDEAN GRAVITY

non-commutative triad (flux) representationwith x ∈ su(2) ∼ R
3

(A. Baratin, DO, arXiv:1002.4723 [hep-th]), (A. Baratin, B. Dittrich, DO, J. Tambornino, arXiv:1004.3450 [hep-th])

use group Fourier transform of the fields(E. Livine, L. Freidel, S. Majid, K. Noui, E. Joung, J. Mourad)

bϕℓ(x1, x2, x3) :=

Z
[dgi ]

3
ϕℓ(g1, g2, g3) eg1(x1)eg2(x2)eg3(x3),

with plane-waves eg := eiTr(xg) : su(2)∼R
3 → U(1) (g=eθ~n·~τ andx=~x · ~τ )

non-commutative product dual to convolution product on thegroup:

(eg ⋆ eg′)(x) :=egg′(x),

gauge invariance condition is ‘closure constraint’ forxi

P̂ ⊲ ϕℓ = bC⋆bϕℓ
bC(x1, x2, x3) := δ0(x1+x2+x3) P ⊲ϕℓ =

Z
[dh]ϕℓ(hg1, hg2, hg3)

δx(y) :=

Z
[dh] eh-1(x)eh(y)

Z
[d3y] (δx ⋆ f )(y) = f (x)

xi = closed edges vectors of a triangle inR
3 ⇒ field↔ geometric simplex
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COLORED GFT FOR 3D EUCLIDEAN GRAVITY

Feynman diagramsΓ are dual to 3d simplicial complexes
amplitudesAΓ written in group, representation or algebra variables

AΓ =

Z Y

l

dhl

Y

f

δ (Hf (hl)) =

Z Y

l

dhl

Y

f

δ

„−→Y
l∈∂f

hl

«
=

=
X

{je}

Y

e

dje

Y

τ


jτ1 jτ2 jτ3
jτ4 jτ5 jτ6

ff
=

Z Y

l

[dhl ]
Y

e

[d3xe] ei
P

e Tr xeHe

last line is discretized path integral for 3d gravityS(e, ω) =
R

Tr(e∧ F(ω))

exact duality: simplicial gravity path integral↔ spin foam model
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CONSTRUCTION OF4D GRAVITY MODELS

4d gravity is constrained BF theory: so(4)-Plebanski action

S(ω,B, φ) =

Z

M

»
BIJ ∧ FIJ(ω) − 1

2
φIJKLBKL ∧ BIJ

–

strategy:start from GFT for 4d BF theory and apply on them suitable (discrete)
constraints- (Rovelli’s talk)

S[φ] =
1
2

Z
dgi [φ(g1, g2, g3, g4)]

2 +
λ

5!

Z
dgj [φ(g1, g2, g3, g4)φ(g4, g5, g6, g7)

φ(g7, g3, g8, g9)φ(g9, g6, g2, g10)φ(g10, g8, g5, g1)]

impose constraints at level of quantum states→ restrictions on SO(4)
representations and embedding of SU(2) into SO(4)
GFT formulation of all recent spin foam models for 4d gravity

EPRL/FKγ modelBen Geloun, Gurau, Rivasseau, arXiv:1008.0354 [hep-th](see Rovelli’s talk)
EPRL,γ → ∞⇒ Barrett-Crane modelDe Pietri et al. , hep-th/9907154; Perez, Rovelli, gr-qc/0006107

FK, γ → ∞ Freidel, Krasnov, arXiv:0708.1595 [gr-qc]
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CONSTRUCTION OF4D GRAVITY MODELS

V. Bonzom, E. Livine, arXiv:0812.3456 [gr-qc]; A. Baratin,DO, arXiv:1002.4723 [hep-th]; A. Baratin, DO, to appear

usingnoncommutativeB representation of GFT dynamics

φ(g1, g2, g3, g4) → φ(B1,B2,B3,B4)

classical constraints on bivectors→ non-commutative delta functions insertions
⇒ geometricityprojector: Gkφ := Ψk

GFT action for 4d gravity (γ = ∞):

S(bΨ) =
1
2

Z
bΨ⋆2

1234,k +
λ

5!

Z
[dx][dk]bΨ1234,ka⋆

bΨ4567,kb⋆
bΨ7389,kc⋆

bΨ962 10,kd⋆
bΨ10 851,ke

Feynman amplitudes give version of Barrett-Crane model

amplitudes given by geometrically clear simplicial gravity path integrals

construction can be generalized to genericγ

in general, seems to give different models/amplitudes fromother procedure
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GFT: MAIN QUESTIONS AND DIRECTIONS

define interesting models for quantum gravity, i.e. S(φ) and thusA(Γ)
any spin foam construction has a direct GFT counterpart
same issues can be tackled from simplicial gravity path integral side
main strategy (up to now) 4d gravity as BF theory+ constraints
matter coupling, gauge theory, etc

understand encoding of quantum geometry and its GFT dynamics
geometric d.o.f. andsymmetriesin S(φ) and inA(Γ)
statistics (what is the statistics of spin networks?)
n-point functions, Ward identities and Schwinger-Dyson equations (here is WdW
equation)

control over perturbative expansion and perturbative renormalization
topology of diagrams, dependence of amplitudes on topology
GFT scaling and power counting
(perturbative) GFT renormalization

non-perturbative aspects and continuum/thermodynamic limit
(Borel) summability at least in some sector of full theory?
quantum dynamics in continuum limit: can take into account all d.o.f. of the theory?
analysis of different phases and phase transitions - a smooth 4d spacetime?

effective (classical and quantum) dynamics (and new physics?)
extract effective dynamics for geometry and matter in appropriate phase
simplified models
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DIFFEOMORPHISMS IN DISCRETE(QUANTUM) GRAVITY

QG models based on discrete structures→ continuum diffeo symmetry
generically broken

need to identify discrete symmetry on ‘pre-geometric’ data
extensive studies in Regge calculusB. Dittrich, arXiv:0810.3594 [gr-qc]; B. Bahr, B. Dittrich, arXiv:0905.1670

[gr-qc]:
‘discrete’diffeomorphisms→ translations of vertices of triangulation inRd

invariance of Regge action exact in 3d without cosmologicalconstant (flat space)
invariance only approximate in 4d→ recovered in continuum limit
invariance of action related to Bianchi identities at vertices of triangulation

diffeos in 3d Ponzano-Regge spin foam modelL. Freidel, D. Louapre, gr-qc/0212001
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GFT DIFFEOS - A. BARATIN , F. GIRELLI , DO, ARX IV:1101.0590 [HEP-TH]

symmetries of GFT model for 3d Euclidean gravity= subset ofDSO(3)⊗4

(deformation of Poincare group), one for each vertex of a tetrahedron
translation (diffeo) symmetry:

transformations generated by foursu(2)-translation parametersεv, one per vertex of
tetrahedron
in metric representation, it shiftsxℓ 6=3

i by ±ε3 according to orientation:

xℓ
i 7→ xℓ

i + ε3 if i outgoing xℓ
i 7→ xℓ

i − ε3 if i incoming.

Tε3 ⊲ bϕ1(x1, x2, x3) := ⋆ε3 bϕ1(x1 − ε3, x2, x3 + ε3)

Tε3 ⊲ bϕ2(x3, x4, x5) := ⋆ε3 bϕ2(x3 − ε3, x4 + ε3, x5)

Tε3 ⊲ bϕ4(x6, x4, x1) := ⋆ε3 bϕ4(x6, x4 − ε3, x1 + ε3)

Tε3 ⊲ bϕ3(x5, x2, x6) := bϕ3(x5, x2, x6)

geometric meaning: when translanting a vertex, one translates the edge vectors
sharing this vertex

these transformations leave GFT action (more: the integrands) invariant
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INVARIANCE OF GFT INTERACTION VERTEX AND QUANTUM GEOMETRY

(A. Baratin, F. Girelli, DO, arXiv:1101.0590 [hep-th])

non-commutative triad representation→ invariance of geometry of tetrahedron
under translation of vertices inR3

group representation
vertex function is:

V(gℓ
i , g

ℓ′

i ) =

Z 4Y

ℓ=1

dhℓ

6Y

i=1

δ((gℓ
i )

−1hℓh−1
ℓ′

gℓ′

i )

its invariance under translations of the vertexv3 means that, for allǫ3 ∈ su(2):

eGv3
(ε3)V(gℓ

i , g
ℓ′

i ) = V(gℓ
i , g

ℓ′

i ) Gv3 = (g1
1)

−1g1
3(g

2
3)

−1g2
4(g

4
4)

−1g4
1

Gv3 is the holonomy along a loop circling the vertexv3 of the tetrahedron.
symmetry→ boundary connection isflat → Hamiltonian and vector constraints→
constraint on tetrahedral wave-function constructed fromthe GFT field
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INVARIANCE OF GFT INTERACTION VERTEX AND QUANTUM GEOMETRY

(A. Baratin, F. Girelli, DO, arXiv:1101.0590 [hep-th])

spin representation
the vertex function takes the form of SO(3) 6j-symbols:

X

{mℓ
i }

Y

ℓ

iℓ
mℓ

i
Vj i

mℓ
i nℓ

i
=

Y

i

δ
nℓ

i ,−nℓ′

i


j1 j2 j3
j4 j5 j6

ff

theflatness constraint (WdW equation) on boundary connection becomes algebraic
(recursion) identity for 6j-symbols→


j1 j2 j3
j4 j5 j6

ff
=

=
X

ki ,j

dk1dk3dk4dj bχj(ε)


j1 j2 j3
j k1 k3

ff 
j1 j5 j4
j k4 k1

ff 
j3 j6 j4
j k3 k4

ff 
k1 k3 j2
k4 j5 j6

ff

‘algebraic WdW equation’on tetrahedral state

nice duality between simplicial geometric, quantum geometric and algebraic
implementations of diffeo invariance (WdW equation)
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SYMMETRY OF GFT AMPLITUDES, BIANCHI IDENTITY

amplitude associated to vertex: function ofxe, ∀e⊃ v, choose ordering

act with non-commutative translationxe → xe + εe
v(ǫv), εe

v(ǫv) = kv
eǫv(kv

e)
−1

(kv
e = parallel transport from fixed vertex inLv to reference vertex of facefe)

function gets transformed into a⋆-product of functions ofǫv:
Y

e⊃v

eiTrxeHe 7→ −→
⋆
e⊃v

Y

e⊃v

eiTr(xe+εe
v)He(ǫv)

non-commutative translation acts by multiplication by plane wave:

eiTr
h

ǫv

“−→Q
e⊃v(ke

v)
−1 He ke

v

”i

= 1,

which is trivial→ Bianchi identity

trivial braiding for GFT fieldsdoes notintertwine the GFT diffeomorphism
symmetry→ symmetry is broken at full quantum level→ GFT n-point
functions arenot covariant
⇒ introduction ofnon trivialbraiding map among GFT fields→ braided
statistics (of spin nets!!!)
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GFT: BRAIDING AND STATISTICS

Baratin-Girelli-DO, 1101.0590 [hep-th], S. Carrozza, DO,1104.5158 [hep-th], A. Baratin, S. Carrozza, F. Girelli, DO, M. Raasakka, to appear

analysis of diffeos at GFT level suggests that:
fundamental degrees of freedom of 3d colored GFT can be associated to vertices
if one wants todefinefields in terms of representations of symmetry (quantum)
group (diffeos), they have to be expressed in vertex variables, where it acts naturally

the step from edge to vertex variables can be made:
ϕ(x1, x2, x3) → ψ̃ℓ(u, v,w) =

R
dε⋆ε

bψℓ(u + ε, v + ε,w + ε)

triangle inR
3 ↔ three edge vectors that close↔ three vertices up to translation

can identify braiding mapB among GFT fields that intertwine GFT translations
(now coloring on vertices):

B
“
ψci cj ck(gi , gj , gk)ψc′i c′j c′k

(hi , hj , hk)
”

=

ψc′i c′j c′k
(gjhig−1

j , hj , gihkg−1
i )ψci cj ck(gi , gj , gk), if ci = c′k, cj = c′i ,

naturally inherited from the representation theory ofDSO(3)

n-point function forbraided GFTare covariant at full quantum level
stage is now set for:

study Ward identities and SD eqns on n-point functions
construct Fock space for GFT states, thus for LQG spin networks
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GFT: MAIN QUESTIONS AND DIRECTIONS

define interesting models for quantum gravity, i.e. S(φ) and thusA(Γ)
any spin foam construction has a direct GFT counterpart
same issues can be tackled from simplicial gravity path integral side
main strategy (up to now) 4d gravity as BF theory+ constraints
matter coupling, gauge theory, etc

understand encoding of quantum geometry and its GFT dynamics
geometric d.o.f. andsymmetriesin S(φ) and inA(Γ)
statistics (what is the statistics of spin networks?)
n-point functions, Ward identities and Schwinger-Dyson equations (where is the
LQG dynamics?)

control over perturbative expansion and perturbative renormalization
topology of diagrams, dependence of amplitudes on topology
GFT scaling and power counting
(perturbative) GFT renormalization - is your candidate QG mode renormalizable?

non-perturbative aspects and continuum/thermodynamic limit
(Borel) summability at least in some sector of full theory?
quantum dynamics in continuum limit: can take into account all d.o.f. of the theory?
analysis of different phases and phase transitions - a smooth 4d spacetime?

effective (classical and quantum) dynamics (and new physics?)
extract effective dynamics for geometry and matter in appropriate phase
simplified models
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TOPOLOGICAL STRUCTURE OFGFT DIAGRAMS

Feynman diagrams include manifolds as well as pseudo-manifolds with at most
point-like singularities (at vertices of triangulation)
(De Pietri, Petronio, gr-qc/0004045, Gurau, arXiv:1006.0714 [hep-th] , Smerlak, arXiv:1102.1844 [hep-th])

nature of singularities depend on topology of 3-cells dual to vertices of∆ (bubbles)

one can use cellular (co-)homology (and its twisting by flat connection) to study
the topology of diagrams and of bubbles(Bonzom, Smerlak, arXiv:1103.3961 [gr-qc])

an alternative is available incoloredGFT models(Gurau, arXiv:0907.2582 [hep-th]), Gurau,

arXiv:1006.0714 [hep-th])- non-standard (co-)homology defined in terms ofcolors- e.g.
bubble = connected component made of 3 colors only
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an alternative is available incoloredGFT models(Gurau, arXiv:0907.2582 [hep-th]), Gurau,

arXiv:1006.0714 [hep-th])- non-standard (co-)homology defined in terms ofcolors- e.g.
bubble = connected component made of 3 colors only
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GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

DIVERGENCES AND SCALING

detailed analyses and most results forBF models or independent identically
distributed (i.i.d.) models(equivalent to tensor models/dynamical
triangulations)

GFT amplitudes (SF models)(generically)diverge for large
representations/fluxes- need to understand scaling with cut-off
power counting theorems:

simple cases: ‘contractible’diagrams(Freidel, Gurau, DO, arXiv:0905.3772 [hep-th])- abelianized
GFTs(Ben Geloun, Krajewski, Magnen, Rivasseau, arXiv:1002.3592 [hep-th])

general power counting theorems
using twisted co-homology, for diagramsΓ which are 2-skeletons of cellular
decompositions∆ of M:
Ω(Γ, G) = I(M, G) + ω(∆M, G),
whereI(Γ, G) depends only on the topology ofM (Euler character, fundamental group),
ω(∆M, G) depends on particular cellular decomposition
(Bonzom, Smerlak, arXiv:1004.5196 [gr-qc], arXiv:1008.1476 [math-ph], arXiv:1103.3961 [gr-qc])

similar, purely combinatorial results using color structure (Gurau, arXiv:1011.2726 [gr-qc],

arXiv:1102.5759 [gr-qc]; Gurau, Rivasseau, arXiv:1101.4182 [gr-qc])
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DIVERGENCES AND SCALING

scaling bounds
general optimal bounds:ZΛ(Γ) ≤ KnΛ3(D−1)(D−2)n/4+3(D−1), with n vertices ,
for colored models in D dimensions(Ben Geloun, Magnen, Rivasseau, arXiv:0911.1719 [hep-th])

using vertex representation of GFT: focus on bubble structure→ new bounds
showing suppression of pseudo-manifolds(S. Carrozza, DO, arXiv:1104.5158 [hep-th])

GFT generalization of large-N limit of matrix models
(Gurau, arXiv:1011.2726 [gr-qc], arXiv:1102.5759 [gr-qc]; Gurau, Rivasseau, arXiv:1101.4182 [gr-qc])

for i.i.d. and BF models in any dimension, needcolor structure
in the large cut-off limitΛ → ∞ only diagrams corresponding tomanifolds of
trivial topology dominate the perturbative GFT expansion
not all diagrams of trivial topology appear at leading order - the same topology can
appear at arbitrary order
topological expansion quite intricate
also: combinatorial expansion in equivalence classes of same divergence degree
some control over sub-leading term in topological expansion
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PERTURBATIVE GFT RENORMALIZATION

radiative corrections to the GFT 2-point function of the BF GFT models
Ben Geloun, Bonzom, arXiv:1101.4294 [hep-th]

g1

g2

g3

g′
1

g′
2

g′
3

h1

h2

h3

two leading divergences:
a mass renormalization
a divergence proportional to the second derivatives of the propagator

this needs to be balanced by a new counter-term in the GFT Boulatov action:

m2
Z

[dg]φ2(g1, g2, g3) →

Z
[dg]φ(g1, g2, g3)

"
3X

i=1

∆i + m2

#
φ(g1, g2, g3)

BF GFT model could be fixed point of more general GFT dynamics -attractive or
repulsive? role of symmetries?

need to tackle intensively all 4d gravity models!!!

perturbative GFT renormalization vs renormalization of discrete gravity?
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GFT: MAIN QUESTIONS AND DIRECTIONS

define interesting models for quantum gravity, i.e. S(φ) and thusA(Γ)
any spin foam construction has a direct GFT counterpart
same issues can be tackled from simplicial gravity path integral side
main strategy (up to now) 4d gravity as BF theory+ constraints
matter coupling, gauge theory, etc

understand encoding of quantum geometry and its GFT dynamics
geometric d.o.f. andsymmetriesin S(φ) and inA(Γ)
statistics (what is the statistics of spin networks?)
n-point functions, Ward identities and Schwinger-Dyson equations (here is WdW
eqn)

control over perturbative expansion and perturbative renormalization
topology of diagrams, dependence of amplitudes on topology
GFT scaling and power counting
(perturbative) GFT renormalization - is your candidate QG mode renormalizable?

non-perturbative aspects and continuum/thermodynamic limit
(Borel) summability at least in some sector of full theory?
quantum dynamics in continuum limit: can take into account all d.o.f. of the theory?
analysis of different phases and phase transitions - a smooth 4d spacetime?

effective (classical and quantum) dynamics (and new physics?)
extract effective dynamics for geometry and matter in appropriate phase
simplified models
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NON-PERTURBATIVE RESULTS

re-sum the perturbation expansion?

if it is, it means we can give a non-perturbative definition ofthe theory, taking
into account all its infinite degrees of freedom

for i.i.d. models in any dimension(equivalent to dynamical triangulations),
the dominant configurations at large-Λ (spheres) can be resummed exactly!
(Bonzom, Gurau, Riello, Rivasseau, arXiv:1105.3122 [hep-th])

characteristic combinatorial structure of dominant triangulations can identified
wheng → gc (g = |λ|2), the free energy hascritical behavior (phase transition)
F = (gc − g)2−γ with γ = 1

2
looks like branched polymer phase of dynamical triangulations
however, interpretation of this result not entirely clear,yet

need to extend analysis to other GFT models

a phase corresponding to smooth 4d spacetime?- need compute observables

what is its physical interpretation? acondensateof the GFT atoms of space?
(DO, arXiv:0710.3276 [gr-qc], V. Rivasseau, arXiv:1103.1900 [gr-qc])
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GFT: MAIN QUESTIONS AND DIRECTIONS

define interesting models for quantum gravity, i.e. S(φ) and thusA(Γ)
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topology of diagrams, dependence of amplitudes on topology
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(perturbative) GFT renormalization - is your candidate QG mode renormalizable?

non-perturbative aspects and continuum/thermodynamic limit
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COLLECTIVE STATES, SIMPLIFIED MODELS

best case scenario: evaluate GFT n-point functions and solve Schwinger-Dyson
equations in continuum limit, extract QG interpretation

need approximations, new tools, physically relevant simplifications
one important tool:semi-classical coherent statesas boundary GFT states

standard construction (Thiemann and collaborators):

for effective continuum physics:collective coherent states- (DO, Pereira, Sindoni, to appear)

states semi-classical w.r.t. observables depending on many fundamental d.o.f.
need to extract effective dynamics for these collective observables

other avenue: simplified models (see Ashtekar’s talk)
third quantized Loop Quantum Cosmology -(Calcagni, Gielen, DO, in progress)
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EFFECTIVE GFT DYNAMICS

General idea:

SGFT(φ) fundamental dynamics - adapted for perturbation theory aroundφ = 0

need tochange vacuum: φ→ φ0(g1, .., gD) + ψ(g1, .., gD)

φ0 = new (non-perturbative) vacuum - satisfies (approximately)dynamical eqns
coming from GFT action:

»
φ + λ

δ

δφ
V(φ)

–

φ=φ0

≈ 0

effective dynamics forψ(gi):

Seff(ψ) = S(φ0 + ψ) − S(φ0) =
1
2
ψHψ + µU(ψ)

H = H(λ, φ0) µ = µ(λ, φ0)

possible interpretations:
φ0 non-trivial background quantum geometry(eqns satisfied encode quantum GR)
ψ = quantum gravity wave functionaroundφ0
⇒ H = effective Hamiltonian constraint,Seff(ψ) = effective GFT/SF dynamics
ψ = emergent matter field on QG backgroundφ0 → non-commutative matter QFT
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EFFECTIVE GFT DYNAMICS

towards GFT hydrodynamics(3d) (DO, Sindoni, arXiv:1010.5149 [gr-qc]):
inspired by Gross-Pitaevski hydrodynamics in BEC
φ0 = LQG coherent state peaking on phase space pointG ∈ SL(2,C)
GFT dynamics induces dynamical eqns for classical variables G = heE

solutions compatible with classical BF equations
effective SF dynamics forψ aroundφ0

effective Hamiltonian constraint(3d) (Livine, DO, Ryan, arXiv:1104.5509 [gr-qc]):
φ0 = exact solution of GFT classical eqns
derive effectiveH which acts on spin network states as non-graph changing operator
action compatible with 3d WdW operator
computed spectrum ofH - modes for eigenvalues> 0 excited by interaction

emergent non-commutative matter fields
(Fairbairn, Livine, gr-qc/0702125), (Girelli, Livine, DO, arXiv:0903.3475 [gr-qc]), (DO, arXiv:0903.3970 [hep-th]), (Di Mare, DO,

arXiv:1001.2702 [gr-qc])

both in 3d euclidean (clean) and in 4d lorentzian (less clean), for BF GFT models
φ0 = classical solution of GFT eqns
ψ = ψ(g) emergent matter field with momentum space= group manifold, Lie
algebra= configuration space
non-commutative matter field theory, curved momenta (relative locality)
possible interest for phenomenology
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CONCLUSIONS

GFTs define a tentative but complete quantum dynamics for spin
networks/simplices

bring the fundamental d.o.f. of quantum space, as identifiedby canonical LQG
in the framework ofmatrix/tensor models for simplicial quantum gravity

tentative definition ofcomplete dynamics of geometry (and topology) of
quantum space, from microscopic, pre-geometric, quantum to macroscopic,
geometric, (semi-)classical

....... rapidly growing area, piling up of results......

...but clearly, lots of stuff still to do and understand!
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Thank you for your attention!
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