Matrix-Factorizations and Superpotentials

Marco Baumgartl

ASC-LMU Munich

15th European Workshop on String Theory, Zurich, September 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

Matrix Factorizations And Branes

Moduli Spaces

Effective Superpotential

- (phenomenologically) interesting string backgrounds: Calabi-Yau + branes
- open and closed string moduli
- what is their connection? How do brane moduli react on closed string deformations?
- matrix factorization technique via Landau-Ginzburg description (topologically twisted)
- rather explicit connection to worldsheet CFT description

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

six dimensions may be compactified on an 'internal' manifold

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Calabi-Yaus (Kähler, with vanishing Chern class) satisfy the string consistency conditions
- this provides a valid closed string background in 10d supersymmetric string theory
- generally, there are (closed string) moduli

- for open strings, boundary conditions must be imposed
- these often have a geometric interpretation as hyper-surfaces embedded in the background geometry
- branes often come with (open string) moduli
 - the moduli space can have a rich structure: special points, families, webs
- brane-moduli depend crucially on closed string moduli
- what happens to a brane, when the background changes?

• Quintic $W = x_1^5 + \cdots + x_5^5$ is tensor product of five $A_{k=3}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

complete ADE set known

• The N = (2,2) LG theory has a Langrangian description

$$S = \int d^2z d^4\theta K(x,\bar{x}) + \int d^2z d^2\theta W(x) + hc$$

• chiral ring $\mathcal{O}/\partial W$

boundary conditions for B-branes: W factorizes as

$$W(X) = E(X) \cdot J(X)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where E(X) and J(X) are matrices of polynomials

bulk chiral rings extended by Chan-Paton factors

$$\mathcal{R}_{\partial} \subset \operatorname{Mat}(\mathcal{O})$$

- ▶ Q is a graded odd operator with $Q^2 = W$ (Kontsevich) (SUSY/BRST)
- In a Clifford representation with grading σ = diag(1, −1), Q has the form

$$Q = \begin{pmatrix} 0 & J \\ E & 0 \end{pmatrix}$$

with JE = EJ = W

Simple factorization

$$W = x^{d} = x^{n} \cdot x^{d-n}$$
$$Q = \begin{pmatrix} 0 & x^{n} \\ x^{d-n} & 0 \end{pmatrix}$$

 these can be explicitly mapped to boundary states in a single minimal model A_{d-2} [Kapustin; Recknagel et al; Brunner, Gaberdiel]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$W = x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 \quad {\rm in} \ \mathbb{CP}^4 \qquad {\rm Q} = {\rm Q}_1 \odot {\rm Q}_2 \odot {\rm Q}_3$$

with

$$J_1 = x_1 + x_2$$
 $J_2 = x_4$ $J_3 = x_5 + x_3$

•
$$J_i = 0$$
 is a line in $\mathbb{CP}^4 \to \text{Nullstellensatz}$

this describes a permutation branes [Recknagel]
 CFT description known [Brunner, Gaberdiel]
 can be generalized to [MB, Brunner, Gaberdiel]

$$J_1 = x_1 + x_2$$
 $J_2 = ax_4 - bx_3$ $J_3 = ax_5 - cx_3$

with $a^5 + b^5 + c^5 = 0$ in \mathbb{CP}^2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- the common locus of J_i corresponds to a complex line in the quintic
- it can be parametrised as

$$(x_1: x_2: x_3: x_4: x_5) = (u: -u: av: bv: cv)$$

with $(u:v) \in \mathbb{CP}^1$ and $a^5 + b^5 + c^5 = 0$

- this is a 2-cycle in W = 0
- MF has interpretation as D2-brane wrapping this cycle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The moduli space

Im(c) over the *b*-plane

- moduli space known globally
- ▶ genus 6 algebraic curve a⁵ + b⁵ + c⁵ = 0
- cohomology computed!

$$\Psi_1 = \partial_b Q(b)$$
$$\Psi_2 = \frac{x_1}{x_3} \Psi_1$$

- ► away from the permutation point, Ψ_2 is *obstructed*, due to $\langle \Psi_2 \Psi_2 \Psi_2 \rangle = -\frac{2}{5} \frac{b^4}{c^9}$
- only Ψ_1 is exactly marginal

Directions in moduli space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Red branch: $J_1 \leftrightarrow J_3$

branch	factorization	intersects with
(<i>α</i>)	(12)(435)	$(\beta), (\zeta), (\rho)$
<i>(β</i>)	(35)(412)	$(lpha),(\gamma),(\mu)$
(γ)	(14)(325)	$(eta), (\delta), (u)$
(δ)	(23)(415)	$(\gamma), (\epsilon), (ho)$
(ϵ)	(15)(324)	$(\delta), (\zeta), (\mu)$
(ζ)	(34)(215)	$(\epsilon), (\alpha), (\nu)$
(λ)	(13)(245)	$(\mu), (\nu), (ho)$
(μ)	(24)(315)	$(eta),(\lambda),(\epsilon)$
(ν)	(25)(134)	$(\gamma), (\zeta), (\lambda)$
(ρ)	(45)(123)	$(\alpha), (\delta), (\lambda)$

e.g. (12)(435) corresponds to (u : -u : av : bv : cv)permutation points are given e.g. by $(\alpha\beta), (\mu\lambda)$ etc At each permutation point the fermions generating the braches are exchanged

They are related by expressions of the form

$$x_i \Psi_1 = x_j \Psi_2$$

<u>(α)</u> (β)

This gives a set of rules how to walk through the moduli space

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

... it's a truncated icosahedron!

Nodes: moduli branches $(\alpha), (\beta)$ etc

More Calabi-Yaus

$$\begin{split} \mathbb{P}_{(1,1,1,1,1)}[5] & W = x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 & a^5 + b^5 + c^5 = 0 \\ \mathbb{P}_{(1,1,1,1,2)}[6] & W = x_1^6 + x_2^6 + x_3^6 + x_4^6 + x_3^5 & a^6 + b^6 + c^6 = 0 \\ \mathbb{P}_{(1,1,1,1,4)}[8] & W = x_1^8 + x_2^8 + x_3^8 + x_4^8 + x_5^2 & a^8 + b^8 + c^8 = 0 \\ \mathbb{P}_{(1,1,1,2,5)}[10] & W = x_1^{10} + x_2^{10} + x_3^{10} + x_4^5 + x_5^2 & a^{10} + b^{10} + c^{10} = 0 \end{split}$$

$$\begin{aligned} & a^8 + b^8 + c^2 = 0 \\ & \text{joints with 2 and 5 fermions} \\ & a^{10} + b^{10} + c^{10} = 0 \\ & a^{10} + b^{10} + c^5 = 0 \\ & a^{10} + b^{10} + c^2 = 0 \\ & a^{10} + b^5 + c^2 = 0 \end{aligned}$$

joints with 2, 3 and 5 fermions

+ disconnected piece

 $x_j \Psi_1 = x_i \Psi_2$ $x_i \Psi_3 = x_j \Psi_2$

Bulk deformations

boundary theory 'determined' by bulk

 $\mathcal{W}
ightarrow \mathcal{W} + \lambda \mathcal{G} \qquad \stackrel{ ext{if possible}}{\longrightarrow} \qquad \mathcal{Q}
ightarrow \mathcal{Q} + u \Psi$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

branes, cohomology are modified

deformations: branes moves along a bulk modulus

obstructions: branes cease to exist

obstructions mean:

supersymmetry broken

potential for moduli induced

renormalization group flow

$$W = W_0 + \lambda G$$
 $G = x_1^3 s^{(2)}(x_3, x_4, x_5)$ $s^{(2)} = \sum_{q+r+s=2} s_{qrs} x_3^q x_4^r x_5^s$

- ▶ perturbatively: Q₀(a, b, c) can only be deformed if G is exact in R_∂
- \blacktriangleright in this case, the factorization extends to finite λ
- $J_1 = J_2 = J_3 = 0$ is a line in $W = W_0 + \lambda G$

[Albano, Katz]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$s^{(2)}(a, b, c) = 0 \quad \cap \quad a^5 + b^5 + c^5 = 0$$

There are only 10 such points for which branes can be deformed

Renormalization group flow

- for the deforming fermions the conformal weight h = 1
- in the patch where a = 1 and b is a good coordinate we find for all b

$$\dot{b}=(1-h)b+rac{\lambda}{2}\langle G\Psi_1
angle=rac{\lambda}{50}c^{-4}s^{(2)}(1,b,c)$$

[Fredenhagen, Gaberdiel, Keller; MB, Brunner, Gaberdiel]

- and $\langle G\Psi_2 \rangle = 0$, so only Ψ_1 is excited
- ► the RG fixed points of the CFT are identical to the points where s⁽²⁾(a, b, c) = 0 obtained from the topological theory

the RG flow equation can be integrated

- ▶ the rhs is of the form $\omega_{rs} = b^{r-1}c^{s-5}$ with $1 \le r, s$ and $r+s \le 4$
- ► these are exactly the 6 globally holomorphic functions on the genus-6-curve 1 + b⁵ + c⁵ = 0
- ▶ thus, ω_{rs} db are the associated differentials

The bulk deformations under which a brane deforms are in one-to-one correspondence to the spectrum of differentials on the moduli space

bulk induced effective potential

$$\mathcal{W}(1,b,c) \propto \lambda \sum_{i+j+k=2} s^{(2)}_{ijk} \mathcal{W}_{j+1,k+1}$$

$$\mathcal{W}_{rs} = \frac{b^r}{r} \, {}_2\mathrm{F}_1(\frac{r}{N}, 1 - \frac{s}{N}, 1 + \frac{r}{N}; -b^N) \qquad N = 5$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

this can be generalized for the other cases ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CY	moduli curve	bulk deformation	effective superpotential
$\begin{split} & \mathbb{P}_{(1,1,1,1)}[N=5] \\ & \mathbb{P}_{(1,1,1,2)}[N=6] \\ & \mathbb{P}_{(1,1,1,4)}[N=8] \\ & \mathbb{P}_{(1,1,1,4)}[N=10] \end{split}$	$a^{5} + b^{5} + c^{5} = 0$ $a^{6} + b^{6} + c^{6} = 0$ $a^{6} + b^{6} + c^{3} = 0$ $a^{8} + b^{8} + c^{8} = 0$ $a^{8} + b^{8} + c^{2} = 0$ $a^{10} + b^{10} + c^{5} = 0$	$ \begin{array}{l} G = \lambda s^{(3)}(x_i, x_j) \cdot s^{(2)}(x_k, x_l, x_m) \\ G = \lambda s^{(3)}(x_i, x_5) \cdot s^{(3)}(x_k, x_l, x_m) \\ G = \lambda s^{(4)}(x_i, x_j) \cdot s^{(2)}(x_k, x_l, x_5) \\ G = \lambda s^{(3)}(x_i, x_5) \cdot s^{(5)}(x_k, x_l, x_m) \\ G = \lambda s^{(6)}(x_i, x_j) \cdot s^{(2)}(x_k, x_l, x_5) \\ G = \lambda s^{(4)}(x_i, x_5) \cdot s^{(6)}(x_l, x_k, x_4) \\ \end{array} $	$ \begin{split} \mathcal{W} &\propto \sum_{i+j+k=2} s^{(2)}_{ijk} \mathcal{W}_{j+1,k+2} \\ \mathcal{W} &\propto \sum_{i+j+k=3} s^{(3)}_{ijk} \mathcal{W}_{j+1,k+1} \\ \mathcal{W} &\propto \sum_{i+j+2k=2} s^{(2)}_{ijk} \mathcal{W}_{j+1,k+1} \\ \mathcal{W} &\propto \sum_{i+j+k=6} s^{(3)}_{ijk} \mathcal{W}_{j+1,k+1} \\ \mathcal{W} &\propto \sum_{i+j+4k=2} s^{(2)}_{ijk} \mathcal{W}_{j+1,4(k+1)} \\ \mathcal{W} &\propto \sum_{i+2j+5k=2} s^{(2)}_{ijk} \mathcal{W}_{j+1,2(k+1)} \end{split} $
	$\begin{vmatrix} a^{10} + b^{10} + c^2 = 0 \\ a^{10} + b^5 + c^2 = 0 \end{vmatrix}$	$G = \lambda s^{(i)}(x_i, x_4) \cdot s^{(3)}(x_l, x_k, x_5)$ $G = \lambda s^{(8)}(x_i, x_j) \cdot s^{(2)}(x_l, x_4, x_5)$	$ \begin{array}{l} \mathcal{W} \propto \sum_{i+2j+5k=2} s_{ijk}^{(5)} \mathcal{W}_{j+1,5} \\ \mathcal{W} \propto \sum_{i+2j+5k=2} s_{ijk}^{(2)} \mathcal{W}_{2(j+1),5} \end{array} $

$$\mathcal{W}_{rs} = \frac{b^r}{r} \, {}_2\mathrm{F}_1(\frac{r}{N}, 1 - \frac{s}{N}, 1 + \frac{r}{N}; -b^N)$$

- Matrix factorizations describe B-branes
- and their moduli spaces.
- They provide a new method to investigate bulk induced changes of open moduli spaces,
- in particular the collapse due to RG flow.
- They allow to compute open-closed effective superpotentials on CY exactly

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which are important e.g. for open mirror symmetry

The End

<□ > < @ > < E > < E > E のQ @