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I. definition of the theory

II. properties

III. how to extract physics from a background-independent theory

IV. results

[Recent review: CR:  ``Zakopane lectures in loop gravity",  arXiv:1102.3660] 
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Aim: I. Define a consistent quantum field theory for the gravitational field 
(coupled to ordinary matter)

II. Apply to early universe, black holes, Planck scale scattering ...

III. Understanding quantum spacetime

I. The classical limit of the theory is General Relativity

II. Non perturbative QFT (in the sense of lattice QCD)

III. Take the symmetry of GR as guiding principle (“background independence”) 

I. Unification of interactions

II. Measurement problem

III. Quantum theory of closed systems

Ingredients:

Not addressed:

I. loop quantum gravity 



• 1957,   Misner        

• 1961,   Regge                         Regge calculus   →   truncation of GR on a manifold with d-2 defects

• 1967,   Wheeler, DeWitt            W-DeW equation

• 1971,   Penrose                       Spin-geometry theorem →  spin network

• 1970-80,  David, Brezin, Parisi,       Matrix models
Kazakov, Itzkinson, Zuber,  ...     

• 1988,   Ashtekar                      Complex variables for GR

• 1988,   Jacobson, Smolin CR         Loop solutions to WdW eq and loop representation
Ashtekar        

• 1988,   Atiyah                         General covariant QFT as TQFT

• 1992,   Ooguri                        4d generalization of matrix models-GFT

• 1994,  Smolin CR,                         Spectral problem for geometrical operators 
Ashtekar Lewandowski                 → Quantum geometry

• 1994, Reisenberger, CR, Baez       Spinfoams

• 1999, Barrett Crane                  BC model

• 2008, Engle, Pereira, CR,               Covariant dynamics of LQG
Speziale, Livine, Freidel, Krasnov        

I. history of the main ideas

Z(q) =
�

∂g=q
Dg eiSEH [g]

Curvature

a “spinfoam”

a “spin network”



                                                                                                                                                 Regge calculus

                                                         W-DeW equation

                                                                                                Spin-geometry theorem 
                                                                                                →  spin networks

Matrix models

                                     Complex variables for GR

                                                      Loop solutions to WdW eq                                                                                                                               

4d generalization of matrix models

                                                  Spectral problem for geometrical operators 
                                                   → Loop Quantum Geometry
Spinfoams

                                   Covariant dynamics of LQG 

                                                                        Asymptotic of the new dynamics    →     recovery of Regge action

I. relations between the main ideas

Z(q) =
�

∂g=q
Dg eiSEH [g]

BC model



I. the theory:  preliminaries 
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v ∈ V, e ∈ E, f ∈ F
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I. the theory:  definition (pure gravity) 

Hilbert space:

H = lim
Γ→∞

HΓ

hlHΓ = L2[SU(2)L/SU(2)N ] ∈ψ(hl)

[Barrett Crane 1999, 
Engle Pereira CR, Livine Speziale, Freidel Krasnov 2008,

Lewandowski et al 2010]
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ZC(hl).
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(i)      

(ii)      

(iii)    

(iv) Drop one dg integral per vertex

(v) Combinatorial factor         = number of symmetries

(vi) For each external edge (link) 
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(face amplitude)

I. the theory:  definition (pure gravity) 



(i)      

(ii)      

(iii)    

(iv) Drop one dg integral per vertex

(v) Combinatorial factor         = number of symmetries

(vi) For each external edge (link) 

C

v
f e

l

Njl

�−→
�

j

(2j+1) χγj,j

��

e∈∂f

ghg�−1
�

g

g�

�
�
e �−→

�

SL2C
dg�

�

SL2C
dg�

� ❅

�
�
h

f

g

g�

Feynman rules:

(face amplitude)

I. the theory:  definition (pure gravity) 



(i)      

(ii)      

(iii)    

(iv) Drop one dg integral per vertex

(v) Combinatorial factor         = number of symmetries

(vi) For each external edge (link) 

C

v
f e

l

Njl

�−→
�

j

(2j+1) χγj,j

��

e∈∂f

ghg�−1
�

g

g�

�
�
e �−→

�

SL2C
dg�

�

SL2C
dg�

� ❅

�
�
h

f

g

g�

Feynman rules:

(face amplitude)

I. the theory:  definition (pure gravity) 



(i)      

(ii)      

(iii)    

(iv) Drop one dg integral per vertex

(v) Combinatorial factor         = number of symmetries

(vi) For each external edge (link) 

C

v
f e

l

Njl

�−→
�

j

(2j+1) χγj,j

��

e∈∂f

ghg�−1
�

g

g�

�
�
e �−→

�

SL2C
dg�

�

SL2C
dg�

� ❅

�
�
h

f

g

g�

Feynman rules:

(face amplitude)

I. the theory:  definition (pure gravity) 



(i)      

(ii)      

(iii)    

(iv) Drop one dg integral per vertex

(v) Combinatorial factor         = number of symmetries

(vi) For each external edge (link) 

C

v
f e

l

Njl

�−→
�

j

(2j+1) χγj,j

��

e∈∂f

ghg�−1
�

g

g�

�
�
e �−→

�

SL2C
dg�

�

SL2C
dg�

� ❅

�
�
h

f

g

g�

Feynman rules:

(face amplitude)

I. the theory:  definition (pure gravity) 

ν = γj, k = j



(i)      

(ii)      

(iii)    

(iv) Drop one dg integral per vertex

(v) Combinatorial factor         = number of symmetries

(vi) For each external edge (link) 

C

v
f e

l

Njl

�−→
�

j

(2j+1) χγj,j

��

e∈∂f

ghg�−1
�

g

g�

�
�
e �−→

�

SL2C
dg�

�

SL2C
dg�

� ❅

�
�
h

f

g

g�

Feynman rules:

(face amplitude)

I. the theory:  definition (pure gravity) 

ν = γj, k = j



(i)      

(ii)      

(iii)    

(iv) Drop one dg integral per vertex

(v) Combinatorial factor         = number of symmetries

(vi) For each external edge (link) 

C

v
f e

l

Njl

�−→
�

j

(2j+1) χγj,j

��

e∈∂f

ghg�−1
�

g

g�

�
�
e �−→

�

SL2C
dg�

�

SL2C
dg�

� ❅

�
�
h

f

g

g�

Feynman rules:

(face amplitude)

I. the theory:  definition (pure gravity) 

ν = γj, k = j



Hilbert space:

Transition amplitudes:

v
f

e
hvf

Fermion variable                   Fermion loops           Yang Mills group variable

Fermions    Yang Mils

ZC =
�

{c}

�

j
f
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dgve
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dhef

�

G
dUve

�

f

dj
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f
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f

��
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(gesehefg
−1
ete)

�lf
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(geseUeseU
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�ec
�
.

HΓ = L2[SU(2)L/SU(2)N ]⊗ (C4)N ⊗ L2[GL/GN ]

[Han, Wieland, Perini Magliaro Bianchi, CR ... 2010]

Replace SL2C and SU2 with a quantum deformations, with (real) 
deformation parameter q      [Roche Noui, Fairbairn Moesburger, Han. .-2010]

Cosmological constant:

I. the theory:  definition (fermions, yang Mills and cosmological constant) 



i. Quantum states,  transition amplitudes

ii. 4 dimensions,  Lorentzian

iii. Couples with the Standard Model

iv. Includes a cosmological constant

i. 3d geometry 

ii. Ultraviolet finiteness

iii. Infrared finiteness

iv. Relation to GR

v. Lorentz covariance 

vi. Continuous limit

vii. Semiclassical limit



II. states (3d quantum geometry)

State space

Derivative operator:                                                    where  

Gll� = �Ll · �Ll�The gauge invariant operator:                                         satisfies  

Is precisely the Penrose metric operator on the graph

l

l�

Gll�

l

Polyhedron   

Gll�

l�

Al

HΓ = L2[SU(2)L/SU(2)N ]
�

l∈n

�Ll = 0

�

l∈n

Gll� = 0

It satisfies 1971 Penrose spin-geometry theorem, and 
1897 Minkowski theorem:  semiclassical states have a 
geometrical interpretation as polyhedra.                     

→



• Area and volume                      form a complete set of commuting observables → basis        (Al, Vn) |Γ, jl, vn�

Nodes:  discrete quanta of volume (“quanta of space”) 
with quantum number       .

Links:  discrete quanta of area, with quantum number     .jl

vn

Geometry is quantized:

(i) eigenvalues are discrete
(ii) the operators do not commute
(iii) a generic state is a quantum superposition 

→ coherent states theory (based on Perelomov 1986 SU(2) 
coherent state techniques) 

volume  V 2
n =

2
9

�Ll1 · (�Ll2 × �Ll3)A2
l = Gllarea  

→vn

jl

→ States in                                                               describe quantum geometries:  

                                  not quantum states in  spacetime  

                                   but rather quantum states of spacetime  

HΓ = L2[SU(2)L/SU(2)N ]

II. states (3d quantum geometry)



• There is an area gap                                        and the volume eigenvalues are finite and discrete:

→      Ultraviolet finiteness of the transition amplitudes

A = 8πγ�G
�
jl(jl + 1)• Area eigenvalues

ao = 8πγ�G
√
3

2

II. UV discreteness

ZC =
�

jf ,ve

N{jf}
�

f

(2jf+1)

�

v

Av(jf , ve)• Using this basis, the amplitude reads



II. IR discreteness

loop bubble spike

→

With the cosmological constant, the amplitudes                are  finite  [Han.  Fairbairn Moesbeurger.-2010]ZC(hl)

Infrared divergences (large j):

→      Ultraviolet finiteness of the transition amplitudes

For any two-complex without boundaries      ,   the function of two real variables          

is finite.   This family of function and their limit                                                characterize the theory.

ZC(q, γ)

C

Z(q, γ) = lim
C→0

ZC(q, γ)



II. dynamics: the vertex amplitude 

v
f

e

hvf

vertex amplitude:

ZC =

�

SU(2)
dhvf

�

f

δ(hf )
�

v

Av(hvf ).

v
f

e

hf

hl

n

Av(ψ)



Fix                to determine a given piecewise flat geometry                on the boundary 

of a flat 4d spacetime region.  Then :   

Therefore                     defines a Regge like truncation of Misner-Hawking ’s Z(q) =
�

∂g=q
Dg eiSEH [g]

[Freidel Conrady 2008, 
Bianchi, Satz 2006,
Magliaro Perini, 2011]

i.

ii.

ψq q

SRegge[q]

Large j limit: Av(ψq) ∼ eiSRegge[qjl,vn ]

On a given         , the sum over variables that dominates the amplitude is dominated by configurations that

correspond to classical Regge geometries, weighted by the exponential of the Regge action   

C

[Barrett et al 2008-2010]

II. vertex amplitude: relation with GR, I

ZC(hl)



Here is the analog result in 4d: 

II. vertex amplitude: relation with GR, 1

First background independent quantum gravity theory:    Ponzano-Regge model in 3d.

Based on the surprising discovery by Ponzano and Regge that     

Av(ψq) = ψq(11)

f = PSL(2,C) ◦ Yγ

Av(ψ) = (fψ)(11)

Av(ψq) ∼ eiSReggeZC =
�

jf ,ve

N{jf}
�

f

(2jf+1)

�

v

Av(jf , ve)

ZC =
�

jf

�

f

(2jf+1)

�

v

Av(jf ) Av = {6j} ∼ eiSRegge



vertex amplitude: f = PSL(2,C) ◦ Yγ

II. dynamics: the vertex amplitude 

Z =

�
dhvf

�

f

δ(hf )
�

v

Av.

Av(ψ) = (fψ)(11)

SU(2) unitary irrep: |j;m� ∈ Hj

SL(2,C) unitary irrep:

Dupuis-Livine map:

yγ : Hj → Hj,γj

|j;m� �→ |j, γj; j,m�

Yγ : L2[SU(2)] → F [SL(2, C), C]

ψ(h) �→ (Yγψ)(g), h ∈ SU(2), g ∈ SL(2, C)

D(j)
mm�(h) �→ D(j,γj)

jm,jm�(g)

|k, ν; j�,m� ∈ Hk,ν =
�

j�=k,∞
H

j�

k,ν

ν = γj, k = j� = j



Main property: �K + γ�L = 0 on the image of Yγ

�K = J · t
�L = J∗ · t

boost generator 

rotation generator 

h� t = 0,

h ∈ SO(3) ⊂ SO(3, 1)

II. vertex amplitude: relation with GR, 1I



II. vertex amplitude: relation with GR, 1I

Z =

�
dhvf

�

f

δ(hf )
�

v

Av. Av(ψ) = (fψ)(11)

S[A,B] =

�
B ∧ F [A]

Suppose we drop          .    Then Z becomes the partition function of BF theoryYγ

where       is recognized as the generator of  SL2C.    B

Therefore the theory can be identified with a BF theory where         satisfies the additional equation.   B

�K + γ�L = 0 �K = B · t
�L = B∗ · t

B = (e ∧ e)∗ +
1

γ
e ∧ e

S[A, e] =

�
[(e ∧ e)∗ +

1

γ
e ∧ e] ∧ F [A]

Solution

Solving the eq of m for A: S[e] =

�
[(e ∧ e)∗ +

1

γ
e ∧ e] ∧R[ω(e)]

=

�
e eµI e

ν
JR

IJ
µν +

1

γ
�µνρσRµνρσ

=

� √
−g R[g]

Plugging this into the action:



Z =

�
dhvf

�

f

δ(hf )
�

v

Av. Av(ψ) = (fψ)(11)

f = PSL(2,C) ◦ Y Y : SU(2)irrep → SL(2, C)irrep

|j;m� �→ |γj, j; j,m�

On the image of         ,                                 (Simplicity constraint)

BF theory +                         =  General Relativity  �K = γ�L

�K = γ�LY

II. vertex amplitude: relation with GR, 1I



II. vertex amplitude: relation with GR,  q deformed case  (euclidean).

Av(ψ) = Evq(fψ)

→   Vassiliev invariants associated with the graph bounding the vertex 

(related to the quantum group                                               )

Evq(ψ) =

�
Ψ[A±] e

2πi
h+

SChern−Simon[A
+]− 2πi

h−
SChern−Simon[A

−]
DA±

SUq+(2)⊗ SUq+(2)

→   The vertex with cosmological constant is the Chern Simon expectation value of boundary 
spin network. 

ZC =

�
dhvf

�

f

δ(hf )
�

v

Av.

q± = q
±8

(1±γ)2 = eih± , q = eiΛl2P



II. Lorentz invariance and manifest Lorentz covariance

•           in the time gauge  (Lapse=1, Shift=0) 

• Manifest Lorentz covariance:            is mapped by  be mapped by        to a space of SL(2,C) functions, determined by their 
restriction on SU(2). 

• These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one.  (cfr Gupta-Bleuler).   [Speziale CR -2010]

• The theory is locally SL(2,C)-invariant in the bulk, and yields states in       on the boundary. 

• Covariant LQG is manifestly Lorentz-covariant

HΓ

K

K

The common idea that a minimal length breaks Lorentz covariance is  wrong !  

It would be true in a classical theory.  It is NOT true in a quantum theory: 
the minimal length appears as an eigenvalue, and

eigenvalues do not transform continuously with continuous symmetry! 

cfr angular momentum theory !

[Speziale CR]

Yγ



From canonical quantization:                                     .

II. scales

(1)  As written, the theory has no dimensional scales.

It has an intrinsic scale, at which it lives (recall                 ).   This is the physical scale            of the theory.

In dimensional units,              has a value in centimeters.  So, in cm: 

ao =
√

3
2

Lloop

(II)  q  or the cosmological constant Λ is a second scale.

(III)  The Immirzi parameter     .    

Nothing corresponds to the QCD a→0  continuum limit:  

ao =
√

3
2

8πγ�G



ħ 

 G  

Planck length:  10-33 cm.   The theory is defined at this scale, which 
provides an intrinsic cut-off, which makes the theory UV finite.

There are no degrees of freedom below the Planck scale
(background independence)

The theory is different from approaches that assume degrees of 
freedom at any scale, and taking a cut off to zero.  (CDT, 
asymptotic safety...).

Recovering the continuum limit is not taking a short distance scale cut off to zero.

II. scales and “continuum limit”

The continuum limit and the large-scale limit are different limits, and should not be confused ! 



→ Continuum limit Recovery of all degrees of freedom

II. limits

C → ∞

→ Large distance limit

High quantum numbers j → ∞ Fix the truncation, disregard Planck 
scale effects→ Semiclassical limit

�Z|Ψq�

�ZC |Ψq�

SGR(q)

SGR,C(q)

semiclassical limit  

semiclassical limit  

truncation truncation 

Hamilton function of

a Regge truncation of GR on      .   C

C
→

∞

j → ∞

1√
R

� � � LPlanckRegime where small -     it is good:C



i. Quantum states,  transition amplitudes

ii. 4 dimensions   

iii. Lorentzian

iv. Couples with the Standard Model

v. Includes a cosmological constant

vi. Infrared finite (on every C)

vii. Ultraviolet finite (on every C)

i. How to compute physics (background independence)?

ii. What can be computed ?

i. Simple vertex form

ii. Lorentz covariance manifest

iii. Continuous limit 

iv. Large scale limit

v. Recovery of Regge truncation 
of GR

C → ∞
j → ∞



III. boundary formalism: Hamilton function

Hamilton’s “boundary logic”:

Hamilton function S(q, t, q�, t�) =

� t�

t
dt L(q(t), q̇(t))

p(q, t, q�, t�) =
∂S(q, t, q�, t�)

∂q
(q, q�)t,t� → (p, p�)t,t�

Notice also

Treats              on equal footing

E(q, t, q�, t�) = −∂S(q, t, q�, t�)

∂t

(q, t) (q, t, q�, t�) → (p,E, p�, E�)}
Tuesday, M

arch 22, 2011

qi

}
Tuesday, M

arch 22, 2011

pi

Covariant form of S S(qi, q
�
i) =

� τ �

τ
dτ L(qi, q̇i)

→ Dynamics is the relative evolution of a set of variables, not the evolution of these variables in time.

     Hamilton dynamics captures this relational dynamics.



• Quantum theory W (q, t, q�, t�) = �q|eiH(t�−t)|q�� = �q, t|q�, t�� ∼ e
i
�S(q,t,q�,t�)

=

�

q,t,q�,t�
Dx(t) e

i
�S[x(t)]

Evolution operator Hamilton function !

III. boundary formalism:  QM and QFT

ϕ

ϕ�

φ

Boundary 
conditions

ϕ”
Σ

• Field theory

• General covariant field 
theory

W [ϕb,Σ] =

�

ϕb,Σ
Dφ eiS[φ]

W [ϕb,Σ] = W [ϕb]

• For the gravitational theory:             gives the geometry of the boundary ϕb



Semiclassical limit  

III. boundary formalism: classical limit and n-point functions

Hamilton function of GR 

W [ϕb] → e
i

�GSGR[ϕb]
+ correction in �G

}
Tuesday, M

arch 22, 2011

Field propagator → Particle propagator: �0|φ(�x�, t�)φ(x, t)|0� = �0|φ(�x�) eiH(t�−t) φ(x)|0�

=

�
dϕ dϕ� W [ϕ, t,ϕ�, t�] ϕ(�x)ϕ�(�x�) Ψ0[ϕ]Ψ0[ϕ

�]

Vacuum boundary state 

}
Tuesday, M

arch 22, 2011

Field insertion 

}
Tuesday, M

arch 22, 2011

Field propagator

= �W | φ(�x)φ�(�x�) | Ψ0�



 (i)  n-point functions.   The background enters in the choice of a “background” boundary state  

In principle this technique allows generic n-point functions to be computed, 
and compared with Effective Quantum GR, and corrections to be computed. 

III. boundary formalism

�Z|GlalbGlcld |ψ0�
�Z|ψ0�

∼ �0|gab(x)gcd(y)|0�

S(a, a�) =
2

3

�
Λ

3
(a�

3 − a3)
a, ȧ

a�, ȧ� (ii)  cosmology.   Transition amplitude →  Hamilton function   

Classical Hamilton function   

�Z|ψaȧ ⊗ ψaȧ��

W (a, a�) → e
i
�S(a,a�)



(1)   Gravitational waves.   Starting from            ,  it is possible to compute the two point function of

the metric on a background.  The background enters in the choice of a “background” boundary state  

ZC(hl)

This can be computed at first order in the expansion in the number of vertices.

Result: [Bianchi Magliaro Perini 2009 , Ding 
2011]

The free graviton propagator is recovered
in the Lorentzian theory 

IV. results

Ana
i = γj±na

�−�nan|(g±a )−1g±n σ
i|�nna�

�−�nan|(g±a )−1g±n |�nna�

� 5�

a=1

dg+a dg
−
a Ana

i Anb
i Anc

i And
i e

�
ab,± 2j±ab log�−�nab|(g±

a )−1g±
b |�nba�

�W |Ea
n ·Eb

n Ec
m ·Ed

m|jab,Φa(�n)� =

→ �hµν(x)hρσ(y)� =
−1

2|x− y|2 (δµρδνσ + δµσδνρ − δµνδρσ).



(II)   Scattering.   

[Zhang,  CR 2011]The Regge n-point function is recovered 
in the large j limit (euclidean theory)

z

New Result:

IV. results



(III)   Cosmology.   Starting from            ,  it is possible to compute the transition amplitude 
between homogeneous isotropic geometries  

ZC(hl)

[Bianchi Vidotto Krajewski CR 2010]
The expanding Friedmann dynamics and 
the DeSitter Hamilton function are 
recovered

Result:

IV. results
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    summary

(I) Loop quantum gravity transition amplitudes                (spinfoams)

(II) Quantum 3-geometry (spin networks, quanta of space)

(III) Lorentzian dynamics.    Lorentz covariance manifest.

(IV) Matter couplings: fermions and Yang Mills fields. Cosmological constant.

(V) UV finite, IR finite at each order in     . 

(VI) Background independent QFT

(VII) Boundary technique gives well defined observables.

(VIII) Indications that the ħ→0 is general relativity 

Ooguri’s BF+ (BF → GR constraints)

Asymptotics of the vertex and of the full amplitude

Lorentzian 2 point function, Euclidean n-point function

De Sitter solution

ZC(hl)
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    main open issues
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Several issues are open, but this is  

a potentially possible 

theory of quantum gravity.

(i) More solid arguments that the classical limit is GR

(ii) Scaling   [Rivaseau, Oriti and collaborators]

(iii) Is the expansion in     meaningful?  (Lower terms dominate?Do we need to renormalize them?)

(iv) Study the family of functions                     and  

(v) Compute higher corrections.  Observable consequences?  Cosmology?  [Ashtekar et al, Barrau et al]

C

ZC(q, γ) Z(q, γ) = lim
C→∞

ZC(q, γ)


