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PLAN OF THE TALK

GFT: roots
GFT: basic idea and main open issues/directions

|

|

m GFT models: 3d gravity - 4d constructions

m a brief survey of recent and current developments
|

conclusions
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GFT: roots

Loop Quantum Gravity meets Discrete (Simplicial) Quantura\@y ......
(and non-commutative geometry).........
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— simplicial intepretation:

(K_l)jkli . .

AT S
TN

T" ~ 2d simplicial complexA (triangulation) %k

~ 2d discrete spacetime =7

= fundamental building blocks are 1d simplices with no addisl data;
microscopic dynamics: no GR, pure 2d combinatorics & geoynet
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FIRST ROOT MATRIX MODELS

m discretization of (Riemannian) 2d GR: replace surfaegth equilateral
triangles of area:
k= Jo'X VI (-R@) + A) = —4rx + AAs — Sa =
47 Aa
= from matrix model (withA = e~ € andN = e* €):

Z = Z AT NX = Z et Ex) - % ta o /DgA PN
T A

(trivial) sum over histories of discrete GR on given 2d coexpl
plus sum over all possible 2d complexasall topologies
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A h

N — oo (semi-classical approx)- only planar diagrams contribute

m does it match results from continuum 2d gravity path intégra

re-sum Feynman expansion in large-N limit

expectation value of area of surface:

(A = a(ta) = (Vr) = aZ InZo()) ~ Oy forve >> 1,y =1/2
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with finite continuum macroscopic areah@se transition of discrete system
results match continuum 2d gravity path intedtgbuville gravity):

loop correlations and SD equationsWheeler-De Witt eqns

(GR as effective field theory)
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Z = MNaNT = N ONTZ(N) = N2Zo(N) + Za(A) +NT2Z(N) +
A h
m N — oo (semi-classical approx) only planar diagrams contribute
m does it match results from continuum 2d gravity path intégra
m re-sum Feynman expansion in large-N limit
m expectation value of area of surface:
(A = a(ta) = (Vr) = aZ InZo()) ~ Oy forve >> 1,y =1/2
m continuum limit area of triangles — 0 and numbety = Vi — oo, A — A,
with finite continuum macroscopic areah@se transition of discrete system
m results match continuum 2d gravity path intedtzbuville gravity):
loop correlations and SD equationsWheeler-De Witt eqns
(GR as effective field theory)

m can also define continuum limit with contributions from ninivial topologies -
double scaling limit
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(triangles) - from 2d simplicial complexes as FD to 3d ones

n Mij — Tijk N x N x Ntensor I—.‘Q

S(T) = :—ZLtI’T2 — AT = %Zi,j,k TikTii — A Zijklmn Tiik Tiaim Tmjn Thii
Z=[DTeSD) = A Zp
m Feynman diagrams are dual to 3d simplicial complexes

= quantum spacetime from sum over all simplicial complexean(fiolds and
pseudo-manifolds, any topology)?
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m not so simple:
= no topological expansion of amplitudes - no control oveptogy of diagrams
= no way to separate manifolds from pseudo-manifolds
= no direct/nice relation with 3d simplicial (classical angagtum) gravity - not
enough structure/data in the amplitudes, and in boundatgsst
m ind > 2, topology of simplicial complexes and gravity are -muasd
trivial.........

m two possible ways forward:

m define ‘constructively’restricted sum over triangulages- (causal) dynamical
triangulations (see talks by Ambjorn and Loll)
= need to add (pre-geometric) data and d.exfGroup Field Theory (see this talk)
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Adding data on a simplicial complex, to define quantum gyapéth integral......
m discrete spacetime obtained by gluing d-simplices
m metric discretized to set of edge lengtfis }, in units of lattice scala
m theory defined by:

2(0,8,6,4) =[] / dju(Le) & SndAaiie) &)
e

A = triangulation (fixed topology)Sregge= Regge action, with measudeg(Le)
spin foam models are analogous, with different data, cltzsgauge theory
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what are the fundamental, pre-geometric d.o.f. of quanfpacetime? how to
characterize its fundamental quantum building blocks?
from Loop Quantum Gravitykee taiks by Rovelli, Ashtekar, Lewandowski, Speziale)

m geometry= local frames and parallel transpotts diffeo invariant gauge theory

m fundamental excitations of quantum space: graphs endovtad w
fluxes/triads— group elements (connectior} spins (quantum numbers)

[E‘e,ﬁe] xR>h [EL,EL,] T = [ﬁg,ﬁe] =0
m geometric interpretation: elementary quantum cells ofayical geometry
m full state space: all possible graphs and all possible &socdata

m history of basic excitations: spin foas cellular complex with same data

m full guantum dynamics: all possible histories spin foam model— sum over
complexes weighted by lattice gauge theerydiscrete gravity path integral
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9

£

quantﬁm field theory for vertices/celts GFT

1

= !
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where to look for quantum dynamics of spacetime (e.g. LQG)?

m microscopic dynamics can be quite different from continwtlassical dynamics

m dynamics of single interaction process/history of fundarakexcitations—
GFT Feynman amplitudes
(any spin foam model (given complex) is a GFT Feynman angitu

m full (discrete) quantum dynamiess GFT n-point functions and associated egns
(Ward ids, SD egns)

m full continuum quantum dynamics> same eqns but in continuum limit: critical
points, effective actions, etc
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can be studied using (almost) standard QFT methods
classical dynamic$(¢)
quantum dynamics: perturbation theory around no-spaaeuwag = 0:

Z = /[dqb] e 59 = 3" AD)

T" = possible interaction/evolution process of spin netwaiksplices=
cellular complex of arbitrary topology and complexity
m A(T") = spin foam model or, equivalently, discrete gravity patlegnal
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GFT: MAIN QUESTIONS AND DIRECTIONS

m define interestingnodels for quantum gravify.e. S(¢) and thusA(T")
any spin foam construction has a direct GFT counterpart

m same issues can be tackled from simplicial gravity pattgnaleside

= main strategy (up to now) 4d gravity as BF thearyconstraints

= matter coupling, gauge theory, etc
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GFT: MAIN QUESTIONS AND DIRECTIONS

m define interestingnodels for quantum gravify.e. S(¢) and thusA(T")

m understand encoding of quantum geometry and its GFT dyrsamic
m geometric d.o.f. andymmetriesn §(¢) and inA(T")
m statistics (what is the statistics of spin networks?)
= n-point functions, Ward identities and Schwinger-Dysooatmpns (here is WdW
equation)

16/42



GFT: MAIN QUESTIONS AND DIRECTIONS

m define interestingnodels for quantum gravify.e. S(¢) and thusA(T")

m understand encoding of quantum geometry and its GFT dyrsamic

m control over perturbative expansion and perturbative nreatization
m topology of diagrams, dependence of amplitudes on topology
m GFT scaling and power counting
m (perturbative) GFT renormalization
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m define interestingnodels for quantum gravify.e. S(¢) and thusA(T")

m understand encoding of quantum geometry and its GFT dyrsamic

m control over perturbative expansion and perturbative nreatization
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OVERVIEW OF RESULTS

(CoLORED) GFT FOR 3D EUCLIDEAN GRAVITY

(Boulatov, hep-th/9202074) (Gurau, arXiv:0907.2582 ftie})

m 4 fieldsy, for ¢ = 1, .., 4 function on S@3)®3, subject to gauge invariance:

vhe SO3),  ¢u(ha, hg,hgs) = ©i(g1, 92, 0s)
m actionSpe] = Sin[we] + Snt[we]:

4
Sin[pe] = /[dgi]sz ©e(G1, G2, 93) P2 (91, 92.03),

=1

Sntlpe] = A / [dgi]® ¢1(01, G2, Os) 92(0s, G4, G5)a(Ts, G2, Gs) 04 (Ts, Ga, O1)

+A / [dgi]° Pa(01, G, G6)P3(Ts, G2, O)P2(0s, Oa, 02)PE(0s, G2, 1)
m spin network representati@btained by Peter-Weyl expansignq N)

gl O2, 93 ZCJIJZ Jsmgqblzlrjé Jngz nSDJlehﬂl( )sznz(QZ) "‘3”3(93)

m field < spin network vertex
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OVERVIEW OF RESULTS

COLORED GFT FOR 3D EUCLIDEAN GRAVITY

m non-commutative triad (flux) representatiwith x € su(2) ~ R®

(A. Baratin, DO, arXiv:1002.4723 [hep-th]), (A. Baratin, Bittrich, DO, J. Tambornino, arXiv:1004.3450 [hep-th])
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with plane-waves g:= €09 : su(2) ~R® — U(1) (g=€""" andx=X- 7)
= non-commutative product dual to convolution product ongraup:

(69 €y ) (X) :=€yy (X),

m gauge invariance condition is ‘closure constraint’or

P = Cxpr Clxa, Xe,Xa) 1= So(XetXetXa) P ipp = /[dh] @e(hg1, hg, hgs)

5) = [ aneomty)  [ld @) =9

m X = closed edges vectors of a triangleRif = field < geometric simplex
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OVERVIEW OF RESULTS
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m Feynman diagramB are dual to 3d simplicial complexes
m amplitudesAr written in group, representation or algebra variables

Ar = /Hdh|H5(Hf (h) :/Hdh'H5<H| th>:
ZH%H{ i } /H[dh' o TeTrete

{ie} e T

m last line is discretized path integral for 3d graviife, w) = fTr(e/\ F(w))
m exact duality: simplicial gravity path integrab spin foam model

e
SERNE)

—
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OVERVIEW OF RESULTS

CONSTRUCTION OF4D GRAVITY MODELS

m 4d gravity is constrained BF thearyo(4)-Plebanski action

Sw,B,¢) = /M [BIJ AFi(w) — %QMJKLBKL A B

m strategy:start from GFT for 4d BF theory and apply on them suitablec(dite)
constraints (Rovelli’s talk)

Sl¢] /dg [¢(91,02, 93, 04)] /dg [#(91, 2, O3, G4)P(0a, G5, Gs, O7)
¢(97793,gs,99)¢(997967gz,910)¢(910, s, s, 01)]
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Sl¢] /dg [¢(91,02, 93, 04)] /dg [#(91, 2, O3, G4)P(0a, G5, Gs, O7)
¢(97793,gs,99)¢(997967gz,910)¢(910, s, s, 01)]

m impose constraints at level of quantum statesestrictions on SO%)
representations and embedding of(8Linto SO(4)
m GFT formulation of all recent spin foam models for 4d gravity

[ | EPRL/FK«/ modelgen Geloun, Gurau, Rivasseau, arXiv:1008.0354 [he;(ﬁee Rovelli’s tal k)
m EPRL,y — oo = Barrett-Crane modek pietri et al. , hep-th/9907154; Perez, Rovelli, gr-qomID7
n FK, 7Y — OCQ Freidel, Krasnov, arXiv:0708.1595 [gr-qc]
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m Feynman amplitudes give version of Barrett-Crane model

m amplitudes given by geometrically clear simplicial grgygth integrals

m construction can be generalized to generic

m in general, seems to give different models/amplitudes fotimer procedure
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OVERVIEW OF RESULTS
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OVERVIEW OF RESULTS

DIFFEOMORPHISMS IN DISCRETE(QUANTUM) GRAVITY

m QG models based on discrete structuregontinuum diffeo symmetry
generically broken

m need to identify discrete symmetry on ‘pre-geometric’ data
m extensive studies in Regge calcubUsSiich, arxiv:0810.3504 [gr-qc]; B. Bahr, B. DittrictarXiv:0905.1670
[or-acl:
» ‘discrete’diffeomorphisms— translations of vertices of triangulation itf
m invariance of Regge action exact in 3d without cosmologicaistant (flat space)
m invariance only approximate in 4 recovered in continuum limit
m invariance of action related to Bianchi identities at \&$i of triangulation

m diffeos in 3d Ponzano-Regge spin foam madelidel, o. Louapre, gr-qei212001
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OVERVIEW OF RESULTS

G FT D”:FEOS = A. BARATIN, F. GRELLI, DO, ARX1v:1101.0590 HEP-TH]

m symmetries of GFT model for 3d Euclidean gravitysubset ofDSO(3)®*
(deformation of Poincare group), one for each vertex ofraletdron
m translation (diffeo) symmetry

m transformations generated by four(2)-translation parametets, one per vertex of
tetrahedron
m in metric representation, it shifié7£3 by +e3 according to orientation:

x —x' + 3 if i outgoing X — xt — ez if i incoming
Tey b P1(X1, X2, X3) 1= ey P1(X1 — €3, X2, X3 + €3)
Tgsl>g02(X3,X4,X5) = ey Po(Xa — €3,% + €3,%5)

Tey > PalXe, %4, X1) = ey PalXe, %4 — €3,X1 + €3)
ngbm(xs,xz,xe) = P3(Xs, %2, X6)

m geometric meaning: when translanting a vertex, one tregssthe edge vectors

sharing this vertex

m these transformations leave GFT action (more: the intetganvariant
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OVERVIEW OF RESULTS

INVARIANCE OF GFT INTERACTION VERTEX AND QUANTUM GEOMETRY

(A. Baratin, F. Girelli, DO, arXiv:1101.0590 [hep-th])
m non-commutative triad representaties invariance of geometry of tetrahedron

under translation of vertices iR®
m group representation
m vertex function is:

4 6
Vg o) = [ TTene TToeh) *han e
=1 =1
m its invariance under translations of the vertgxmeans that, for aktz € su(2):
e, (ea)V(g,0f ) =V(df,of ) Gy, = (g) "o3(d%) 'di(gl) ot
m G, is the holonomy along a loop circling the vertexof the tetrahedron.

m Symmetry— boundary connection ifat — Hamiltonian and vector constraints
constraint on tetrahedral wave-function constructed ftioenGFT field

G-\
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OVERVIEW OF RESULTS

INVARIANCE OF GFT INTERACTION VERTEX AND QUANTUM GEOMETRY

(A. Baratin, F. Girelli, DO, arXiv:1101.0590 [hep-th])
m Spin representation
m the vertex function takes the form of $&) 6j-symbols:

i j1 2 s
{%}g'#vw H‘S“f’—"f’{n is ie}

m theflatness constraint (WdW equation) on boundary connectmoines algebraic
(recursion) identity for 6j-symbols~

A
Ja Js e
j1 02 s i1 is a i3 je a4 ki ks 2
KZ SR PC ){j a ka}{l ke kl}{j ks m}{m is je}
m ‘algebraic WdW equation’on tetrahedral state
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(A. Baratin, F. Girelli, DO, arXiv:1101.0590 [hep-th])
m Spin representation
m the vertex function takes the form of $&) 6j-symbols:

i j1 2 s
{%}g'#vw H‘S“f’—"f’{n is ie}

m theflatness constraint (WdW equation) on boundary connectmoines algebraic
(recursion) identity for 6j-symbols~

o2 sl
Ja Js e

j1 02 s i1 is a i3 je a4 ki ks 2
KZ SR PC ){j a ka}{l ke kl}{j ks m}{m is je}
m ‘algebraic WdW equation’on tetrahedral state

m nice duality between simplicial geometric, quantum geoimeaind algebraic
implementations of diffeo invariance (WdW equation)
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OVERVIEW OF RESULTS

SYMMETRY OF GFT AMPLITUDES, BIANCHI IDENTITY

m amplitude associated to vertex: functionxef Ve O v, choose ordering

m act with non-commutative translation — Xe + £2(ey),  €S(ey) = Kley(kY) ™2
(ks = parallel transport from fixed vertex in, to reference vertex of fadg)

m function gets transformed intosaproduct of functions ot,:

H |Tr><eHe . *H Tr(><e+e )

edv €V ey

m non-commutative translation acts by multiplication byrdavave
ein [év(He)v(‘ﬁ)_lHeK?)] =1,

which is trivial — Bianchi identity

m trivial braiding for GFT fieldsdoes nointertwine the GFT diffeomorphism
symmetry— symmetry is broken at full quantum levet GFT n-point
functions arenot covariant
= introduction ofnon trivial braiding map among GFT fields- braided
statistics (of spin nets!!!)
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OVERVIEW OF RESULTS

GFT: BRAIDING AND STATISTICS

Baratin-Girelli-DO, 1101.0590 [hep-th], S. Carrozza, DiA04.5158 [hep-th], A. Baratin, S. Carrozza, F. Girelli, M Raasakka, to appear
m analysis of diffeos at GFT level suggests that:

m fundamental degrees of freedom of 3d colored GFT can beiassd¢o vertices
m if one wants tadefinefields in terms of representations of symmetry (quantum)
group (diffeos), they have to be expressed in vertex vasahihere it acts naturally

29/42



OVERVIEW OF RESULTS

GFT: BRAIDING AND STATISTICS

Baratin-Girelli-DO, 1101.0590 [hep-th], S. Carrozza, DiA04.5158 [hep-th], A. Baratin, S. Carrozza, F. Girelli, M Raasakka, to appear
m analysis of diffeos at GFT level suggests that:

m fundamental degrees of freedom of 3d colored GFT can beiassd¢o vertices
m if one wants tadefinefields in terms of representations of symmetry (quantum)
group (diffeos), they have to be expressed in vertex vasahihere it acts naturally

m the step from edge to vertex variables can be made:
(X1, X2, X3) — e (U, V, W) = [ dedke he(Ue,V4e,W+e)

29/42



OVERVIEW OF RESULTS

GFT: BRAIDING AND STATISTICS

Baratin-Girelli-DO, 1101.0590 [hep-th], S. Carrozza, DiA04.5158 [hep-th], A. Baratin, S. Carrozza, F. Girelli, M Raasakka, to appear
m analysis of diffeos at GFT level suggests that:

m fundamental degrees of freedom of 3d colored GFT can beiassd¢o vertices
m if one wants tadefinefields in terms of representations of symmetry (quantum)
group (diffeos), they have to be expressed in vertex vasahihere it acts naturally

m the step from edge to vertex variables can be made:
(X1, %2, X3) — Pe(U, v, W) = [dedkcpe(U+e,v+e,W+e)
m triangle inR® — three edge vectors that close three vertices up to translation
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m naturally inherited from the representation theory280(3)
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B (Ve (@ 8 8 (i, 1y, 1)) =
w(:l'(:J'Cﬁ(gjhigj_l7 hJa gi hkgi_l)wclcjck(gh 9, gk)’ if G = C,k’ G = Ci’a

m n-point function forbraided GFTare covariant at full quantum level
m stage is now set for:

m study Ward identities and SD eqns on n-point functions
m construct Fock space for GFT states, thus for LQG spin nétsvor
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m any spin foam construction has a direct GFT counterpart
m same issues can be tackled from simplicial gravity pattgnaleside
= main strategy (up to now) 4d gravity as BF thearyconstraints
= matter coupling, gauge theory, etc
m understand encoding of quantum geometry and its GFT dyrsamic
m geometric d.o.f. andymmetriesn §(¢) and inA(T")
m statistics (what is the statistics of spin networks?)
= n-point functions, Ward identities and Schwinger-Dysonagpns (where is the
LQG dynamics?)
m control over perturbative expansion and perturbative nreatzation
m topology of diagrams, dependence of amplitudes on topology
m GFT scaling and power counting
m (perturbative) GFT renormalization - is your candidate Q@&lmrenormalizable?
m non-perturbative aspects and continuum/thermodynamic i
m (Borel) summability at least in some sector of full theory?
= quantum dynamics in continuum limit: can take into accouind.a.f. of the theory?
= analysis of different phases and phase transitions - a $rdabspacetime?
m effective (classical and quantum) dynamics (and new pk¥%ic
m extract effective dynamics for geometry and matter in appate phase
= simplified models
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OVERVIEW OF RESULTS

TOPOLOGICAL STRUCTURE OFGFT DIAGRAMS

m Feynman diagrams include manifolds as well as pseudo-oidgifvith at most
point-like singularities (at vertices of triangulation)

(De Pietri, Petronio, gr-qc/0004045, Gurau, arXiv:10080[hep-th] , Smerlak, arXiv:1102.1844 [hep-th])
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m nature of singularities depend on topology of 3-cells daaldrtices ofA (bubbles)

m one can use cellular (co-)homology (and its twisting by ftatreection) to study
the topology Of diagrams and Of bubbkﬁﬁzom, Smerlak, arXiv:1103.3961 [gr-qc])
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point-like singularities (at vertices of triangulation)

(De Pietri, Petronio, gr-qc/0004045, Gurau, arXiv:10080[hep-th] , Smerlak, arXiv:1102.1844 [hep-th])
m nature of singularities depend on topology of 3-cells daaldrtices ofA (bubbles)

m an alternative is available icolored GFT modelScurau, arxiv:0907.2582 hep-th), Gurau,
arxiv:1006.0714 [hep-th]y NON-standard (co-)homology defined in termgolors- e.g.
0,

bubble = connected component made of 3 colors only
A=k @ B

= [ @@&@5%
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OVERVIEW OF RESULTS

DIVERGENCES AND SCALING

m detailed analyses and most resultsBét models or independent identically
distributed (i.i.d.) modelg¢equivalent to tensor models/dynamical
triangulations)

m GFT amplitudes (SF model§yenerically)diverge for large
representations/fluxemneed to understand scaling with cut-off
m power counting theorems

m simple cases: ‘contractible’diagramigidel, Gurau, Do, arxiv:0905.3772 [hep-tj@abelianized
GFTS(Ben Geloun, Krajewski, Magnen, Rivasseau, arXiv:1002235ep-th])
m general power counting theorems
m using twisted co-homologyor diagramd™ which are 2-skeletons of cellular
decompositiong\ of M:
Q(T,G) = (M, G) + w(Aw, G),
wherel (T', G) depends only on the topology bf (Euler character, fundamental group),
w(Awm, G) depends on particular cellular decomposition
(Bonzom, Smerlak, arXiv:1004.5196 [gr-qc], arXiv: 100876 [math-ph], arXiv:1103.3961 [gr-qc])
m similar, purely combinatorial results using color strueturau, arxiv:1011.2726 [gr-qc],
arXiv:1102.5759 [gr-qc]; Gurau, Rivasseau, arXiv:11aB2[gr-qc])
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OVERVIEW OF RESULTS

DIVERGENCES AND SCALING

m scaling bounds
= general optimal bound&, (I') < K"A3(P—1D(D=2)n/4+3(D—1) 'with n vertices ,
for colored models in D dimensiomsn Geloun, Magnen, Rivasseau, arXiv:0911.1719 [hep-th]
m using vertex representation of GFT: focus on bubble strects new bounds
ShOWing Suppression of pSEUdO-manifCijSarrozza, DO, arXiv:1104.5158 [hep-th])
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OVERVIEW OF RESULTS

DIVERGENCES AND SCALING

m GFT generalization of large-N limit of matrix models
(Gurau, arXiv:1011.2726 [gr-qc], arXiv:1102.5759 [grigBurau, Rivasseau, arXiv:1101.4182 [gr-qc])

for i.i.d. and BF models in any dimension, nesmlor structure

in the large cut-off limitA — oo only diagrams corresponding toanifolds of
trivial topology dominate the perturbative GFT expansion

notall diagrams of trivial topology appear at leading order - theas&opology can
appear at arbitrary order

topological expansion quite intricate

also: combinatorial expansion in equivalence classesméstivergence degree
some control over sub-leading term in topological expansio
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OVERVIEW OF RESULTS

PERTURBATIVE GFT RENORMALIZATION

m radiative corrections to the GFT 2-point function of the BFTGmodels

Ben Geloun, Bonzom, arXiv:1101.4294 [hep-th]

= two leading divergences
® amass renormalization
m adivergence proportional to the second derivatives of thpagator

m this needs to be balanced by a new counter-term in the GFTaBmuéction:

3
”F/[dg}qﬁz(gl,gz,gs) - /[d9]¢(91,92,93) {Z Ai + mz} #(91, %2, 93)
i=1

m BF GFT model could be fixed point of more general GFT dynamatsractive or
repulsive? role of symmetries?
m need to tackle intensively all 4d gravity models!!!

m perturbative GFT renormalization vs renormalization aicdéte gravity?
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m fori.i.d. models in any dimensiofequivalent to dynamical triangulations),

the dominant configurations at largefspheres) can be resummed exactly!
(Bonzom, Gurau, Riello, Rivasseau, arXiv:1105.3122 [tgp-

m characteristic combinatorial structure of dominant tgialations can identified

m wheng — gc (g = |A\|%), the free energy hasitical behavior (phase transition)
F = (g — g)> 7 with = 1

m looks like branched polymer phase of dynamical triangoieti

= however, interpretation of this result not entirely clgaat

m need to extend analysis to other GFT models
m a phase corresponding to smooth 4d spacetinmeed compute observables
m what is its physical interpretation?candensat®f the GFT atoms of space?

(DO, arXiv:0710.3276 [gr-qc], V. Rivasseau, arXiv:110300 [gr-qc])

36/42



OVERVIEW OF RESULTS

GFT: MAIN QUESTIONS AND DIRECTIONS
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equations in continuum limit, extract QG interpretation
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m standard construction (Thiemann and collaborators):
m for effective continuum physicsollective coherent statespo, pereira, sindoni, to appear)

m states semi-classical w.r.t. observables depending oy fnadamental d.o.f.
m need to extract effective dynamics for these collectiveeolables

m other avenue: simplified models (see Ashtekar’s talk)
m third quantized Loop Quantum Cosmologyaicagni, Gielen, DO, in progress)
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m possible interpretations:

m ¢ non-trivial background quantum geome(ggns satisfied encode quantum GR)
= 1) = quantum gravity wave functioaroundeg
= 'H = effective Hamiltonian constrain& (¢’) = effective GFT/SF dynamics
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General idea:
m Serr(¢) fundamental dynamics - adapted for perturbation theoryradg = 0
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m ¢o = new (non-perturbative) vacuum - satisfies (approximatdyylamical eqns
coming from GFT action

1
[¢ + Aé—(bvw)] L0

m effective dynamics fofp(gi):
Su() = Slgo +9) — Soo) = ZUHY + pl(W)
H="H(A ¢o)  p=pX do)

m possible interpretations:
m ¢ non-trivial background quantum geome(ggns satisfied encode quantum GR)

m 1) = emergent matter field on QG backgroupgl— non-commutative matter QFT
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OVERVIEW OF RESULTS

EFFECTIVE GFT DYNAMICS

m towards GFT hydrodynamid8d) (oo, sindoni, arxiv:1010.5149 [gr-ac))

m inspired by Gross-Pitaevski hydrodynamics in BEC
¢o = LQG coherent state peaking on phase space @iatSL(2, C)
m GFT dynamics induces dynamical eqns for classical varzBle- her
m solutions compatible with classical BF equations
m effective SF dynamics fo aroundgg
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OVERVIEW OF RESULTS

EFFECTIVE GFT DYNAMICS

m effective Hamiltonian constrair{8d) ivine, po, Ryan, arxiv:1104.5509 [gr-qc))
m ¢ = exact solution of GFT classical egns
derive effective{ which acts on spin network states as non-graph changingumper
action compatible with 3d WdW operator
computed spectrum &ff - modes for eigenvalues 0 excited by interaction
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OVERVIEW OF RESULTS

EFFECTIVE GFT DYNAMICS

m emergent non-commutative matter fields
(Fairbairn, Livine, gr-qc/0702125), (Girelli, Livine, D@rXiv:0903.3475 [gr-qc]), (DO, arXiv:0903.3970 [hephtiDi Mare, DO,
arXiv:1001.2702 [gr-qc])

m both in 3d euclidean (clean) and in 4d lorentzian (less ¢§ldanBF GFT models
m ¢ = classical solution of GFT egns

m ¢ = 1(g) emergent matter field with momentum spaegroup manifold, Lie
algebra= configuration space

non-commutative matter field theory, curved momenta (ueldocality)

possible interest for phenomenology
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CONCLUSIONS

m GFTs define a tentative but complete quantum dynamics far spi
networks/simplices

m bring the fundamental d.o.f. of quantum space, as identifiechnonical LQG
m in the framework ofmatrix/tensor models for simplicial quantum gravity

m tentative definition oEomplete dynamics of geometry (and topology) of

gquantum spagdrom microscopic, pre-geometric, quantum to macrosgopic

geometric, (semi-)classical

...but clearly, lots of stuff still to do and understand!

41/42



CONCLUSIONS

Thank you for your attention!
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