On the Classification of Brane Tilings

John Davey

Amihay Hanany, Jurgis Pasukonis

Zürich, September 11, 2009

Imperial College London

John Davey On the Classification of Brane Tilings Amihay Hanany, Jurgis Pasukonis

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

2 Brane Tilings for M2 branes

3 Our Algorithm

▲ロト ▲圖ト ▲画ト ▲画ト 三回 ● のへの

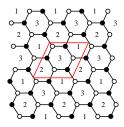
John Davey On the Classification of Brane Tilings Amihay Hanany, Jurgis Pasukonis

Motivation for Tilings

- First developed to help understand the SUSY gauge theory living on D3 branes probing Toric Calabi-Yau singularities
- Gauge theory dual of Type IIB string theory on $AdS_5 imes X_5$
- Tiling gives gauge symmetry as well as superpotential data of theory living on D3 branes
- Tiling easily computed with knowledge of either gauge theory or Calabi-Yau singularity

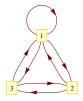
So What is a Brane Tiling (Dimer Model)?

- Periodic Bipartite Tiling on the Plane
- Each white (black) node represents a positive (negative) superpotential term
- Each face corresponds to a gauge group
- Each edge represents a bifundamental chiral field
- Tilings correspond to Supersymmetric Quiver Gauge Theories



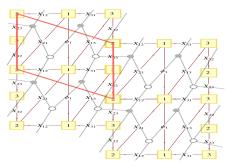
What is a Quiver Gauge Theory

- A quiver gauge theory is a special supersymmetric gauge theory that has a matter content that can be represented by a graph called a quiver
- A quiver is simply a directed graph
- Nodes of the quiver represent gauge groups
- Edges of the quiver represent bifundamental chiral superfields
- Superpotential information is not encoded in the quiver



Brane Tilings and Quiver Gauge Theories

- One can easily read off the quiver gauge theory with knowledge of the tiling
- Periodic quiver is graph dual to brane tiling



Amihay Hanany, Jurgis Pasukonis

John Davey

Some Features of Brane Tilings

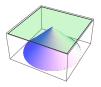
• Can find vacuum moduli space of the theory via the fast forward algorithm (FFA)

- Space can be identified with the CY singularity probed by D3 branes. Best described using the language of toric geometry
- Inverse algorithm also exists to find tiling (and gauge theory) corresponding to generic toric CY singularities

- Not all periodic bipartite tilings of the plane correspond to consistent brane tilings in 3+1 dimensions
- Failure of current methods

John Davey

- Recent work shows that brane tilings can also be used to describe supersymmetric quiver Chern-Simons (CS) theories
- These theories are thought to describe M2 branes probing the singular tip of toric CY 4-fold singularities



Similarities between the two interpretations

- Periodic Bipartite Tiling on the Plane
- Each white (black) node represents a positive (negative) superpotential term
- Each face corresponds to a gauge group
- Each edge represents a bifundamental chiral field

Differences between the two interpretations

- Each face represents a Chern Simons term
- A set of CS levels must be chosen
- There is no known consistency condition

Differences between the two interpretations

- Each face represents a Chern Simons term
- A set of CS levels must be chosen
- There is no known consistency condition

Amihay Hanany, Jurgis Pasukonis

On the Classification of Brane Tilings

Differences between the two interpretations

- There are many simple tilings that have not been studied so far and may be relevant for M2 branes
- A classification of tilings is important

- We would like an algorithm that generates brane tilings
- The algorithm should be computationally feasible
- The generation should be exhaustive

Amihay Hanany, Jurgis Pasukonis

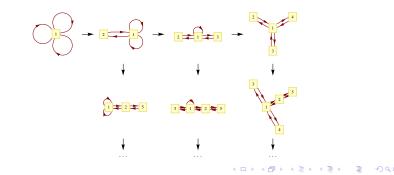
John Davey On the Classification of Brane Tilings

Generate 'Irreducible' Quivers satisfying 'Calabi-Yau' Condition \downarrow Generate 'Toric' Superpotentials \downarrow Check For Tiling

John Davey

Amihay Hanany, Jurgis Pasukonis

- An 'Irreducible' gauge theory is one that has no nodes in the quiver of order two
- Any reducible quiver gauge theory can be formed by adding such nodes to an irreducible quiver

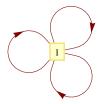


Amihay Hanany, Jurgis Pasukonis

John Davey

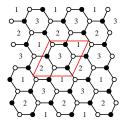
Calabi-Yau Condition

- Nodes of quivers corresponding to brane tilings must have equal numbers of incoming and outgoing arrows.
- This is known as the 'Calabi-Yau condition' and corresponds to an anomaly cancellation condition in 3+1 dimensions
- Without this observation, our algorithm would be computationally infeasible



On the Classification of Brane Tilings

- A theory satisfying the toric condition has each field appearing in the superpotential exactly twice - once in a positive term and once in a negative term
- We also insist upon having no superpotential terms of order 2



John Davey

It is fairly easy to find good parameters to order our generation of brane tilings. Suitable parameters turn out to be:

- N_T the number of superpotential terms
- *G* the number of gauge groups (or nodes in the quiver) The number of fields is related to these two parameters by the Euler condition $E = N_T + G$.

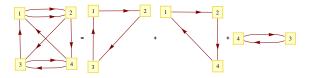
On the Classification of Brane Tilings

Generation of Quivers

We would like to perform an exhaustive search of all (irreducible) quivers given a pair of order parameters (N_T, G)

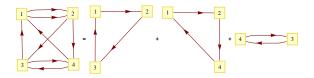
To achieve this we make the following observation:

• A quiver diagram satisfies the Calabi Yau (in-out) condition iff it can be formed from a sum of cycles



Generation of Superpotentials

- Each term in the superpotential is gauge invariant
- Can be written in terms of cycles
- These cycles have already been generated in the algorithm

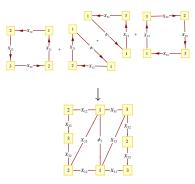


• Compute positive then negative superpotential terms

Amihay Hanany, Jurgis Pasukonis

On the Classification of Brane Tilings

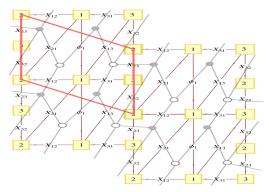
• Try to combine superpotential terms into a fundamental domain of the periodic quiver



Amihay Hanany, Jurgis Pasukonis

John Davey

• Attempt to use this candidate fundamental domain to tile the plane



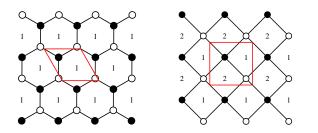
Amihay Hanany, Jurgis Pasukonis

John Davey

- Exhaustive
- Computationally cheap can compute all tiles with 6 superpotential terms easily (well ... fairly easily)

On the Classification of Brane Tilings

Two Superpotential Terms

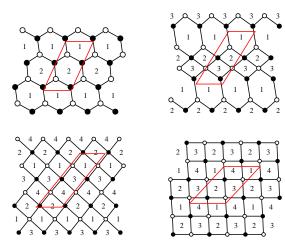


Amihay Hanany, Jurgis Pasukonis

Image: A matrix

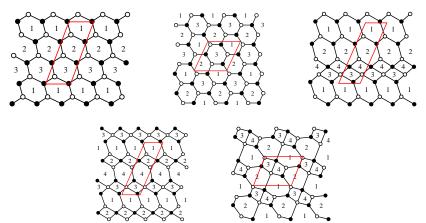
John Davey

Four Superpotential Terms



John Davey

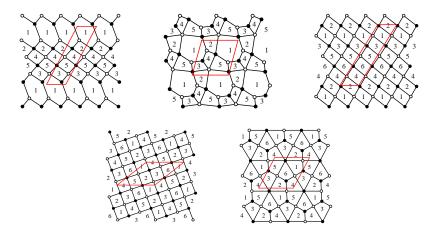
Six Superpotential Terms (1)



Amihay Hanany, Jurgis Pasukonis

John Davey

Six Superpotential Terms (2)



Amihay Hanany, Jurgis Pasukonis

On the Classification of Brane Tilings

- Brane tilings are a tool that have allowed us to find a large class of SCFTs with AdS duals
- Can be useful to describe D3 and M2 branes
- Our algorithm allows an exhaustive generation of brane tilings
- Inconsistent tilings generated are thought to be useful in the M2 brane story
- More relationships between tilings can be explored (e.g. Higgsing M2-brane Theories hep-th/0908.4033)
- If nothing else you can generate some really pretty pictures to impress your friends