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Why you should pay attention, an experiment

The greatest common denominator of the audience?

in books?
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Why you should pay attention

subject:
calculation of scattering amplitudes in D > 4 with many legs

pure spinor helicity methods:
precise control over Poincaré and Susy quantum numbers

for all legs
simultaneously
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Outline

1 Motivation

2 Covariant representation theory of
Poincaré algebra
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3 Outlook
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Every talk on amplitudes should mention . . .

<===   Zürich
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Why study amplitudes in higher dimensions?

loops in four dimensions← dimensional regularization

one-loop: pure Yang-Mills [Giele, Kunszt, and Melnikov, 08]
I uses 6D trees

high loops: N = 4, N = 8 [Bern, Dixon, Kosower et. al.], [others]
I uses 10D, 11D trees

recent quantum leaps in four: what is special about four?
string theory (analytic S-matrix type techniques)
little is known

is there a D > 4 analogue of:
MHV amplitudes?
(any recent buzzword in D = 4?)

pure spinor spaces are higher dimensional twistor spaces
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Warmup: massive vectors in four dimensions
higher D massless vectors decompose into massive D = 4
massive spinor helicity: e.g. [Kleiss, Stirling, 85], [Dittmaier, 98]

maximal set of commuting operators: kµ, Wµ

kµkµ = m2, pick spin axis through light-like vector q

Rz = R1
q =

qµWµ

2q · k
=
εµνρσqµkνΣρσ

2q · k

∃ vectors n1 and n2 such that q, q̂,n1,n2 span R1,3, q · ni = 0

massive polarization vectors

eµ± =
1√
2

(
nµ1 ± inµ2 − qµ

((n1 ± in2) · k)

q · k

)
eµ0 =

kµ

m
− mqµ

q · k

broken gauge theory in D = 4→ [R.B., Christian Schwinn, to appear]
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Higher dimensional massless vectors
given kµ, little group is ISO(D − 2)

Pauli-Lubanski vector tensors k[µΣνρ]

from previous use:
I choose q such that q2 = 0
I choose q, q̂,ni to form an ortho-normal basis of R1,D−1

I construct ñi = ni − q (ni ·k)
(q·k)

for representation theory choose Cartan generators as

R j
q ≡

1
2

ñ2j−1ñ2jΣ = qn1n2(k[µΣνρ])

eigenvalues form a weight vector ~h: R j
qe = hje,

~h = (0, . . . ,±1, . . .)

polarization vectors (in q lightcone gauge)

eµ(0, . . . ,±j , . . .) =
1√
2

(
ñµ2j−1 ± iñµ2j

)
(k)

requires choice of complex structure
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ñµ2j−1 ± iñµ2j
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Remarks and a quick application
massive vectors: SO(D − 1)

∃ generalization to all integer spins (e.g. gravity)

q: choice of Cartan generators and choice of gauge
D = 4: little group is Abelian
can compare different legs:

eµ
(

ki , ~hi

)
· eµ

(
kj , ~hj

)
= −δ

(
~hi + ~hj

)
Application: higher dimensional YM amplitudes at tree level

〈(±1,0, . . .)i1 (0,±1, . . .)i2 . . . (0, . . . ,±1)iD/2〉 = 0

‘helicity equal’ in D = 4
‘one helicity unequal’ does not vanish in D > 4
class of Einstein gravity amplitudes through KLT
six gluon open string amplitude [Oprisa, Stieberger, 2005]
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Towards spinor representations

polarization vectors and q and k span R1,D−1

needed: similar basis of spinors
would like: vectors in terms of spinors

guess: eµ(~h) ∼ ξγµψ

want: qµeµ = kµeµ = . . . = 0

therefore:
ξ (qµγµ) = (kµγµ)ψ = 0 or ξ (kµγµ) = (qµγµ)ψ = 0

other inner products→ total D
2 annihilation conditions

need spinors annihilated by D
2 generators v i

µγ
µ such that

〈v i , v j〉 = 0 ∀i , j

→ definition of pure spinors
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Spinor representations
spinors transform under Clifford algebra {γµ, γν} = 2ηµν

define

γ+
0 ≡

1√
2

kµγµ γ−0 ≡
1√
2

qµ
q · k

γµ

γ+
i ≡

i√
2

e+,i
µ γµ γ−i ≡

i√
2

e−,iµ γµ

Clifford algebra: D
2 copies of fermionic harmonic oscillator

{γa
i , γ

b
j } = δijδa,−b

quantum numbers R j
q = 1

2 [γ+
j , γ

−
j ] =

(
γ+

j γ
−
j −

1
2

)
quantum numbers↔ annihilation conditions,

γ2hi

i ψ(~h) = 0 no sum ,

γµkµψ(~h) = 0
γ2hi

i ξ(~h) = 0 no sum
γµqµξ(~h) = 0 .

phases, schmases
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Spinor helicity
there is a natural spinor inner product

ψ
(

h0, ~h
)
ψ′
(

h′0, ~h
′
)
∼ δ

(
h0 + h′0

)
δ
(
~h − ~h′

)
where ψ′ψ ≡ ψ′†γ0ψ

for real momenta, fixing one spinor product fixes all by algebra,
dependent on phase conventions

spinor helicity
There is a phase convention for which

kµγµ =
∑
~h

ψ~hψ~h qµγµ =
∑
~h

ξ~hξ~h

qµ =
1
2
ξ~hγµξ~h kµ =

1
2
ψ~hγµψ~h

for any ~h. Similar formulae for polarization vectors.

representation is redundant (D = 4,1), (D = 6,2), (D = 10,4)
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Calculability
choose highest weight ξ(1

2 , . . .
1
2) (qξ = 0)

define (phases of) other states using (ordered) lowering operators,
e.g.

ψ(−1
2

) ≡ γ−0 γ
−
1 ξ(

1
2

) = −γ−1 γ
−
0 ξ(

1
2

)

this fixes the action of all generators on all states
obtained states form a basis of all spinors

numerics & lightcone analysis...

pick a frame in which q = (1,0, . . . ,0,1), ñi = (0, . . . ,1i ,0, . . .).
pick a gamma matrix representation.
find eigenvectors of qµγµξ = 0
other quantum numbers are then easy← momentum independent
all solutions to the massless Dirac equation by applying γµkµ
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Some remarks
Checks

4D spinor helicity
proposal for 6D [Cheung, O’ Donnal, 09]

lightcone frame

Extensions

generalization to all spinor representations (e.g. gravitini)
solutions to the massive Dirac equation, use

k − q
k2

2q · k
= k [

Intriguing further structure

choice of complex structure? → pure spinor spaces

To do

study supersymmetry
find more amplitudes (on-shell recursion!)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 16 / 25



Some remarks
Checks

4D spinor helicity
proposal for 6D [Cheung, O’ Donnal, 09]

lightcone frame
Extensions

generalization to all spinor representations (e.g. gravitini)
solutions to the massive Dirac equation, use

k − q
k2

2q · k
= k [

Intriguing further structure

choice of complex structure? → pure spinor spaces

To do

study supersymmetry
find more amplitudes (on-shell recursion!)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 16 / 25



Some remarks
Checks

4D spinor helicity
proposal for 6D [Cheung, O’ Donnal, 09]

lightcone frame
Extensions

generalization to all spinor representations (e.g. gravitini)
solutions to the massive Dirac equation, use

k − q
k2

2q · k
= k [

Intriguing further structure

choice of complex structure? → pure spinor spaces

To do

study supersymmetry
find more amplitudes (on-shell recursion!)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 16 / 25



Some remarks
Checks

4D spinor helicity
proposal for 6D [Cheung, O’ Donnal, 09]

lightcone frame
Extensions

generalization to all spinor representations (e.g. gravitini)
solutions to the massive Dirac equation, use

k − q
k2

2q · k
= k [

Intriguing further structure
choice of complex structure? → pure spinor spaces

To do

study supersymmetry
find more amplitudes (on-shell recursion!)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 16 / 25



Some remarks
Checks

4D spinor helicity
proposal for 6D [Cheung, O’ Donnal, 09]

lightcone frame
Extensions

generalization to all spinor representations (e.g. gravitini)
solutions to the massive Dirac equation, use

k − q
k2

2q · k
= k [

Intriguing further structure
choice of complex structure? → pure spinor spaces

To do
study supersymmetry
find more amplitudes (on-shell recursion!)
Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 16 / 25



Outline

1 Motivation

2 Covariant representation theory of
Poincaré algebra
Spin algebra
Susy algebra

3 Outlook
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Susy Ward identities

susy relates scattering amplitudes with different particles
independent of coupling constants

4D: derived from
1 Lagrangian [Grisaru, Pendleton, Van Nieuwenhuizen, 76]
2 on-shell susy algebra [Grisaru, Pendleton, 77]

further only 4D fundamental massive multiplet [Schwinn, Weinzierl,
06]: derivation 1
should not require off-shell information

In any susy S-matrix theory

0 = 〈0|S Φin Q |0〉 = 〈0|S [Q,Φin]|0〉 = 〈0|S Q |in〉

need: knowledge of action of supersymmetry on free in-state
need: covariant supersymmetry representation theory
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Covariant action of supersymmetry generators
take

{Q,Q} = 2kµγµ

and expand everything into the pure spinor basis, e.g.

Q ≡
∑
~h

(
Q~hψ(k , ~h) + Q′~hξ(q, ~h)

)

from which we get→

{Q~h,Q~h} = 2 Q′~h = 0

in terms of Lorentz invariant generators

Q~h|k , ~g〉 = |k , ~g + ~h〉

→ action of any Q known covariantly
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Example: N = 1, D = 10
bosonic states are e.g. ~h = (±1,0,0,0) (# = 8)
fermionic ones are ~h = (±1

2 ,±
1
2 ,±

1
2 ,a), last ‘bit’ fixed by chirality

drop last bit
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Susy amplitudes: coherent states

every fermionic harmonic oscillator has a coherent state
representation,

|kηi〉 = e(Qiηi)|k , ~htop〉

choice of highest weight state component→ split algebra into
creation and annihilation operators
Susy now acts naturally on the coherent state

e(Qi
cθi)|k , ηi〉 = e

∑
i ηiθi |k , ηi + η′i 〉

e(Qi
aθi)|k , ηi〉 = |k , ηi + θi〉

compare [Arkani-Hamed,Cachazo,Kaplan, 08] for N = (4,8), D = 4
(8 + 6 additional states)
coherent state scattering amplitudes naturally supersymmetric
same conclusions? → next slide
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Vanishing amplitudes
consider n particle ‘all plus’ amplitude,

A(ki , ~h) =

∫ ( n∏
i=1

dη4
i

)
A(ki , ηi)

can use susy to shift one ηi coherent state parameter to zero,
without phase factors
amplitudes vanish to all orders in ~, α′,gs, . . .

applies to all top states which share a coherent state parameter
Yang-Mills, Einstein gravity, string theory . . .

an important subtlety

does the susy transformation exist?
D = 4: free parameters (‘one helicity unequal’ = 0)

I any chiral/antichiral susy transformation (allowed if U(1)R is
unbroken)

D > 4: fixes susy transformation (‘one helicity unequal’ 6= 0)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 22 / 25



Vanishing amplitudes
consider n particle ‘all plus’ amplitude,

A(ki , ~h) =

∫ ( n∏
i=1

dη4
i

)
A(ki , ηi)

can use susy to shift one ηi coherent state parameter to zero,
without phase factors

amplitudes vanish to all orders in ~, α′,gs, . . .

applies to all top states which share a coherent state parameter
Yang-Mills, Einstein gravity, string theory . . .

an important subtlety

does the susy transformation exist?
D = 4: free parameters (‘one helicity unequal’ = 0)

I any chiral/antichiral susy transformation (allowed if U(1)R is
unbroken)

D > 4: fixes susy transformation (‘one helicity unequal’ 6= 0)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 22 / 25



Vanishing amplitudes
consider n particle ‘all plus’ amplitude,

A(ki , ~h) =

∫ ( n∏
i=1

dη4
i

)
A(ki , ηi)

can use susy to shift one ηi coherent state parameter to zero,
without phase factors
amplitudes vanish to all orders in ~, α′,gs, . . .

applies to all top states which share a coherent state parameter
Yang-Mills, Einstein gravity, string theory . . .

an important subtlety

does the susy transformation exist?
D = 4: free parameters (‘one helicity unequal’ = 0)

I any chiral/antichiral susy transformation (allowed if U(1)R is
unbroken)

D > 4: fixes susy transformation (‘one helicity unequal’ 6= 0)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 22 / 25



Vanishing amplitudes
consider n particle ‘all plus’ amplitude,

A(ki , ~h) =

∫ ( n∏
i=1

dη4
i

)
A(ki , ηi)

can use susy to shift one ηi coherent state parameter to zero,
without phase factors
amplitudes vanish to all orders in ~, α′,gs, . . .

applies to all top states which share a coherent state parameter
Yang-Mills, Einstein gravity, string theory . . .

an important subtlety

does the susy transformation exist?
D = 4: free parameters (‘one helicity unequal’ = 0)

I any chiral/antichiral susy transformation (allowed if U(1)R is
unbroken)

D > 4: fixes susy transformation (‘one helicity unequal’ 6= 0)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 22 / 25



Vanishing amplitudes
consider n particle ‘all plus’ amplitude,

A(ki , ~h) =

∫ ( n∏
i=1

dη4
i

)
A(ki , ηi)

can use susy to shift one ηi coherent state parameter to zero,
without phase factors
amplitudes vanish to all orders in ~, α′,gs, . . .

applies to all top states which share a coherent state parameter
Yang-Mills, Einstein gravity, string theory . . .

an important subtlety

does the susy transformation exist?
D = 4: free parameters (‘one helicity unequal’ = 0)

I any chiral/antichiral susy transformation (allowed if U(1)R is
unbroken)

D > 4: fixes susy transformation (‘one helicity unequal’ 6= 0)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 22 / 25



Vanishing amplitudes
consider n particle ‘all plus’ amplitude,

A(ki , ~h) =

∫ ( n∏
i=1

dη4
i

)
A(ki , ηi)

can use susy to shift one ηi coherent state parameter to zero,
without phase factors
amplitudes vanish to all orders in ~, α′,gs, . . .

applies to all top states which share a coherent state parameter
Yang-Mills, Einstein gravity, string theory . . .

an important subtlety
does the susy transformation exist?

D = 4: free parameters (‘one helicity unequal’ = 0)

I any chiral/antichiral susy transformation (allowed if U(1)R is
unbroken)

D > 4: fixes susy transformation (‘one helicity unequal’ 6= 0)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 22 / 25



Vanishing amplitudes
consider n particle ‘all plus’ amplitude,

A(ki , ~h) =

∫ ( n∏
i=1

dη4
i

)
A(ki , ηi)

can use susy to shift one ηi coherent state parameter to zero,
without phase factors
amplitudes vanish to all orders in ~, α′,gs, . . .

applies to all top states which share a coherent state parameter
Yang-Mills, Einstein gravity, string theory . . .

an important subtlety
does the susy transformation exist?

D = 4: free parameters (‘one helicity unequal’ = 0)
I any chiral/antichiral susy transformation (allowed if U(1)R is

unbroken)

D > 4: fixes susy transformation (‘one helicity unequal’ 6= 0)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 22 / 25



Vanishing amplitudes
consider n particle ‘all plus’ amplitude,

A(ki , ~h) =

∫ ( n∏
i=1

dη4
i

)
A(ki , ηi)

can use susy to shift one ηi coherent state parameter to zero,
without phase factors
amplitudes vanish to all orders in ~, α′,gs, . . .

applies to all top states which share a coherent state parameter
Yang-Mills, Einstein gravity, string theory . . .

an important subtlety
does the susy transformation exist?

D = 4: free parameters (‘one helicity unequal’ = 0)
I any chiral/antichiral susy transformation (allowed if U(1)R is

unbroken)

D > 4: fixes susy transformation (‘one helicity unequal’ 6= 0)

Rutger Boels (NBIA) Pure Spinor Helicity Methods 15th String Workshop, Zürich 22 / 25



Remarks

crosscheck

∃ field theory derivation for N = 1 D = 10

extensions

∃ extension to massive reps (reproduces D = 4 fundamental
massive)
BPS representations by decomposition [Fayet, 78]

to do

generic central charges (’technicality’)
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Conclusions and outlook

complete spinor helicity construction from covariant
representation theory
quantum numbers under control

I class of vanishing amplitudes

join the fun!
I non-zero amplitudes? → on-shell recursion (work in progress)
I less nuts and bolts?
I connection to Berkovits’ pure spinors?
I spontaneous symmetry breaking?
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Example: N = 1, D = 11
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