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Stating the problem

• LQG is a continuum theory with well-defined and interesting kinematics
(spin networks, discrete spectra of geometric operators, etc.)

• Models for the dynamics exist

• Main open problem: how to test the theory and extract low-energy physics from it

Why is it so hard? The quanta are exotic
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Stating the problem

kinematics dynamics

QFT: |n, pi, hi〉

quanta: momenta, helicities, etc. Feynman diagrams

observables perturbative expansion
n: # of quantum particles degree of the graph

⇓
order of approximation desired

LQG: |Γ, jl, in〉

quanta: areas and volumes spin foams

link to classical geometries? what approximation?
meaning of Γ?
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Stating the problem

Linking LQG states on a fixed graph with a notion of discrete geometry

Aim of the talk:

Work in collaboration with L. Freidel 1001.2748 and 1006.0199
C. Rovelli 1005.2927
E. Bianchi and P. Doná 1009.3402
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Canonical quantum theory: Spin networks

• Gauge-invariant Hilbert space:

H = ⊕
Γ
HΓ

• Graph Hilbert space: (Γ = L links, N nodes)

HΓ = L2[SU(2)L/SU(2)N ] = ⊕
jl

[
⊗
n
Hn
]

(Peter-Weyl decomposition)

links 7→ SU(2) irrep: V (jl)

nodes 7→ SU(2)-invariant space: Hn ≡ Inv

[
⊗
l∈n
V (jl)

]

• Orthogonal basis: spin network states |Γ, jl, in〉

Ψ(Γ,jl,in)[gl] = Tr
[
⊗lD(jl)(gl)⊗n in

]
(• graph Γ; • spin jl on each link; • an intertwiner in assigned to each node)
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Operator algebra

• Functions
Ψ[g1, . . . gn] ∈ HΓ = L2[SU(2)L/SU(2)N ]

• Algebra of operators: Holonomy-Flux algebra

Holonomy: gl = Pe
∫
l A −→ multiplicative operator gl

Flux: Xl =
∫
l∗ E −→ derivative operator ~Ll

• Composite operators O(gab,Kab) 7→ Ô(~Ll, gl)
(note: metric composite operator)
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Spin networks and quantum geometry

QFT LQG

F = ⊕
n
Hn H = ⊕

Γ
HΓ

|n, pi, hi〉 → quanta of fields |Γ, je, iv〉 → quanta of space

Spin networks are eigenstates of geometric operators such as surface areas

• spins jl are quantum numbers for areas of surfaces dual to links

quanta of area A(Σ) = γ~G
∑
l∈Σ

√
jl(jl + 1)

• intertwiners in are quantum numbers for volumes of regions dual to nodes

quanta of volumes V (R) = (γ~G)3/2∑
n∈R f(je, in)

geometric operators turn out to have discrete spectra
with minimal excitations proportional to the Planck length

Key result

Speziale — Spinnets and Twisted Geometries Motivations and overview 9/37



Spin networks and quantum geometry

QFT LQG

F = ⊕
n
Hn H = ⊕

Γ
HΓ

|n, pi, hi〉 → quanta of fields |Γ, je, iv〉 → quanta of space

Spin networks are eigenstates of geometric operators such as surface areas

• spins jl are quantum numbers for areas of surfaces dual to links

quanta of area A(Σ) = γ~G
∑
l∈Σ

√
jl(jl + 1)

• intertwiners in are quantum numbers for volumes of regions dual to nodes

quanta of volumes V (R) = (γ~G)3/2∑
n∈R f(je, in)

geometric operators turn out to have discrete spectra
with minimal excitations proportional to the Planck length

Key result

Speziale — Spinnets and Twisted Geometries Motivations and overview 9/37



The problem of the semiclassical limit

• spins 7→ quanta of area

• intertwiners 7→ quanta of volumes

This information is not enough to recover a classical geometry (not even a discrete one)
just as the |q〉 eigenstates in QM do not describe classical states

Three aspects of quantum geometry:

• discrete eigenvalues • non-commutativity • graph structure

Semiclassical states: States peaked on a classical geometry with minimal uncertainty

〈Ψ|ĝab|Ψ〉 = qab, 〈Ψ|K̂ab|Ψ〉 = Kab, etc.

Can be built from an holomorphic quantization of the classical phase space.
[Thiemann and collaborators]

BUT:
In practical calculations one works with a fixed graph

Can we give a meaning to semiclassical states on a fixed graph?
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Geometry on a single graph?

{Aia(x), Ebj (y)} −→ H = ⊕
Γ
HΓ, |Γ, je, iv〉

• Consider a single graph Γ, and the associated Hilbert space HΓ.

• This truncation captures only a finite number of degrees of freedom of the theory,
thus (semiclassical) states in HΓ do not represent smooth geometries.

• Can they represent a discrete geometry, approximation of a smooth one on the given
graph?

The problem is similar to a choice of interpolation:
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Can we interpret HΓ = ⊕
je

[
⊗
v
Hv
]

as the quantization of a space of discrete geometries?
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The answer: twisted geometries

Each classical holonomy-flux configuration on a fixed graph can be visualized as a
collection of adjacent polyhedra with extrinsic curvature between them

• Each polyhedron is locally flat: curvature emerges at the faces, as in Regge calculus

• They induce a discontinuous discrete metric: two neighbouring polyhedra are
attached by faces with same area but different shape
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Classical polyhedra

Take F vectors jlNl in R3, subject to the closure condition C ≡
∑
l jlNl = 0, and

consider the space

PF =
{
Nl ∈ (S2)F |C = 0

}

Two key theorems:

1. Minkowski: F (non-coplanar) closed normals identify a unique (bounded convex)
polyhedron with areas jl
=⇒ PF is a space of shapes of a polyhedron with fixed areas and orientation

F = 4 :

F > 4 :

2. Kapovich and Millson: The space modulo rotations,

SF ≡ PF /SO(3), dimSF = 2(F − 3)

is a phase space, with Poisson brackets obtained from symplectic reduction of those
of the sphere

{N i, N j} =
1

jl
εijkNk

=⇒ SF is a space of shapes of a polyhedron with fixed areas
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Geometry of polyhedra

Lasserre ’83, E. Bianchi, P. Doná and SS, ’10

Explicit reconstruction procedure: (jl, Nl) 7→ edge lengths, volume, adjacency matrix

For F > 4 there are many different combinatorial structures, or classes

F = 5 Dominant: Codimension 1:F = 6 Dominant:

Codimension 1:

Codimension 2:

Codimension 3:

• The classes are all connected by 2-2 Pachner moves
�@

�@

↔ @
� @

�

(they are all tessellations of the 2-sphere)

It is the configuration of normals to determine the class

• The phase space SF can be mapped in regions corresponding to different classes.

− Dominant classes have all 3-valent vertices.
[maximal n. of vertices, V = 3(F − 2), and edges, E = 2(F − 2)]

− Subdominant classes are special configurations
with lesser edges and vertices, and span
measure zero subspaces.
[lowest-dimensional class for maximal number of triangular faces]

3d slice of S6, cuboids blue
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Polyhedra and intertwiners

The quantization of this classical phase space with its Poisson algebra gives the
intertwiner space of LQG,

Hn = Inv
[
⊗l∈nV jl

]
with its SU(2) operator algebra

~Ji, ~Ji · ~Jj , ~Ji · ~Jj ∧ ~Jk

[Kapovich and Millson ’96, ’01, Charles ’08] [Conrady and Freidel ’08, Barrett et al. ’08]

Quantization map: jiNi 7→ ~Ji

×l∈nS2
jl

−→ ⊗l∈nV jl
↓ ↓

S. reduction Q. reduction

C = 0 ~J = 0
↓ ↓
SF −→ Hn = Inv

[
⊗l∈nV jl

]
Guillemin-Sternberg theorem
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Remarks

• Semiclassical states in Hn = Inv
[
⊗l∈nV jl

]
represents polyhedra with F (= valence

of the node) faces

• Intertwiner states correspond to fuzzy polyhedra

• Polyhedral volume operator
[E. Bianchi, P. Doná and SS 1009.3402]

• Semiclassical evaluation of the volume spectrum using structure of the phase space
(4-valent case) ⇒ excellent agreement
[E. Bianchi, H. Haggard 1102.5439]
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Polyhedra and intertwiners 2

On a single node:

SF −→ Hn = Inv
[
⊗l∈nV jl

]
How about the full graph?

LQG Hilbert space on a fixed graph:

HΓ = ⊕
jl

[
⊗
n
Hn
]

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

Can we make this representation explicit?

The fundamental variables quantized in HΓ are holonomies and fluxes:

=⇒ Map the holonomies and fluxes into areas and normals
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Phase spaces of LQG

Hilbert space: H = ⊕
Γ
HΓ

• kinematical loop gravity =⇒ HΓ = L2(SU(2)L) −→ PΓ

twisted geometries
↓ Gauss law

• gauge-inv. loop gravity =⇒ HΓ = L2(SU(2)L/SU(2)N ) −→ SΓ

closed twisted geos
and polyhedra

Consider first the non gauge-inv. level:
The kinematical Hilber space L2[SU(2)] with the holonomy-flux algebra is a quantization
of the classical phase space T ∗SU(2) with its canonical Poisson algebra
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Phase space of loop gravity on a fixed graph

×l T ∗SU(2)

A spinning top for each link of the graph, T ∗SU(2) = R3 × S3 3 (Xl, gl)

Interpretation:

• flux: Xl =
∫
l∗ E

• holonomy: gl = exp
∫
l
A

Mapping link by link:

(X, g) ∈ R3 × SU(2) =⇒ (N, Ñ, j, ξ) ∈ S2 × S2 ×R× S1

X = jN, g = neξτ3 ñ−1
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Gauge-invariance and polyhedra

• On each link:
X, g

=⇒
N, j, ξ, Ñ

• On the full graph:

Each link around a node has associated
an area j and a normal N , plus an angle ξ

• Apply closure condition at each node
=⇒ collection of polyhedra plus the angle ξ conjugated to the area

Each classical holonomy-flux configuration on a fixed graph can be visualized as
a collection of adjacent polyhedra with extrinsic curvature between them

• Each polyhedron is locally flat: curvature emerges at the faces, as in Regge calculus

(Draw picture)

• They induce a discontinuous discrete metric: two neighbouring polyhedra are
attached by faces with same area but different shape
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Some technicalities: isomorphism

On each link:
X, g

=⇒
N, j, ξ, Ñ

(N, Ñ, j, ξ) =⇒ (X, g) : X = jN

g = neξτ3 ñ−1

Isomorphism

Hopf map π : SU(2) 7→ S2

n 7→ N = nτ3n
−1

Properties:

• X̃ = jÑ = −g−1Xg (⇒ left-invariant vector field)

• invertible provided a 6= 0

• 2-to-1: (N, Ñ, j, ξ) and (−N,−Ñ ,−j,−ξ) give the same (X, g)

• U(1) gauge action inside g corresponding to changes of section n : S2 7→ SU(2)
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Some technicalities: Poisson brackets on the twisted geometries

• Poisson algebra of T ∗SU(2)

{Xi, Xj} = ε
ij
kX

k
, {Xi, X̃j} = 0 {Xi, g} = −τ i g, {X̃i, g} = g τ

i

• Isomorphism
X = jN, g = neξτ3 ñ−1

• Symplectic potential

ΘT∗SU(2) = Tr[Xdgg−1] = ΘS2
j
(N) + ΘS2

j
(Ñ) + jdξ

• Induced Poisson brackets

{Ni, Nj} =
1

j
ε
ij
kN

k
, {Ñi, Ñj} =

1

j
ε
ij
kÑ

k
, {Ni, Ñj} = 0,

{ξ, j} = 1, {Ni, j} = 0, {Ñi, j} = 0,

{ξ, jNi} ≡ Li(N), {ξ, jÑi} ≡ Li(Ñ)

• L : S2 7→ R
3 unique up to change of section. For the Hopf section, Li = (−z̄, z, 1)
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Overview

Twisted geometries ⇐⇒ Loop gravity

↓ closure reduction ↓ Gauss law reduction

Closed twisted geometries ⇐⇒ Gauge-inv. loop gravity
and polyhedra
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Shape-matching conditions

And the connection to Regge calculus?

Consider only 4-valent graphs, dual to triangulations

When closure conditions hold, a triangle acquires two geometries, one from each of the
tetrahedra sharing it

To match the shapes one needs additional
shape-matching constraints:
B.Dittrich and SS 0802.0864

F (φnll′) = 0

φnll′ angles between the normals belonging to the two tetrahedra
j

k l

i

When the gluing conditions hold, we recover Regge calculus
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Overview

Twisted geometries ⇐⇒ Loop gravity
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Closed twisted geometries ⇐⇒ Gauge-inv. loop gravity

↓ matching shapes reduction

Regge calculus
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Regge calculus
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Spinors

• |z〉 =

(
z0

z1

)
∈ C

2

• Geometrical meaning: null pole plus null flag: |z〉 7→ (Xi, φ)

|z〉〈z| = X0
1+Xiσi, φ = arg z0 + arg z1

X0 =
1

2
〈z|z〉, Xi = 〈z|σ

i

2
|z〉

• Poisson brackets

{za, z̄b} = −iδab

• A simple calculation gives
{Xi, Xj} = εijkXk

{X0, ϕ} = 1, {X3, ϕ} = 0, {X±, ϕ} =
X0

X∓
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Link phase space T ∗SU(2)

Consider two spinors, |z〉 and |z̃〉, with canonical Poisson brackets:

(z0, z1, z̃0, z̃1) ∈ C4, {za, z̄b} = −iδab, {z̃a, ¯̃zb} = −iδab

• Vector-phase parametrization:

(zA, z̃A) 7→ (Xi, φ, X̃i, φ̃)

• Norm-matching constraint:

H = |Xi| − |X̃i| = 0

• The constraint generates a U(1) action:

{H, zA} =
i

2
zA, {H, z̃A} = − i

2
z̃A, (|z〉, |z̃〉) 7→ (ei

θ
2 |z〉, e−i

θ
2 |z̃〉),

• Phase space reduction: C4 : 8d
H=0−→ 7d

/U(1)−→ 6d : T ∗SU(2)

Symplectic reduction by H = 0 gives T ∗SU(2)

Nothing fancy is going on: this is simply the classical version of the familiar Schwinger
“double harmonic oscillator” representation of the angular momentum!
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H–reduction

The variables of T ∗SU(2) can be described in terms of spinors as the quantities
Poisson-commuting with H on the H = 0 surface

• in terms of the standard holonomy-flux parametrization:

Xi(zA) ≡ 〈z|σ
i

2
|z〉, g(zA, z̃A) ≡ |z〉[z̃| − |z]〈z̃|√

〈z|z〉〈z̃|z̃〉

• in terms of the twisted geometry parametrization:

j =
1

2
〈z|z〉, ξA ≡ i

(
ln
zA
z̄A

+ ln
z̃A
¯̃zA

)
• and the correct Poisson brackets are induced

We obtain a spinorial parametrization of holonomies and fluxes:

C
4 3 (|z〉, |z̃〉) /H=0−→

(
X(z), g(z)

)
∈ T ∗SU(2)
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Interpretation of H

Interpretation of C4
e: twisted geometries with areas non matching:

X, g
=⇒

N, j, ξ, Ñ
=⇒

N, j, φ, φ̃, j̃, Ñ

|z〉, |z̃〉

But why twisted geometries...

Remark: from the two spinors I can define a twistor

⇒ H = 0 is a condition that the twistor is null
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Spinor representation

[Freidel and SS ’10, Livine and Tambornino ’11]

We can describe semiclassical spin networks
with a collection of spinors on each half-link

|z2〉 |z1〉

|z3〉 |z5〉
|z4〉

|z̃1〉

|z̃5〉

H
H

H

C

C

C

×n(C2)V (n)

−→ U(N)
↓ C=0 SU(2) reduction ↓

U(1) reduction U(1) reduction
H = 0 H = 0
↓ ↓

×lT ∗SU(2) −→ ×lT ∗S1 ×n Sn
C=0 SU(2) reduction

U(N) framework [Livine et al.]
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Overview

Spinors ×
n

(
C

2
)V (n)

=⇒ Twistors?

↓ matching area reduction

Twisted geometries ⇐⇒ Loop gravity

↓ closure reduction ↓ Gauss law reduction

Closed twisted geometries ⇐⇒ Gauge-inv. loop gravity

↓ matching shapes reduction

Regge calculus
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Overview
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Spin networks Twistors

↘ ↙
Twisted geometries

↓
Regge geometries
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Conclusions

• It is possible to visualize the truncation HΓ as capturing a discretization of
3-geometries

• These are the assignment to each triangle of its oriented area, the two unit normals
as seen from the two tetrahedra sharing it, and an additional angle related to the
extrinsic curvature (N, Ñ,A, ξ) ⇐⇒ (X, g)

• The 3-geometries are piecewise-flat but in general discontinuous

• At the saddle point of the EPRL model the shape-matching conditions are satisfied
⇒ Regge action
Barrett et al. ’08

• The twisted geometries can be easily derived from spinors associated to half-edges
through the area-matching constraints ⇒ introduction of spinorial techniques
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