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On tiny scales, spacetime looks like Minkowski spacetime.
Therefore, questions related to the nature of elementary particles
(especially to collider-type experiments) can be dealt with in the
framework of this special background

Credit: CERN/CMS collaboration

Observables: (mostly) scattering amplitudes, decay rates, masses
etc.
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On extremely large scales, the geometry of spacetime is
significantly different from Minkowski spacetime–one has an
expanding Universe. Therefore, in cosmology (and also the vicinity
of black holes), one has to consider quantum field theory on other
backgrounds, such as e.g. DeSitter spacetime.

Credit: NASA/WMAP science team Observables: correlations in CMB, Hawking
radiation, etc.
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A theory of the very small with effects in
the very large

The colossal expansion of the Universe leads to a qualitatively new
effect:

Microscipic quantum fluctuations in the very Early Universe are
magnified to macroscopic density perturbations, whose “afterglow”
can be seen today in the cosmic microwave background (WMAP,
PLANCK).

The macroscopic imprint of such quantum fluctuations has had a
major impact on the formation of structure in the Universe
(galaxies, clusters, voids, ...).

Credit: WMAP

=⇒

Credit: MPI Garching
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How to understand this?

1 FRW metric ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2); e.g.

a(t) =

{
etH deSitter space (Inflation)

t2/3 matter (dust)

Hubble rate is defined as H(t) = ȧ(t)/a(t).
2 A test field obeys �φ = 0; mode decomposition:

φ̈k + 3H φ̇k +
(
k
a

)2
φk = 0 ,

Each mode behaves like a damped harmonic oscillator with
time-dependent coefficients.

3 Early universe (“inflation”): H ≫ k/a “mode frozen”
Later universe (“dust”): H ≪ k/a “mode oscillates”

4 correctly normalized mode in early Universe
(∆φk)

2 ∼ [a30(k/a0)]
−1 is amplified by factor (a1/a0)

2 ≫ 1 in
late Universe!

5 (δT/T )k ∼ |∆φk|2 ∼ H2
0/k

3 (fluctuations in CMB)
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More accurate analysis: QFT

A more accurate analysis requires the formalism of quantum field
theory, because φ is a quantum field propagating on an expanding
geometry! As in QFT in flat spacetime, one is interested at the end
of the day in the redcorrelation functions:

〈O1(x1) . . .On(xn)〉Ψ ,

where

Oi are local (composite) fields in the theory, evaluated at
spacetime points xi

Ψ is a quantum state

As in flat space, general form of correlation is restricted by
causality (locality), and positivity, as well as further, more
sophisticated constraints (see below).
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Questions

1 What should I take as Ψ? How sensitive does the final result
depend on initial state?

2 How to incorporate interactions, e.g. Lagrange function
L = (∇φ)2 −m2φ2 − λφ4 instead of L = (∇φ)2?
(Renormalization?)

3 How to relate physical observables to correlators?

4 What is the general formalism of QFT in CST?
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1 Writing

wΨ(t1, x1, . . . , tE , xE ) = 〈φ(t1, x1)...φ(tE , xE )〉Ψ

observables of interest in cosmology are

w{lm}(t) =

∫

~k
K{lm}(k1, . . . , kE−1) ŵΨ(t, k1; . . . ; t, kE−1)

where K{lm} are certain known kernels. The w{lm} have direct
interpretation as (a) temperature fluctuations in CMB
(δT/T )lm ∼ wlm für E = 2, or (b) “non-Gaussianities”
(E = 3) (PLANCK-Mission), etc.

2 I want illustrate the other points in this talk at the example of
deSitter space
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Long-distance vs. short-distance behavior of
correlators

Very roughly speaking, a the curvature of a spacetime (or portion
thereof) is characterized by the magnitude of the invariants formed
from the Riemann-tensor. Letting this magnitude correspond to a
length ℓ (“curvature radius”), one can distinguish heuristically two
regimes for the, let’s say, 2-point function:

1 “Short distances”: Let |σ(x1, x2)| / ℓ2 (σ = geodesic
distance). Then, the 2-point function of a state
〈O1(x1)O2(x2)〉Ψ roughly equal to that of a “corresponding
state” in Minkowski spacetime. More precise statement:
Operator product expansion (see below).

2 “Long distances”: Let |σ(x1, x2)| ≫ ℓ2. Then behavior of
2-point function fundamentally different from Minkowski
space (IR-effects). Most interesting physical effects fall into
this category, as we will now see at the example of DeSitter
spacetime.
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Why deSitter space?

DeSitter space describes the era of “inflation”, which is
characterized by a very large cosmological constant Λ of the
order of the GUT scale. Λ arises from potential energy of the
inflaton field (?).

It is currently believed that the current accelerated expansion
of the universe is described by a deSitter spacetime, with a
very small cosmological constant Λ. This is believed to be
due to some sort of VEV (?) (“dark energy”).
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Elementary geometry of deSitter space

DeSitter can be described as 4-dimensional hyperboloid:

dS4 = {−X 2
0 + X 2

1 + X 2
2 + X 2

3 + X 2
4 = H−2} .

X ∈ R
5

X0 = const.
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Elementary geometry of deSitter space

DeSitter can be described as 4-dimensional hyperboloid:

dS4 = {−X 2
0 + X 2

1 + X 2
2 + X 2

3 + X 2
4 = H−2} .

DeSitter space is:

A solution to Einstein field equations with positive

kosmological constantΛ = 3H2.

A space of constant curvature H2, conformally flat.

A space of maximal symmetry, O(4, 1).

The geodesic distance σ (with sign) between X ,Y ∈ dS4 is
given by:

cos(H
√
σ) = H2 X · Y ≡ Z .

The quantity Z is also called “point-pair invariant”. The
relationship between this and causal relations in deSitter is
described by:
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Elementary geometry of deSitter space

DeSitter can be described as 4-dimensional hyperboloid:

dS4 = {−X 2
0 + X 2

1 + X 2
2 + X 2

3 + X 2
4 = H−2} .

Z
=
1

X|Z | < 1 |Z | < 1
Z
=
1

Z
=
1

Z > 1

I +

Z
=
1

Z
=
1

Z > 1

I −

J+(X ) = future of X

Z < −1 |Z | < 1 North pole of S3
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Elementary geometry of deSitter space

DeSitter can be described as 4-dimensional hyperboloid:

dS4 = {−X 2
0 + X 2

1 + X 2
2 + X 2

3 + X 2
4 = H−2} .

This is a “conformal diagram” of deSitter.

The “Cosmic No-Hair Conjecture” says that, except in the
vicinity of black holes, any solution to the Einstein equations with
Λ will locally approach the exact deSitter spacetime with Λ = 3H2

in the far future (→ “Heat Death of Universe”)
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An alternative drawing of conformal diagram is:

S3 sections

x , y , z = const.

t = const.

“Horizon” H
“H
or
izo
n”
H

I +

I −

North pole of S3X0 = const.

The shaded region is the “cosmolgical chart”, where the
metric takes FRW-form

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2) .
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Unusual properties of deSitter:

1 DeSitter has no time-translation symmetry.

2 DeSitter fields φ have no conserved energy.

3 No useful global notion of particle in deSitter QFT. e.g.
deSitter-invariant (=“Bunch-Davies-”=“Vacuum-”) state is
actually thermal!

Except in static chart (shaded):

bifurcation surface S2

ho
riz
on
H+

horizon H
−

S2

η = const.r = const.

ds2 = −f (r) dη2 + f (r)−1dr2 + r2dω2
2
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Physical interpretation of “cosmic no-hair”

One can view the “cosmic no-hair” property as saying that deSitter
spacetime is classically I(nfra) R(ed) stable. The quantitative
meaning of this can e.g. be visualized by an observe moving
towards the distant future (I +) along a worldline γ:

observer γ

Ho
riz
on
of
γ Horizon

of γ

I −

I + I +end point of γ

The geometry within each causal diamond of fixed physical volume

approaches that of exact deSitter at an exponential rate. =⇒ no
geometrical “degrees of freedom” left in the distant future, i.e. “no
hair”.
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Free KG-Fields

We would like to consider theories of the form
L = (∇φ)2 −m2φ2 − λφ4. For simplicity first free massive theory
(λ = 0),m2 > 0. Any correlation function in this theory has
properties:

Correlation functions in free theory:

1 Each 〈φ(X1) . . . φ(XE )〉Ψ satisfies KG-eqn.

2 〈. . . [φ(X1), φ(X2)] . . . 〉Ψ = i∆(X1,X2)〈. . . 〉Ψ.
3 Short-distance behavior of “Hadamard form”.

A state is “Gaussian” if “Wick’s theorem” holds.
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Special state: “Bunch-Davies” state

〈φ(X1)φ(X2)〉BD = cst. 1F2

(
− c , 3 + c ; 2;

1 + Z

2

)

c is dimensionless constant

c = −3/2 + (9/4 −m2/H2)1/2.

This istate is deSitter invariant, and for this reason is often called
“vacuum”. Actually, it is more like a thermal state in static region,
with temperature T = H/2π!

bifurcation surface S2

ho
riz
on
H+

horizon H
−

North pole of S3

static chart
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In a Hilbert-space representation wherein the Bunch-Davies state is
given by a “vacuum”-vector |BD〉, one can generate more general
states by applying “smeared” field operators:

|Ψ〉 =
∫

fE (X1, . . . ,XE ) φ(X1) · · · φ(XE ) |BD〉 .

fE (“wave packet”) is e.g. of compact support. By [Strohmaier, Verch,

Wollenberg 2002], this gives in essence all states in Hilbert space!

IR-stability of free field

In each such state we have 〈φ〉Ψ = O(eR(c)Hτ ) for large proper
times τ → ∞, where R(c) < 0. =⇒ IR-stability for deSitter for
free QFT. .
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Interacting KG-fields

We want the correlation funktions 〈φ(X1) . . . φ(XE )〉Ψ e.g. in QFT
described by L = (∇φ)2 −m2φ2 − λφ4! ⇒ perturbation series in λ.

Questions:

1 Which states Ψ?

2 How to deal with UV-divergences?

3 How to deal with IR-divergences?

Answers:

1 Probably (?) any state is OK, because we are interested in
practice in late time-behavior of correlation functions. For
simplicity first Ψ = |BD, λ〉.

2 [S.H.-Wald 2001-2008, Brunetti et al. 2000, 1998, Radzikowski 1998]

3 Analytic continuation dS4 → S4 and back.
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Perturbation series has general form:

〈φ(X1) · · · φ(XE )〉CBD,λ =
∑

V≥0

∑

Graphs G

λV IG (X1, . . . ,XE )

f. “connected” correlation functions. IG is the contribution of an
individual Feynman graph G , mit V inner vertices and E external
legs, e.g.:

X2

X1

X3

X4
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An elegant closed form expression for IG , and therefore correlation
functions, was given in [Hollands 2010, 2011]. The formula is a multiple
“Mellin-Barnes” integral (“generalized H-function” [Sarivastava et al.

1973]). Integration parameters wF are 1-1 correspondence with
“forests” F in an associated graph G ∗ as e.g. in

X2

X1 X4

∗

X3
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DeSitter Feynman integral IG (X1, . . . ,XE ) given by [Hollands 2010,2011

(massless)]

IG = Kc,G

∫

~w
Γc,G ( ~w )

∏

1≤i 6=j≤E

(1− Zij)
∑

F wF ,

wobei:

Sum
∑

F in exponent over all forests connecting Xi ,Xj .

Kc,G : a constant,

Zij are point-pair invariants H2Xi · Xj . Γc,G (~w ) is kernel given
in terms of gamma-fcts.:

Γc,G (~w) :=
Γ( 5

2
+
∑

F wF )
∏

F Γ(−wF )

Γ( 5
2
+
∑

(ij)/∈Φ

∑

F∋Φ wF −∑

(ij)∈Φ

∑

F/∋(ij) wF )

˙

∏

(ij)/∈Φ Γ(−c +
∑

F∋(ij) wF )Γ(3 + c +
∑

F∋(ij) wF )Γ(1 −
∑

F∋(ij) wF )
∏

(ij)∈Φ Γ( 5
2
+
∑

F/∋(ij) wF )
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Application of master formula

Using the formula for IG one can:

Calculate correlation functions and hence e.g. w{lm}(t) (→
CMB!)

Long-distance expansion, including very important

Cosmic-no-hair/IR-stability in interacting QFT

For generic quantum state Ψ, we have:

〈φ〉Ψ ∼ O(eR(c)Hτ )

to arbitrary orders in perturbation theory and m2 > 0. As above
c = −3/2 + (9/4 −m2/H2)1/2, which has negative real part.

(Similar result: [Marolf & Morrison 2010, ... & Higuchi 2011])
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General features of correlators

As in flat Minkowski spacetime, we could say that a QFT on a
curved spacetime (M, g) is specified by a collection of correlators

〈Oi1(x1) . . .Oin(xn)〉Ψ
where:

1 There is one set of correlators for each state Ψ.

2 The Oi ’s are composite fields, e.g. φ,Tµν , Jµ, ....

3 We expect there to be singularities if xi is on xj ’s lightcone.

4 We expect that fields should (anti-) commute if xi and xi+1

are spacelike.

5 We want the state to be “positive” (“unitarity”): 〈A∗A〉Ψ ≥ 0
for any expression such as (f a smearing function)

A =

∫
f (x1, ..., xn)

∏
φ(xi ) .
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General features of correlators

As in flat Minkowski spacetime, we could say that a QFT on a
curved spacetime (M, g) is specified by a collection of correlators

〈Oi1(x1) . . .Oin(xn)〉Ψ

But:

1 There are many examples of pathological states satisfying
these criteria (e.g. α-states in deSitter, “instantaneous ground
state” in FRW-universe,...).

2 How to recognize that correlators belong to different state but
same theory? (Operator-product-expansion, OPE)

3 Does not incorporate any notion of positive energy (microlocal
spectrum condition).

4 How to formulate notion of “general covariance” (OPE)?
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All states should satisfy the operator product expansion:
[Wilson,Kadanoff], [Zimmermann], [Keller et al.],[Belavin et al.],...,[curved space: S.H.]

〈Oj1(x1) · · ·Ojn(xn)〉Ψ ∼
∑

C i
j1...jn(x1, . . . , xn; y)︸ ︷︷ ︸

state indep.

〈Oi (y)〉Ψ︸ ︷︷ ︸
state dep.

Physical idea: Behavior of the theory at short distances
“factorizes” from the behavior at long distances/from
properties of specific state.

Covariance of theory: Coefficients are local functionals of
the metric, curvature etc.

Convergence: The OPE converges (!) even at finite distances
[S.H. & Kopper 2011], due to following thm. =⇒ All information about
n-pt. functions is contained in OPE coefficients + 1-pt.
functions only!
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Convergence of OPE:

At least in Euclidean 4-dimensional space, the OPE is not only
asymptotic at short distances, but even converges at finite (!)
distances. This was shown for L = (∂φ)2 +m2φ2 + λφ4 to all loop
orders. The convergence follows from bound (at l loops), where fpi
are test-functions (“wave packets”) that are compactly supported
in momentum space near pi ∈ R

4:

∣

∣

∣

∣

∣

〈

Oa(x)Ob(0)φ(fp1 ) · · · φ(fpn )
〉

−
∑

c

C
c
ab (x)

〈

Oc (0)φ(fp1 ) · · · φ(fpn )
〉

∣

∣

∣

∣

∣

≤
√

[a]![b]! K̃
[a]+[b]

∏

i

sup |f̂pi | m
[a]+[b]+n

× sup(1,
|~p|n
m

)
2([a]+[b])(n+2l+1)+3n

n/2+2l
∑

λ=0

logλ sup(1,
|~p|n
m

)

2λλ!

×
1

√
∆!

(

K̃ m |x| sup(1,
|~p|n
m

)
n+2l+1

)∆

.

where the OPE is carried out up to dimension ∆. Proof: Wilson-Polchinsky RG-flow equations [S.H. & Kopper

2011]
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Fundamental theorems

Fundamental theorems about QFT on curved spacetimes e.g.
Parity-Time-Charge [S.H. 2004, & Wald 2008]:

But: What actually is “P” and “T” in a spacetime without
reflection symmetries, such as e.g. expanding FRW:

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) ?

Minkowski spacetime:
U|in,momenta〉 = |out,−momenta〉C .

Curved spacetime: No “same

Universe” formulation of PCT: Theorem connects

“in”-state in one universe with “out state” in

universe with opposite space and time orientations!

PCT=symmetry of OPE-coefficients!!!
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The PCT-theorem in curved space

The PCT theorem connects the QFT in one spacetime (e.g.
expanding universe) to that of the spacetime with opposite time-
and space- orientation (contracting universe).
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The PCT-theorem in curved space

As a technical statement about the OPE-coefficients, the
PCT-theorem can be stated as saying that

C
j
i1...in

[T , o] = C
j̄

īn...̄i1
[−T ,−o]

where o,T are the orientation (o) and time orientation (T ) of the
underlying spacetime (M, g).
The proof of the PCT-theorem relies on fundamental properties of
the OPE:
• Curvature expansion: (e.g. free KG-field 2-point OPE-coefficient
φ(x1)φ(x2) ∼ [1/ξ2 + Rµνξ

µξν/ξ2 + ...] 1+ ...)

y
2

3

2

3M

T My

Rαβγδ(y)

x1

1ξ

ξ
x

ξ

x
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The PCT-theorem in curved space

As a technical statement about the OPE-coefficients, the
PCT-theorem can be stated as saying that

C
j
i1...in

[T , o] = C
j̄

īn...̄i1
[−T ,−o]

where o,T are the orientation (o) and time orientation (T ) of the
underlying spacetime (M, g).
The proof of the PCT-theorem relies on fundamental properties of
the OPE:
• µ-local spectrum condition: [Brunetti et al. 1998,2000, S.H. 2006]

Spacetime

Embedding
p

Σ−
Σ       incoming p’s

outgoing p’s k

k

k

1

2

3

abstract Feynman graph

x

x

2

x3

1

ki = null−geodesic
1 1WF(C) = (x  , k  , ..., x  , k  ) :n n

p future−pointing
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The PCT-theorem in curved space

As a technical statement about the OPE-coefficients, the
PCT-theorem can be stated as saying that

C
j
i1...in

[T , o] = C
j̄

īn...̄i1
[−T ,−o]

where o,T are the orientation (o) and time orientation (T ) of the
underlying spacetime (M, g).
The proof of the PCT-theorem relies on fundamental properties of
the OPE:
• Associativity of OPE (=“crossing symmetry”=“consistency”):
E.g.

∑
k C

k
ij C

m
kl = Cm

ijl if a subset of the points (x1, x2, x3) is closer
to each other than to the remaining point.
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Summary

In this talk I have tried to explain:

1 How, in simple terms, the microscopic quantum fluctuations
in the early cosmos give rise to macroscopic density contrast
in late cosmos. [Mukhanov, Guth, Steinhard-Bardeen-Turner 80’s]

2 Said to what are the corresponding quantum observables.

3 Explained how one can compute correlators e.g. at long
distances in deSitter space, in renormalized perturbation
theory.

4 Explained what this has to do with “cosmic no-hair”, see however

[Polyakov 2009,2010]

5 Explained the role of the OPE in curved spacetime and some
of its properties and uses for the calculation of correlation
functions at short distances.
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Summary

There are many more contributions to these topics:

1 Theorems about QFT in CST: Brunetti, Fewster, Fröhlich & Birke, Fredenhagen,

Haag, Kay, Radzikowski, Verch, Wald,...

2 Perturbation theory in curved spacetimes: Brunetti & Fredenhagen, Hollands

& Wald, Bunch,...

3 deSitter: M. Anderson, Allen, Balasubramanian, Bros & Moschella, Einhorn, Friedrich, Higuchi,

Jacobson, Jaekel & Gerard, Kitazawa et al., Larsen, Minic, Marolf & Morrison, Mottola, Moretti,

Dappiaggi & Pinamonti, Polyakov, Randall, Schomblond & Spindel, Strominger, Spradlin, Tsamis,

Urakawa et al., Verlinde, Volovic, S. Weinberg, Woodard,...
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