Exotic instantons and duality

Marco Billò

Dip. di Fisica Teorica, Università di Torino and I.N.F.N., sez. di Torino

15-th European Workshop on String Theory ETH, Zurich - September 8, 2009

Foreword

Mostly based on
回 M. Billo, L. Ferro, M. Frau, L. Gallot, A. Lerda and
I. Pesando, "Exotic instanton counting and heterotic/type I' duality," JHEP 0907 (2009) 092, arXiv:0905.4586 [hep-th].

嗇 M. Billo, M. Frau, L. Gallot, A. Lerda and I. Pesando, "Classical solutions for exotic instantons?,", JHEP 03 (2009) 056, arXiv:0901.1666 [hep-th].

It builds over a vast literature

- I apologize for missing references...

Plan of the talk

(1) Introduction and motivations
(2) "Exotic" instantons in type I'
3) Interpretation as 8 d instanton solutions
(4) The effective action
(5) Conclusions and perspectives

Introduction and motivations

Non-perturbative sectors

- (Susy) gauge and matter sectors on the uncompactified part of (partially wrapped) D-branes
- gauge couplings involve $1 / g_{s} \times$ different volumes \rightarrow string scale not tied to 4d Planck scale
- chiral matter, families from multiple intersections,...

Non-perturbative sectors

- (Susy) gauge and matter sectors on the uncompactified part of (partially wrapped) D-branes
- gauge couplings involve $1 / g_{s} \times$ different volumes \rightarrow string scale not tied to 4d Planck scale
- chiral matter, families from multiple intersections,...

- Non-perturbative sectors from partially wrapped E(uclidean)-branes
- Pointlike in the $\mathbb{R}^{1,3}$ space-time: "instanton configurations"
- Tractable in String Theory, with techniques in rapid development

Ordinary instantons

W.r.t. the gauge theory on a given D-brane stack,

- E-branes identical to D-branes in the internal directions: gauge instantons
- ADHM from strings attached to the instantonic branes

Witten, 1995; Douglas, 1995-1996; ...

- non-trivial instanton profile of the gauge field
- Rules and techniques to embed the instanton calculus in string theory have been constructed

Polchinksi, 1994; Green-Gutperle, 2000, ...; Turin/Rome/Münich/UPenn/Madrid,...

Exotic instantons

W.r.t. the gauge theory on a given D-brane stack,

- E-branes different from D-branes in internal directions do not represent gauge instantons; they are called exotic or stringy instantons
- May explain important terms in the effective action: neutrino Majorana masses, moduli stabilizing terms,

Blumenhagen et al 0609191; Ibanez and Uranga, 0609213

- Exponentially suppressed but not just $\exp \left(-1 / g^{2}\right)$, can involve volumes of different internal cycles
- Need to understand their status in the gauge theory and to construct precise rules for the "exotic" instanton calculus

Our strategy

- Select a simple example: D(-1)/D7 in type I' theory, sharing many features of stringy instantons
- Investigate the field-theory interpretation of $D(-1)$'s in this 8d gauge theory
- Compute the non-perturbative effective action on the D7's extending the rules of stringy instanton calculus to this "exotic" case.
- Check against the results in the dual Heterotic SO(8) ${ }^{4}$ theory. Impressive quantitative check of this string duality.
- Apply the technology to tractable example leading to $4 d$ models

Work in progress, Turin + Tor Vergata
"Exotic" instantons in type I'

A D(-1)/D7 system in type I'

- Type I' is type IIB on a two-torus T_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} \mathcal{I}_{2}
$$

where $\omega=$ w.s. parity, $F_{L}=$ left-moving fermion $\#, I_{2}=$ inversion on T_{2}

- Ω has four fixed-points on T_{2} where four 07-planes are placed

A D(-1)/D7 system in type I'

- Type I' is type IIB on a two-torus T_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} \mathcal{I}_{2}
$$

where $\omega=$ w.s. parity, $F_{L}=$ left-moving fermion $\#, I_{2}=$ inversion on T_{2}

- Ω has four fixed-points on T_{2} where four 07-planes are placed
- Admits D(-1), D3 and D7's transverse to T_{2}

A D(-1)/D7 system in type I'

- Type I' is type IIB on a two-torus T_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} \mathcal{I}_{2}
$$

where $\omega=$ w.s. parity, $F_{L}=$ left-moving fermion $\#, I_{2}=$ inversion on T_{2}

- Ω has four fixed-points on T_{2} where four 07-planes are placed
- Admits D(-1), D3 and D7's transverse to T_{2}
- Local RR tadpole cancellation requires 8 D7-branes at each fix point

A D(-1)/D7 system in type I'

- Type I' is type IIB on a two-torus T_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} \mathcal{I}_{2}
$$

where $\omega=$ w.s. parity, $F_{L}=$ left-moving fermion $\#, I_{2}=$ inversion on T_{2}

- Ω has four fixed-points on T_{2} where four 07-planes are placed
- Admits D(-1), D3 and D7's transverse to T_{2}
- Local RR tadpole cancellation requires 8 D7-branes at each fix point

The gauge theory on the D7's

- From the D7/D7 strings we get $\mathcal{N}=1$ vector multiplet in $d=8$ in the adjoint of $\mathrm{SO}(8)$:

$$
\left\{A_{\mu}, \wedge^{\alpha}, \phi_{m}\right\}, \quad \mu=1, \ldots 8, \quad m=8,9
$$

- Can be assembled into a "chiral" superfield

$$
\Phi(x, \theta)=\phi(x)+\sqrt{2} \theta \wedge(x)+\frac{1}{2} \theta \gamma^{\mu \nu} \theta F_{\mu \nu}(x)+\ldots
$$

where $\phi=\left(\phi_{9}+i \phi_{10}\right) / \sqrt{2}$.

- Formally very similar to $\mathcal{N}=2$ in $d=4$

Effective action on the D7

- Effective action in $F_{\mu \nu}$ and its derivatives: NABI

$$
\begin{aligned}
S & =S_{(2)}+S_{(4)}+S_{(5)}+\cdots \\
& =\frac{1}{8 \pi g_{s}} \int d^{8} x\left[\frac{\operatorname{Tr}\left(F^{2}\right)}{(2 \pi)^{4} \alpha^{\prime 2}}-\frac{t_{8} \operatorname{Tr}\left(F^{4}\right)}{3(2 \pi)^{2}}+\alpha^{\prime} \mathcal{L}_{(5)}(F, D F)+\cdots\right]
\end{aligned}
$$

Effective action on the D7

- Effective action in $F_{\mu \nu}$ and its derivatives: NABI
$S=S_{(2)}+S_{(4)}+S_{(5)}+\cdots$
$=\frac{1}{8 \pi g_{s}} \int d^{8} x\left[\frac{\operatorname{Tr}\left(F^{2}\right)}{(2 \pi)^{4} \alpha^{\prime 2}}-\frac{t_{8} \operatorname{Tr}\left(F^{4}\right)}{3(2 \pi)^{2}}+\alpha^{\prime} \mathcal{L}_{(5)}(F, D F)+\cdots\right]$
- The quadratic Yang-Mills term $S_{(2)}$ has a dimensionful coupling $g_{Y M}^{2} \equiv 4 \pi g_{S}\left(2 \pi \sqrt{\alpha^{\prime}}\right)^{4}$

Effective action on the D7

- Effective action in $F_{\mu \nu}$ and its derivatives: NABI

$$
\begin{aligned}
S & =S_{(2)}+S_{(4)}+S_{(5)}+\cdots \\
& =\frac{1}{8 \pi g_{s}} \int d^{8} x\left[\frac{\operatorname{Tr}\left(F^{2}\right)}{(2 \pi)^{4} \alpha^{\prime 2}}-\frac{t_{8} \operatorname{Tr}\left(F^{4}\right)}{3(2 \pi)^{2}}+\alpha^{\prime} \mathcal{L}_{(5)}(F, D F)+\cdots\right]
\end{aligned}
$$

- Contributions of higher order in α^{\prime}, whose rôle will be discussed later

Effective action on the D7

- Effective action in $F_{\mu \nu}$ and its derivatives: NABI

$$
\begin{aligned}
S & =S_{(2)}+S_{(4)}+S_{(5)}+\cdots \\
& =\frac{1}{8 \pi g_{s}} \int d^{8} x\left[\frac{\operatorname{Tr}\left(F^{2}\right)}{(2 \pi)^{4} \alpha^{\prime 2}}-\frac{t_{8} \operatorname{Tr}\left(F^{4}\right)}{3(2 \pi)^{2}}+\alpha^{\prime} \mathcal{L}_{(5)}(F, D F)+\cdots\right]
\end{aligned}
$$

- The quartic term has a dimensionless coupling:

$$
S_{(4)}=-\frac{1}{96 \pi^{3} g_{s}} \int d^{8} x t_{8} \operatorname{Tr}\left(F^{4}\right)
$$

Effective action on the D7

- Effective action in $F_{\mu \nu}$ and its derivatives: NABI

$$
\begin{aligned}
S & =S_{(2)}+S_{(4)}+S_{(5)}+\cdots \\
& =\frac{1}{8 \pi g_{s}} \int d^{8} x\left[\frac{\operatorname{Tr}\left(F^{2}\right)}{(2 \pi)^{4} \alpha^{\prime 2}}-\frac{t_{8} \operatorname{Tr}\left(F^{4}\right)}{3(2 \pi)^{2}}+\alpha^{\prime} \mathcal{L}_{(5)}(F, D F)+\cdots\right]
\end{aligned}
$$

- Adding the WZ term, we can write

$$
S_{(4)}=-\frac{1}{4!4 \pi^{3} g_{s}} \int d^{8} x t_{8} \operatorname{Tr}\left(F^{4}\right)-2 \pi i C_{0} C_{(4)}
$$

where $C_{(4)}$ is the fourth Chern number

$$
c_{(4)}=\frac{1}{4!(2 \pi)^{4}} \int \operatorname{Tr}(F \wedge F \wedge F \wedge F)
$$

Effective action on the D7

- Effective action in $F_{\mu \nu}$ and its derivatives: NABI

$$
\begin{aligned}
S & =S_{(2)}+S_{(4)}+S_{(5)}+\cdots \\
& =\frac{1}{8 \pi g_{s}} \int d^{8} x\left[\frac{\operatorname{Tr}\left(F^{2}\right)}{(2 \pi)^{4} \alpha^{\prime 2}}-\frac{t_{8} \operatorname{Tr}\left(F^{4}\right)}{3(2 \pi)^{2}}+\alpha^{\prime} \mathcal{L}_{(5)}(F, D F)+\cdots\right]
\end{aligned}
$$

- Adding the fermionic terms, can be written using the superfield $\Phi(x, \theta)$ as

$$
S_{(4)}=\frac{1}{(2 \pi)^{4}} \int d^{8} x d^{8} \theta \operatorname{Tr}\left[\frac{i \pi}{12} \tau \phi^{4}\right]+\text { c.c. }
$$

where $\tau=C_{0}+\frac{i}{g_{s}}$ is the axion-dilaton.

Adding D-instantons

- Add k D-instantons.
- D7/D(-1) form a $1 / 2$ BPS system with 8 ND directions
- D(-1) classical action

$$
\mathcal{S}_{c l}=k\left(\frac{2 \pi}{g_{s}}-2 \pi i C_{0}\right) \equiv-2 \pi i k \tau
$$

- Coincides with the quartic action on the D7 for gauge fields F with $c_{(4)}=k$ and

$$
\int d^{8} x \operatorname{Tr}\left(t_{8} F^{4}\right)=-\frac{1}{2} \int d^{8} x \operatorname{Tr}\left(\epsilon_{8} F^{4}\right)=-\frac{4!}{2}(2 \pi)^{4} c_{(4)}
$$

Adding D-instantons

- Add k D-instantons.
- D7/D(-1) form a 1/2 BPS system with 8 ND directions
- D(-1) classical action

$$
\mathcal{S}_{c l}=k\left(\frac{2 \pi}{g_{s}}-2 \pi i C_{0}\right) \equiv-2 \pi i k \tau
$$

- Analogous to relation with self-dual YM config.s in D3/D(-1)
- Suggests relation to some 8d instanton of the quartic action

The size of the instanton solution

- For ordinary instantons, e.g. D3/D(-1), there are moduli $w_{\dot{\alpha}}$ related to the size ρ of the instanton profile
- They com from the NS sector of mixed D3/D(-1) strings

The size of the instanton solution

- For ordinary instantons, e.g. D3/D(-1), there are moduli $w_{\dot{\alpha}}$ related to the size ρ of the instanton profile
- They com from the NS sector of mixed D3/D(-1) strings

The size of the instanton solution

- For ordinary instantons, e.g. D3/D(-1), there are moduli $w_{\dot{\alpha}}$ related to the size ρ of the instanton profile
- They com from the NS sector of mixed D3/D(-1) strings

The size of the instanton solution

- For ordinary instantons, e.g. D3/D(-1), there are moduli $w_{\dot{\alpha}}$ related to the size ρ of the instanton profile
- They com from the NS sector of mixed D3/D(-1) strings
- The classical instanton profile arises from mixed disks billo et al, 2001

$$
A_{\mu}^{i}=2 \rho^{2} \bar{\eta}_{\mu \nu}^{i} \frac{x^{\nu}}{|x|^{4}}+\ldots
$$

(SU(2), sing. gauge, large- $\left.|x|, 2 \rho^{2}=\operatorname{tr} \bar{w}_{\dot{\alpha}} w^{\dot{\alpha}}\right)$

No size for "exotic" instantons

- For exotic systems, like D7/D(-1), with "more that 4 ND directions", mixed strings have no physical bosonic moduli

No size for "exotic" instantons

- For exotic systems, like D7/D(-1), with "more that 4 ND directions", mixed strings have no physical bosonic moduli
- The configuration remains pointlike. There is no emission diagram for the gauge field

No size for "exotic" instantons

- For exotic systems, like D7/D(-1), with "more that 4 ND directions", mixed strings have no physical bosonic moduli
- The configuration remains pointlike. There is no emission diagram for the gauge field
- Can one still associate the $\mathrm{D}(-1)$ to the zero-size limit of some classical gauge configuration on the D7's?

Interpretation as 8d instanton solutions

Expected features

- A D(-1) inside the D7's should correspond to the zero-size limit of some "instantonic" configuration of the SO(8) gauge field such that
- has 4-th Chern number $C_{(4)}=1$
- the quartic action reduces to the $D(-1)$ action, which requires

$$
\operatorname{Tr}\left(t_{8} F^{4}\right)=-\frac{1}{2} \operatorname{Tr}\left(\epsilon_{8} F^{4}\right)
$$

- preserves SO(8) "Lorentz" invariance
- corresponds to a 1/2 BPS config. in susy case

The SO(8) instanton

- All our requirements met by the $\mathrm{SO}(8)$ instanton
[Grossmann e al, 1985]

$$
\left[A_{\mu}(x)\right]^{\alpha \beta}=\frac{\left(\gamma_{\mu \nu}\right)^{\alpha \beta} x^{\nu}}{r^{2}+\rho^{2}}
$$

with $\rho=$ instanton size and $r^{2}=x_{\mu} x^{\mu}$, while $\alpha \beta \in$ adjoint of the SO(8) gauge group.

- is "self-dual" in the sense that $F \wedge F=(F \wedge F)^{*}$
- satisfies $t_{8} F^{4}=-1 / 2 \epsilon_{8} F^{4}$ from Clifford Algebra
- has $C_{(4)}=1$ and $S_{(4)}=-2 \pi i \tau$

The SO(8) instanton

- All our requirements met by the $\mathrm{SO}(8)$ instanton
[Grossmann e al, 1985]

$$
\left[A_{\mu}(x)\right]^{\alpha \beta}=\frac{\left(\gamma_{\mu \nu}\right)^{\alpha \beta} x^{\nu}}{r^{2}+\rho^{2}}
$$

with $\rho=$ instanton size and $r^{2}=x_{\mu} x^{\mu}$, while $\alpha \beta \in$ adjoint of the SO(8) gauge group.

- is "self-dual" in the sense that $F \wedge F=(F \wedge F)^{*}$
- satisfies $t_{8} F^{4}=-1 / 2 \epsilon_{8} F^{4}$ from Clifford Algebra
- has $C_{(4)}=1$ and $S_{(4)}=-2 \pi i \tau$
- However, it is not a solution of Y.M. e.o.m. in $d=8$, for $\rho \neq 0$:

$$
D^{\mu} F_{\mu \nu}(x)=\frac{4(d-4) \rho^{2}}{\left(r^{2}+\rho^{2}\right)^{3}} \gamma_{\mu \nu} x^{\nu}
$$

Consistency conditions

- Eff. action on the D7 is the NABI action Recall
- To keep the quartic action and the instanton effects the field-theory limit must be

$$
\alpha^{\prime} \rightarrow 0, \quad g_{s} \text { fixed }
$$

Consistency conditions

- Eff. action on the D7 is the NABI action Recall
- To keep the quartic action and the instanton effects the field-theory limit must be

$$
\alpha^{\prime} \rightarrow 0, \quad g_{s} \text { fixed }
$$

- This limit is dangerous on the YM action $S_{Y M}$ since $g_{Y M}^{2} \propto g_{s} \alpha^{\prime 2}$. On the SO(8) instanton, however, we have (R regulates the volume):

$$
S_{Y M} \rightarrow \frac{\rho^{4}}{\alpha^{\prime 2} g_{S}} \log (\rho / R),
$$

which vanishes in the zero-size limit $\rho \rightarrow 0$ if $\rho^{2} / \alpha^{\prime 2} \rightarrow 0$ (done before removing R)

Consistency conditions

- Eff. action on the D7 is the NABI action Recall
- To keep the quartic action and the instanton effects the field-theory limit must be

$$
\alpha^{\prime} \rightarrow 0, \quad g_{s} \text { fixed }
$$

- Consider the higher order α^{\prime} corrections to the NABI action. On the SO(8) instanton, by dimensional reasons, must be

$$
\rho^{d-8} \sum_{n=1}^{\infty} a_{n}\left(\frac{\alpha^{\prime}}{\rho^{2}}\right)^{n}
$$

- The coefficients a_{n} should vanish for consistency!

$O\left(F^{5}\right)$ terms in the NABI

- The first coefficient a_{1} arises from the integral of $\mathcal{L}^{(5)}(F, D F)$, i.e.the term of order α^{3} w.r.t to the YM action.
- We would like to check that it vanishes. Crucial point: which is the form of $\mathcal{L}^{(5)}(F, D F)$?

$O\left(F^{5}\right)$ terms in the NABI

- The first coefficient a_{1} arises from the integral of $\mathcal{L}^{(5)}(F, D F)$, i.e.the term of order α^{3} w.r.t to the YM action.
- We would like to check that it vanishes. Crucial point: which is the form of $\mathcal{L}^{(5)}(F, D F)$?
- Various proposals in the literature

Refolli et al, Koerber-Sevrin, Grasso, Barreiro-Medina,

- obtained by different methods
- differing by terms which vanish "on-shell", i.e. upon use of the YM e.o.m.

$O\left(F^{5}\right)$ terms in the NABI

- The first coefficient a_{1} arises from the integral of $\mathcal{L}^{(5)}(F, D F)$, i.e.the term of order $\alpha^{\prime 3}$ w.r.t to the YM action.
- We would like to check that it vanishes. Crucial point: which is the form of $\mathcal{L}^{(5)}(F, D F)$?
- Various proposals in the literature

Refolli et al, Koerber-Sevrin, Grasso, Barreiro-Medina,

- obtained by different methods
- differing by terms which vanish "on-shell", i.e. upon use of the YM e.o.m.
- One proposal is singled out by admitting a susy extension collinucci etal, 2002

Check at $O\left(F^{5}\right)$ in the NABI

- The bosonic part of the supersimmetrizable $O\left(\alpha^{13}\right)$ lagrangian is

$$
\begin{aligned}
& \mathcal{L}^{(5)}=\frac{\zeta(3)}{2} \operatorname{Tr}\left\{4\left[F_{\mu_{1} \mu_{2}}, F_{\mu_{3} \mu_{4}}\right]\left[\left[F_{\mu_{1} \mu_{3},} F_{\mu_{2} \mu_{5}}\right], F_{\mu_{4} \mu_{5}}\right]\right. \\
& +2\left[F_{\mu_{1} \mu_{2}}, F_{\mu_{3} \mu_{4}}\right]\left[\left[F_{\mu_{1} \mu_{2}}, F_{\mu_{3} \mu_{5}}\right], F_{\mu_{4} \mu_{5}}\right] \\
& +2\left[F_{\mu_{1} \mu_{2}}, D_{\mu_{5}} F_{\mu_{1} \mu_{4}}\right]\left[D_{\mu_{5}} F_{\mu_{2} \mu_{3}}, F_{\mu_{3} \mu_{4}}\right] \\
& -2\left[F_{\mu_{1} \mu_{2}}, D_{\mu_{4}} F_{\mu_{3} \mu_{5}}\right]\left[D_{\mu_{4}} F_{\mu_{2} \mu_{5}}, F_{\mu_{1} \mu_{3}}\right] \\
& \left.+\left[F_{\mu_{1} \mu_{2}}, D_{\mu_{5}} F_{\mu_{3} \mu_{4}}\right]\left[D_{\mu_{5}} F_{\mu_{1} \mu_{2}}, F_{\mu_{3} \mu_{4}}\right]\right\}
\end{aligned}
$$

Check at $O\left(F^{5}\right)$ in the NABI

- Plugging the instanton profile into $\frac{\alpha^{\prime}}{g_{s}} \int d^{8} x \mathcal{L}^{(5)}$ we get ${ }_{\text {IUsing }}$ the CADABRA program by Kasper Peeters]

$$
\begin{aligned}
& \frac{\alpha^{\prime} \zeta(3)}{g_{s}} 2^{d / 2+9} \frac{\pi^{d / 2} \Gamma(9-d / 2)}{9!\rho^{10-d}} \\
& \times(d-1)(d-2)(d-4)\left(-d\left(9-\frac{d}{2}\right)+(d+2) \frac{d}{2}\right)
\end{aligned}
$$

namely a result proportional to

$$
d(d-1)(d-2)(d-4)(d-8)
$$

- The quintic action vanishes on the $\mathbf{S O}(8)$ instanton! The check is successful

The effective action

1-loop effective action

- At 1-loop we get contributions from annuli and Möbius diagrams. At the quartic level,

$$
\begin{aligned}
S_{(4)}^{1-\operatorname{loop}} & \left.=\frac{1}{256 \pi^{4}} \int d^{8} x \log \left(\operatorname{Im} \tau \operatorname{Im} U|\eta(U)|^{4}\right) t_{8}\left(\operatorname{Tr} F^{2}\right)^{2}\right] \\
& =\frac{1}{(2 \pi)^{4}} \int d^{8} x d^{8} \theta\left[\frac{1}{32} \log \left(\operatorname{Im} \tau \operatorname{lm} U|\eta(U)|^{4}\right)\left(\operatorname{Tr} \Phi^{2}\right)^{2}\right]+\text { c.c. }
\end{aligned}
$$

(U is the complex structure of the 2-torus T_{2})

Effective action from D-instantons

8 D7-branes

- Moduli interactions via disk diagrams encoded in $\mathcal{S}_{\text {inst }}$
- D7/D7 gauge fields interact with moduli through mixed disks
- Open strings with at least one end on a $D(-1)$ carry no momentum: they are moduli rather than dynamical fields.
- Need to determine their spectrum

Effective action from D-instantons

The idea

- Effective interactions between gauge fields can be mediated by D-instanton moduli through mixed disks

- In the r.h.s, integrate over the moduli with a weight $\exp \left(\mathcal{S}_{\text {inst }}\right)$

Effective action from D-instantons

Field-dependent moduli action

- The effective interactions for the gauge multiplet Φ can be summarized by shifting the moduli action with Φ-dependent terms arising from mixed disks

- In fact, we write the instanton action as

$$
\mathcal{S}_{\text {inst }}=-2 \pi i \tau k+\mathcal{S}\left(\mathcal{M}_{(k)}, \Phi\right)
$$

Effective action from D-instantons

Field-dependent moduli action

- The effective interactions for the gauge multiplet Φ can be summarized by shifting the moduli action with Φ-dependent terms arising from mixed disks

- In fact, we write the instanton action as

$$
\mathcal{S}_{\text {inst }}=-2 \pi i \tau k+\mathcal{S}\left(\mathcal{M}_{(k)}, \Phi\right)
$$

- Classical value

Effective action from D-instantons

Field-dependent moduli action

- The effective interactions for the gauge multiplet Φ can be summarized by shifting the moduli action with Φ-dependent terms arising from mixed disks

- In fact, we write the instanton action as

$$
\mathcal{S}_{\text {inst }}=-2 \pi i \tau k+\mathcal{S}\left(\mathcal{M}_{(k)}, \Phi\right)
$$

- Disk interactions

Effective action from D-instantons

Moduli integral

- Non-perturbative contributions to the effective action of the gauge degrees of freedom Φ arise integrating over the instanton moduli $\mathcal{M}_{(k)}$ and summing over all instanton numbers k

$$
\mathcal{S}_{\text {n.p. }}(\Phi)=\sum_{k} e^{2 \pi i \tau k} \int d \mathcal{M}_{(k)} e^{-\mathcal{S}\left(\mathcal{M}_{(k)}, \Phi\right)}
$$

Effective action from D-instantons

- Non-perturbative contributions to the effective action of the gauge degrees of freedom Φ arise integrating over the instanton moduli $\mathcal{M}_{(k)}$ and summing over all instanton numbers k

$$
\mathcal{S}_{\text {n.p. }}(\phi)=\sum_{k} e^{2 \pi i \tau k} \int d \mathcal{M}_{(k)} e^{-\mathcal{S}\left(\mathcal{M}_{(k)}, \phi\right)}
$$

- This procedure is by now well-established for instantonic brane systems corresponding to gauge instantons

Polchinksi, 1994; Green-Gutperle, 2000, ...; Turin/Rome/Münich/UPenn/Madrid,...

Effective action from D-instantons

- Non-perturbative contributions to the effective action of the gauge degrees of freedom Φ arise integrating over the instanton moduli $\mathcal{M}_{(k)}$ and summing over all instanton numbers k

$$
\mathcal{S}_{\text {n.p. }}(\phi)=\sum_{k} e^{2 \pi i \tau k} \int d \mathcal{M}_{(k)} e^{-\mathcal{S}\left(\mathcal{M}_{(k)}, \phi\right)}
$$

- This procedure is by now well-established for instantonic brane systems corresponding to gauge instantons

Polchinksi, 1994; Green-Gutperle, 2000, ...; Turin/Rome/Münich/UPenn/Madrid,...

- We want to apply it explicitly in our "exotic" instanton set-up

Effective action from D-instantons

- Non-perturbative contributions to the effective action of the gauge degrees of freedom Φ arise integrating over the instanton moduli $\mathcal{M}_{(k)}$ and summing over all instanton numbers k

$$
\mathcal{S}_{\text {n.p. }}(\Phi)=\sum_{k} e^{2 \pi i \tau k} \int d \mathcal{M}_{(k)} e^{-\mathcal{S}\left(\mathcal{M}_{(k)}, \phi\right)}
$$

- This procedure is by now well-established for instantonic brane systems corresponding to gauge instantons

Polchinksi, 1994; Green-Gutperle, 2000, ...; Turin/Rome/Münich/UPenn/Madrid,...

- We want to apply it explicitly in our "exotic" instanton set-up
- This is a very complicated matrix integral ...

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
$-1 /-1$	NS	a_{μ}	centers	$\operatorname{symm~SO}(k)$	(length)
		$\chi_{,}, \bar{\chi}$		$\operatorname{adj} \operatorname{SO}(k)$	(length) $^{-1}$
		D_{m}	Lagr. mult.	$\operatorname{adj} \operatorname{SO}(k)$	(length) $^{-2}$
	R	M^{α}	partners	$\operatorname{symm~SO}(k)$	(length) $^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	$\operatorname{adj~SO}(k)$	(length) $^{-\frac{3}{2}}$
$-1 / 7$	R	μ		$\mathbf{8 \times k}$	(length)
	NS	W	(auxiliary)	$8 \times \mathbf{k}$	(length) 0

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
$-1 /-1$	NS	a_{μ}	centers	$\operatorname{symm~SO}(k)$	(length)
		$\chi^{\prime} \bar{\chi}$		$\operatorname{adj} \operatorname{SO}(k)$	(length) $^{-1}$
		D_{m}	Lagr. mult.	$\operatorname{adj} \operatorname{SO}(k)$	(length) $^{-2}$
	R	M^{α}	partners	$\operatorname{symm~SO}(k)$	(length) $^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	$\operatorname{adjSO}(k)$	(length) $^{-\frac{3}{2}}$
$-1 / 7$	R	μ		$\mathbf{8 \times k}$	(length)
	NS	W	(auxiliary)	$8 \times \mathbf{k}$	(length) ${ }^{0}$

- The $\mathrm{SO}(k)$ rep. is determined by the orientifold projection

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	a_{μ}	centers	symm SO(k)	(length)
		$\chi, \bar{\chi}$		adj SO(k)	(length) $^{-1}$
		D_{m}	Lagr. mult.	adj SO(k)	(length) $^{-2}$
	R	M^{α}	partners	symm SO(k)	(length) ${ }^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	adj SO(k)	(length) ${ }^{-\frac{3}{2}}$
-1/7	R	μ		$\mathbf{8 \times k}$	(length)
	NS	w	(auxiliary)	$8 \times \mathrm{k}$	$\left(\right.$ length) ${ }^{0}$

- Abelian part of $a_{\mu}, M_{\alpha} \sim$ Goldstone modes of the (super)translations on the D7 broken by D(-1)'s. Identified with coordinates x_{μ}, θ_{α}

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	a_{μ}	centers	symm SO(k)	(length)
		$\chi, \bar{\chi}$		adj SO(k)	(length) $^{-1}$
		D_{m}	Lagr. mult.	adj SO(k)	(length) $^{-2}$
	R	M^{α}	partners	symm SO(k)	(length) ${ }^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	adj SO(k)	(length) ${ }^{-\frac{3}{2}}$
-1/7	R	μ		$8 \times \mathrm{k}$	(length)
	NS	w	(auxiliary)	$8 \times \mathrm{k}$	$\left(\right.$ length) ${ }^{0}$

- For "mixed" strings, no bosonic moduli from the NS sector: characteristic of "exotic" instantons

The moduli action

- The action reads:

$$
\begin{aligned}
\mathcal{S}\left(\mathcal{M}_{(k)}, \Phi\right)= & \operatorname{tr}\left\{i \lambda_{\dot{\alpha}} \gamma_{\mu}^{\dot{\alpha} \beta}\left[a^{\mu}, M_{\beta}\right]+\frac{1}{2 g_{0}^{2}} \lambda_{\dot{\alpha}}\left[\chi, \lambda^{\dot{\alpha}}\right]+M^{\alpha}\left[\bar{\chi}, M_{\alpha}\right]\right. \\
& +\frac{1}{2 g_{0}^{2}} D_{m} D^{m}-\frac{1}{2} D_{m}\left(\tau^{m}\right) \mu \nu\left[a^{\mu}, a^{\nu}\right] \\
& \left.+\left[a_{\mu}, \bar{\chi}\right]\left[a^{\mu}, \chi\right]+\frac{1}{2 g_{0}^{2}}[\bar{\chi}, \chi]^{2}\right\} \\
& +\operatorname{tr}\left\{\mu^{\top} \mu \chi\right\}+\operatorname{tr}\left\{\mu^{T} \Phi(x, \theta) \mu\right\}+\operatorname{tr}\left\{w^{\top} w\right\}
\end{aligned}
$$

- The "supercoordinate" moduli x, θ only appear through $\Phi(x, \theta)$. The remaining "centred" moduli are denoted as $\widehat{\mathcal{M}}_{(k)}$

All instanton numbers ...

- Effective action (using $q=e^{2 \pi i \tau}$):

$$
\mathcal{S}_{\text {n.p. }}(\Phi)=\int d^{8} x d^{8} \theta \sum_{k} q^{k} \int d \widehat{\mathcal{M}}_{(k)} e^{-\mathcal{S}\left(\widehat{\mathcal{M}}_{(k)}, \Phi(x, \theta)\right)}
$$

- In our "conformal" set-up, with with SO(8) gauge group on the D7, counting the dimensions of the moduli we get

$$
\left[d \widehat{\mathcal{M}}_{(k)}\right]=(\text { length })^{-4}
$$

- Thus

$$
\int d \widehat{\mathcal{M}}_{(k)} e^{-\mathcal{S}\left(\widehat{\mathcal{M}}_{(k)}, \Phi(x, \theta)\right)}=\text { quartic invariant in } \Phi(x, \theta)
$$

- Integration over $d^{8} \theta$ leads to terms of the form " $t_{8} F^{4}$ "

All instanton numbers ...

- Effective action (using $q=e^{2 \pi i \tau}$):

$$
\mathcal{S}_{\text {n.p. }}(\Phi)=\int d^{8} x d^{8} \theta \sum_{k} q^{k} \int d \widehat{\mathcal{M}}_{(k)} e^{-\mathcal{S}\left(\widehat{\mathcal{M}}_{(k)}, \Phi(x, \theta)\right)}
$$

- In our "conformal" set-up, with with SO(8) gauge group on the D7, counting the dimensions of the moduli we get

$$
\left[d \widehat{\mathcal{M}}_{(k)}\right]=(\text { length })^{-4}
$$

- Thus

$$
\int d \widehat{\mathcal{M}}_{(k)} e^{-\mathcal{S}\left(\widehat{\mathcal{M}}_{(k)}, \Phi(x, \theta)\right)}=\text { quartic invariant in } \Phi(x, \theta)
$$

- Integration over $d^{8} \theta$ leads to terms of the form " $t_{8} F^{4}$ "
- The "non-conformal" case of $N \neq 8$ D7's has been considered in Fucito et al, 2009

One-instanton case

- For $k=1$ things are particularly simple
- The spectrum of moduli is reduced to $\{x, \theta, \mu\}$
- The moduli action is simply $\mathcal{S}_{\text {inst }}=-2 \pi i \tau+\mu^{T} \Phi(x, \theta) \mu$
- The instanton-induced interactions are thus

$$
\int d^{8} x d^{8} \theta q \int d \mu e^{-\mu^{T} \Phi(x, \theta) \mu} \sim \int d^{8} x d^{8} \theta q \operatorname{Pf}(\Phi(x, \theta))
$$

- A new structure, associated to the SO(8) invariant " $t_{8} \operatorname{Pf}(F)$ ", appears in the effective action at the one-instanton level after the $d^{8} \theta$ integration

Multi-instantons

- For $k>1$ things are more complicated, but we can exploit the SUSY properties of the moduli action, which lead to:
- an equivariant cohomological BRST structure
- a localization of the moduli integrals (after suitable closed string deformations)
- Similar techniques have been successfully used to
- compute the YM integrals in $d=10,6,4$ and the D-instanton partition function

Moore+Nekrasov+Shatashvili, 1998

- compute multi-instanton effects in $\mathcal{N}=2$ SYM in $d=4$ and compare with the Seiberg-Witten solution
- derive the multi-instanton calculus using D3/D(-1) brane systems

Deformations from RR background

- Suitable deformations that help to fully localize the integral arise from RR field-strengths 3-form with one index on T_{2}

$$
\mathcal{F}_{\mu \nu} \equiv F_{\mu \nu z}, \quad \overline{\mathcal{F}}_{\mu \nu} \equiv F_{\mu \nu z}
$$

- The $\mathcal{F}_{\mu \nu}$ is taken in an $\mathrm{SO}(7) \subset \mathrm{SO}(8)$ (Lorentz) with spinorial embedding
- Disk diagrams with RR insertions modify the moduli action

$$
\mathcal{S}\left(\widehat{\mathcal{M}}_{(k)}, \varphi\right) \rightarrow \mathcal{S}\left(\widehat{\mathcal{M}}_{(k)}, \varphi, \mathcal{F}\right)
$$

(here we introduced the v.e.v. $\varphi=\langle\Phi\rangle$)

BRST structure

Equivariance

- Single out one of the supercharges $Q_{\dot{\alpha}}$, say $Q=Q_{8}$. After relabeling some of the moduli:

$$
M_{\alpha} \rightarrow M_{\mu} \equiv\left(M_{m},-M_{8}\right), \quad \lambda_{\dot{\alpha}} \rightarrow\left(\lambda_{m}, \eta\right) \equiv\left(\lambda_{m}, \lambda_{8}\right)
$$

one has

$$
Q a^{\mu}=M^{\mu}, Q \lambda_{m}=-D_{m}, Q \bar{\chi}=-i \sqrt{2} \eta, \quad Q \chi=0, Q \mu=w
$$

- Moreover, on any modulus,

$$
Q^{2} \bullet=T_{\mathrm{SO}(k)}(X) \bullet+T_{\mathrm{SO}(8)}(\varphi) \bullet+T_{\mathrm{SO}(7)}(\mathcal{F}) \bullet
$$

where

- $T_{\text {SO }(k)}(\chi)=$ inf.mal SO (k) rotation parametrized by χ
- $T_{\text {SO(8) }}(\varphi)=$ inf.mal SO(8) rotation parametrized by φ
- $T_{\mathrm{SO}(7)}(\mathcal{F})=$ inf.mal SO(7) rotation parametrized by \mathcal{F}

Symmetries of the moduli

- The action of the BRS charge Q is thus determined by the symmetry properties of the moduli

	$\mathrm{SO}(k)$	$\mathrm{SO}(7)$	$\mathrm{SO}(8)$
a^{μ}	Symm	$\mathbf{8}_{s}$	$\mathbf{1}$
M^{μ}	symm	$\mathbf{8}_{s}$	$\mathbf{1}$
D_{m}	adj	$\mathbf{7}$	$\mathbf{1}$
λ_{m}	adj	$\mathbf{7}$	$\mathbf{1}$
$\bar{\chi}$	adj	$\mathbf{1}$	$\mathbf{1}$
η	adj	$\mathbf{1}$	$\mathbf{1}$
χ	adj	$\mathbf{1}$	$\mathbf{1}$
μ	\mathbf{k}	$\mathbf{1}$	$\mathbf{8}_{v}$

- The (deformed) action is BRST-exact:

$$
\mathcal{S}\left(\widehat{\mathcal{M}}_{(k)}, \varphi, \mathcal{F}\right)=Q \equiv
$$

- $\overline{\mathcal{F}}$ only appears in the "gauge fermion" ミ: the final result does not depend on it
- The (deformed) BRST structure allows to suitably rescale the integration variables and show that the semiclassical approximation is exact

Moore+Nekrasov+Shatashvili, 1998; ...; Nekrasov, 2002; Flume+Poghossian, 2002; Bruzzo et al, 2003;

Scaling to localization

- Many integrations reduce to quadratic forms:

$$
\begin{aligned}
Z_{k}(\varphi, \mathcal{F}) & \equiv \int d \mathcal{M}_{(k)} e^{-\mathcal{S}(\widehat{\mathcal{M}}(k), \varphi, \mathcal{F})}=\ldots=\ldots \\
& =\int\{d a d M d D d \lambda d \mu d \chi\} e^{-\operatorname{tr}\left\{\frac{g}{2} D^{2}-\frac{g}{2} \lambda \widetilde{Q}^{2} \lambda+\frac{t}{4} a \widetilde{Q}^{2} a+\frac{t}{4} M^{2}+{ }^{\mathrm{t}} \mu \widetilde{Q}^{2} \mu\right\}} \\
& \sim \int\{d \chi\} \frac{\operatorname{Pf}_{\lambda}\left(\widetilde{Q}^{2}\right) \operatorname{Pf}_{\mu}\left(\widetilde{Q}^{2}\right)}{\operatorname{det}_{a}\left(\widetilde{Q}^{2}\right)^{1 / 2}}
\end{aligned}
$$

- The χ integrals can be done as contour integrals and the final result for $Z_{k}(\varphi, \mathcal{F})$ comes from a sum over residues

The recipe

- From the explicit expression of $Z_{k}(\varphi, \mathcal{F})$, we can obtain the non-perturbative effective action. However:
- At instanton number k, there are disconnected contributions from smaller instantons k_{i} (with $\sum_{i} k_{i}=k$). To isolate the connected components we have to take the log:

$$
\mathcal{Z}=\sum_{k} Z_{k}(\varphi, \mathcal{F}) q^{k} \rightarrow \log \mathcal{Z}
$$

- In obtaining $Z_{k}(\varphi, \mathcal{F})$ we integrated also over x and θ producing a factor of $\mathcal{E}^{-1} \sim \operatorname{det}(\mathcal{F})^{-1 / 2}$. To remove this contribution we have to multiply by \mathcal{E}

$$
\log \mathcal{Z} \rightarrow \mathcal{E} \log \mathcal{Z}
$$

before turning off the RR deformation.

The prepotential

- All in all, we obtain the non-perturbative part of the D7-brane effective action:

$$
S_{(\text {n.p. })}=\frac{1}{(2 \pi)^{4}} \int d^{8} x d^{8} \theta F_{(\text {n.p. })}(\Phi(x, \theta))
$$

with the "prepotential" $F_{(\text {n.p. })}(\Phi)$ given by

$$
F_{(\text {n.p. })}(\Phi)=\left.\mathcal{E} \log \mathcal{Z}\right|_{\varphi \rightarrow \Phi, \mathcal{F} \rightarrow 0}
$$

and with

$$
\mathcal{Z}=\sum_{k} z_{k}(\varphi, \mathcal{F}) q^{k} \quad, \quad \mathcal{E} \sim \operatorname{det}(\mathcal{F})^{1 / 2}
$$

Explicit results

- Expanding in instanton numbers, $F^{(\text {n.p. })}=\sum_{k} q^{k} F_{k}$, we have

$$
\begin{aligned}
& F_{1}=\mathcal{E} Z_{1}, \\
& F_{2}=\mathcal{E} Z_{2}-\frac{F_{1}^{2}}{2 \mathcal{E}}, \\
& F_{3}=\mathcal{E} Z_{3}-\frac{F_{2} F_{1}}{\mathcal{E}}-\frac{F_{1}^{3}}{6 \mathcal{E}^{2}} \\
& F_{4}=\mathcal{E} Z_{4}-\frac{F_{3} F_{1}}{\mathcal{E}}-\frac{F_{2}^{2}}{2 \mathcal{E}}-\frac{F_{2} F_{1}^{2}}{2 \mathcal{E}^{2}}-\frac{F_{1}^{4}}{24 \mathcal{E}^{3}}, \\
& F_{5}=\mathcal{E} Z_{5}-\frac{F_{4} F_{1}}{\mathcal{E}}-\frac{F_{3} F_{2}}{\mathcal{E}}-\frac{F_{3} F_{1}^{2}}{2 \mathcal{E}^{2}}-\frac{F_{2}^{2} F_{1}}{2 \mathcal{E}^{2}}-\frac{F_{2} F_{1}^{3}}{6 \mathcal{E}^{3}}-\frac{F_{1}^{5}}{120 \mathcal{E}^{4}},
\end{aligned}
$$

Explicit results

- Expanding in instanton numbers, $F^{(\text {n.p. })}=\sum_{k} q^{k} F_{k}$, we have

$$
\begin{aligned}
& F_{1}=8 \operatorname{Pf}(\Phi), \\
& F_{2}=\mathcal{E} Z_{2}-\frac{F_{1}^{2}}{2 \mathcal{E}}, \\
& F_{3}=\mathcal{E} Z_{3}-\frac{F_{2} F_{1}}{\mathcal{E}}-\frac{F_{1}^{3}}{6 \mathcal{E}^{2}}, \\
& F_{4}=\mathcal{E} Z_{4}-\frac{F_{3} F_{1}}{\mathcal{E}}-\frac{F_{2}^{2}}{2 \mathcal{E}}-\frac{F_{2} F_{1}^{2}}{2 \mathcal{E}^{2}}-\frac{F_{1}^{4}}{24 \mathcal{E}^{3}}, \\
& F_{5}=\mathcal{E} Z_{5}-\frac{F_{4} F_{1}}{\mathcal{E}}-\frac{F_{3} F_{2}}{\mathcal{E}}-\frac{F_{3} F_{1}^{2}}{2 \mathcal{E}^{2}}-\frac{F_{2}^{2} F_{1}}{2 \mathcal{E}^{2}}-\frac{F_{2} F_{1}^{3}}{6 \mathcal{E}^{3}}-\frac{F_{1}^{5}}{120 \mathcal{E}^{4}},
\end{aligned}
$$

Explicit results

- Expanding in instanton numbers, $F^{(\text {n.p. })}=\sum_{k} q^{k} F_{k}$, we have

$$
\begin{aligned}
& F_{1}=8 \operatorname{Pf}(\phi), \\
& F_{2}=\frac{1}{2} \operatorname{Tr} \phi^{4}-\frac{1}{4}\left(\operatorname{Tr} \phi^{2}\right)^{2}, \\
& F_{3}=\mathcal{E} Z_{3}-\frac{F_{2} F_{1}}{\mathcal{E}}-\frac{F_{1}^{3}}{6 \mathcal{E}^{2}},
\end{aligned}
$$

$$
F_{4}=\mathcal{E} Z_{4}-\frac{F_{3} F_{1}}{\mathcal{E}}-\frac{F_{2}^{2}}{2 \mathcal{E}}-\frac{F_{2} F_{1}^{2}}{2 \mathcal{E}^{2}}-\frac{F_{1}^{4}}{24 \mathcal{E}^{3}},
$$

$F_{5}=\mathcal{E} Z_{5}-\frac{F_{4} F_{1}}{\mathcal{E}}-\frac{F_{3} F_{2}}{\mathcal{E}}-\frac{F_{3} F_{1}^{2}}{2 \mathcal{E}^{2}}-\frac{F_{2}^{2} F_{1}}{2 \mathcal{E}^{2}}-\frac{F_{2} F_{1}^{3}}{6 \mathcal{E}^{3}}-\frac{F_{1}^{5}}{120 \mathcal{E}^{4}}$,

Explicit results

- Expanding in instanton numbers, $F^{(\text {n.p. })}=\sum_{k} q^{k} F_{k}$, we have

$$
\begin{aligned}
& F_{1}=8 \operatorname{Pf}(\phi), \\
& F_{2}=\frac{1}{2} \operatorname{Tr} \phi^{4}-\frac{1}{4}\left(\operatorname{Tr} \phi^{2}\right)^{2}, \\
& F_{3}=\frac{32}{3} \operatorname{Pf}(\phi),
\end{aligned}
$$

$$
F_{4}=\mathcal{E} Z_{4}-\frac{F_{3} F_{1}}{\mathcal{E}}-\frac{F_{2}^{2}}{2 \mathcal{E}}-\frac{F_{2} F_{1}^{2}}{2 \mathcal{E}^{2}}-\frac{F_{1}^{4}}{24 \mathcal{E}^{3}},
$$

$$
F_{5}=\mathcal{E} Z_{5}-\frac{F_{4} F_{1}}{\mathcal{E}}-\frac{F_{3} F_{2}}{\mathcal{E}}-\frac{F_{3} F_{1}^{2}}{2 \mathcal{E}^{2}}-\frac{F_{2}^{2} F_{1}}{2 \mathcal{E}^{2}}-\frac{F_{2} F_{1}^{3}}{6 \mathcal{E}^{3}}-\frac{F_{1}^{5}}{120 \mathcal{E}^{4}},
$$

Explicit results

- Expanding in instanton numbers, $F^{(\text {n.p. })}=\sum_{k} q^{k} F_{k}$, we have

$$
\begin{aligned}
& F_{1}=8 \operatorname{Pf}(\phi), \\
& F_{2}=\frac{1}{2} \operatorname{Tr} \phi^{4}-\frac{1}{4}\left(\operatorname{Tr} \phi^{2}\right)^{2}, \\
& F_{3}=\frac{32}{3} \operatorname{Pf}(\phi), \\
& F_{4}=\frac{1}{4} \operatorname{Tr} \phi^{4}-\frac{1}{4}\left(\operatorname{Tr} \Phi^{2}\right)^{2}, \\
& F_{5}=\frac{48}{5} \operatorname{Pf}(\phi),
\end{aligned}
$$

Explicit results

- The D-instanton induced effective "prepotential" is

$$
\begin{aligned}
F^{(\text {n.p. })}(\Phi)= & 8 \operatorname{Pf}(\Phi)\left(q+\frac{4}{3} q^{3}+\frac{6}{5} q^{5}+\ldots\right)+\operatorname{Tr} \phi^{4}\left(\frac{1}{2} q^{2}+\frac{1}{4} q^{4}+\ldots\right) \\
& +\left(\operatorname{Tr} \phi^{2}\right)^{2}\left(\frac{1}{4} q^{2}+\frac{1}{4} q^{4}+\ldots\right)
\end{aligned}
$$

- It is natural to generalize these results and write

$$
\begin{aligned}
F^{(\mathrm{n} . \mathrm{p.})}(\Phi)= & 8 \operatorname{Pf}(\Phi) \sum_{k=1} d_{2 k-1} q^{2 k-1}+\frac{1}{2} \operatorname{Tr} \Phi^{4} \sum_{k=1}\left(d_{k} q^{2 k}-d_{k} q^{4 k}\right) \\
& +\frac{1}{8}\left(\operatorname{Tr} \Phi^{2}\right)^{2} \sum_{k=1}\left(d_{k} q^{4 k}-2 d_{k} q^{2 k}\right)
\end{aligned}
$$

with

$$
d_{k}=\sum_{\ell \mid k} \frac{1}{\ell} \quad \text { sum over the inverse divisors of } k
$$

Complete result

- Taking into account the contributions at tree-level for $\operatorname{Tr} F^{4}$ and at 1-loop for $\left(\operatorname{TrF}{ }^{2}\right)^{2}$, the full expression for the quartic terms in the effective action of the D7-branes reads

$$
\begin{aligned}
& 2 t_{8} \operatorname{Pf}(F) \log \left|\frac{\eta(\tau+1 / 2)}{\eta(\tau)}\right|^{4}+\frac{t_{8} \operatorname{Tr} F^{4}}{4} \log \left|\frac{\eta(4 \tau)}{\eta(2 \tau)}\right|^{4} \\
&+\frac{t_{8}\left(\operatorname{Tr} F^{2}\right)^{2}}{16} \log \left(\operatorname{Im} \tau \operatorname{Im} U \frac{\operatorname{|\eta (2\tau)|^{8}|\eta (U)|^{4}}}{|\eta(4 \tau)|^{4}}\right)
\end{aligned}
$$

with $q=e^{2 \pi i \tau}$

Heterotic / Type I' duality

- In the $\mathrm{SO}(8)^{4}$ Heterotic String on T_{2} the BPS-saturated quartic terms in F arise at 1-loop

$$
\frac{t_{8} \operatorname{Tr} F^{4}}{4} \log \left|\frac{\eta(4 T)}{\eta(2 T)}\right|^{4}+\frac{t_{8}\left(T r F^{2}\right)^{2}}{16} \log \left(\operatorname{Im} T \operatorname{Im} U \frac{|\eta(2 T)|^{8}|\eta(U)|^{4}}{|\eta(4 T)|^{4}}\right)
$$

Lerche+Stieberger, 1998; Gutperle, 1999; Kiritsis et al, 2000; ...

$$
+2 t_{8} \operatorname{Pf}(F) \log \left|\frac{\eta(T+1 / 2)}{\eta(T)}\right|_{\text {Gava et al, } 1999}^{4}
$$

- Agrees with our Type I' result under the duality map
T : Kähler structure of the 2-torus $T_{2} \longleftrightarrow \tau$: axion-dilaton world-sheet instantons \longleftrightarrow D-instantons

Conclusions and perspectives

Remarks

- We have explicitly computed the effective couplings induced by stringy instantons in a simple 8d example, the D7/D(-1) system in Type I', extending the philosophy used for "ordinary" instantons
- If we do not switch off the RR background \mathcal{F} in the final expressions we get also non-perturbative gravitational corrections to $\operatorname{Tr} R^{4}$ and $\operatorname{Tr} R^{2} \operatorname{Tr} F^{2}$

Remarks

- We have explicitly computed the effective couplings induced by stringy instantons in a simple 8d example, the D7/D(-1) system in Type I', extending the philosophy used for "ordinary" instantons
- If we do not switch off the RR background \mathcal{F} in the final expressions we get also non-perturbative gravitational corrections to $\operatorname{Tr} R^{4}$ and $\operatorname{Tr} R^{2} \operatorname{Tr} F^{2}$
- The result checks out perfectly against the dual Heterotic SO(8) theory:
- Assuming the duality, confirms our procedure to deal with the stringy instantons
- Assuming the correctness of our computation, yields very non-trivial check of this fundamental string duality

4d exotic instanton calculus

- We're now investigating simple models where
- the gauge theory lives in four dimensions
- there are "exotic" instantons, with no "size" moduli from mixed strings having more than 4 ND directions, ...
- all instanton numbers can contribute to the effective action at order F^{2} ("conformal" situation)
- there is the chance of checking the result against a dual heterotic theory

A specific model

- In particular, we are considering Type I' theory on

$$
\mathbb{R}^{1,3} \times T_{4} / \mathbb{Z}_{2} \times T_{2}
$$

with 8 D7-branes and 8 D3-branes (T-dual on T_{2} of PS-GP model)

- $D(-1)$'s represent exotic instantons w.r.t. to the gauge theory on the D7's
- Preliminary analysis indicates that the calculus of the induced effective action is feasible with methods analogues to those presented here

