Gravitational duality: a NUT story

Francois Dehouck

U.L.B. Brussels

September 8, 2009

Gravitational duality: a NUT story

Francois Dehouck

U.L.B. Brussels

September 8, 2009
"Supersymmetry and gravitational duality": R. Argurio, L. Houart, F.D. [PRD 79:125001, 2009]
"Boosting Taub-NUT to a BPS NUT-wave" : r. Argurio, L. Houart, F.D. [JHEP 0901:045,2009]
"Why not a di-NUT ? ": r. Argurio, F.D. [hep-th:0909.0542]

Understanding Quantum Gravity...

One of the goals of theoretical physics is to find a quantum theory for gravity...
...through S-duality
Duality between weakly and strongly coupled sectors of a theory is a powerful tool to delve into its non-perturbative physics. Supersymmetry helps in providing protected quantities that can be compared in both weakly and strongly coupled (or electric and magnetic) sectors.

Goal of this talk

- presence of dyonic metrics in general relativity and an adapted EM duality in linearized Gravity.
- Show the presence of this duality in supergravity. Establish the supersymmetry of duality rotated supersymmetric solutions.

Outline

(1) Electromagnetic duality
(2) Duality in Linearized Gravity + Examples
(3) $\mathcal{N}=2$ Supersymmetric solutions with NUT charge

4 $\mathcal{N}=1$ Supersymmetric solutions with NUT charge
(5) Conclusions and future work

Duality in EM

Duality in electromagnetism states that for every "electric" field strength, there is a dual "magnetic" field strength. The duality is a Hodge duality:

$$
\begin{aligned}
F^{\mu \nu} & \rightarrow \tilde{F}^{\mu \nu} \equiv(* F)^{\mu \nu}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} F_{\rho \sigma} \\
Q & \rightarrow H
\end{aligned}
$$

Duality in EM

Duality in electromagnetism states that for every "electric" field strength, there is a dual "magnetic" field strength. The duality is a Hodge duality:

$$
\begin{aligned}
F^{\mu \nu} & \rightarrow \tilde{F}^{\mu \nu} \equiv(* F)^{\mu \nu}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} F_{\rho \sigma} \\
Q & \rightarrow H
\end{aligned}
$$

Example: Coulomb charge vs. magnetic monopole

$$
\begin{array}{ll}
A=\frac{Q}{r} d t & F=\frac{Q}{r^{2}} d t \wedge d r \\
\tilde{F}=H \sin \theta d \theta \wedge d \phi & \tilde{A}=-H \cos \theta d \phi
\end{array}
$$

Duality in EM

Duality in electromagnetism states that for every "electric" field strength, there is a dual "magnetic" field strength. The duality is a Hodge duality:

$$
\begin{aligned}
F^{\mu \nu} & \rightarrow \tilde{F}^{\mu \nu} \equiv(* F)^{\mu \nu}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} F_{\rho \sigma} \\
Q & \rightarrow H
\end{aligned}
$$

Example: Coulomb charge vs. magnetic monopole
$A=\frac{Q}{r} d t$

$$
F=\frac{Q}{r^{2}} d t \wedge d r
$$

$\tilde{F}=H \sin \theta d \theta \wedge d \phi \quad \tilde{A}=-H \cos \theta d \phi=-H \frac{z}{r\left(r^{2}-z^{2}\right)}(x d y-y d x)$
Note: If we look at the gauge potential, the magnetic monopole has a Dirac string singularity along the z-axis.

The monopole as a magnetic charge H :

Introduce a magnetic current in the Bianchi identity:

$$
\begin{aligned}
& d * F=4 \pi J_{e l} \\
& d F=4 \pi J_{\text {magn }}
\end{aligned}
$$

The monopole as a magnetic charge H :

Introduce a magnetic current in the Bianchi identity:

$$
\begin{aligned}
& d * F=4 \pi J_{e l} \\
& d F=4 \pi J_{\text {magn }}
\end{aligned}
$$

A solution to this set of equations is:

$$
F=d A_{R}+C \Rightarrow J_{m a g n}=d C
$$

The monopole as a magnetic charge H :

Introduce a magnetic current in the Bianchi identity:

$$
\begin{aligned}
& d * F=4 \pi J_{e l} \\
& d F=4 \pi J_{\text {magn }}
\end{aligned}
$$

A solution to this set of equations is:

$$
F=d A_{R}+C \Rightarrow J_{\text {magn }}=d C
$$

The charges for the magnetic monopole are:

$$
\int d * F=0 \quad \int d F=H
$$

The monopole as a magnetic charge H :

Introduce a magnetic current in the Bianchi identity:

$$
\begin{aligned}
& d * F=4 \pi J_{e l} \\
& d F=4 \pi J_{\text {magn }}
\end{aligned}
$$

A solution to this set of equations is:

$$
F=d A_{R}+C \Rightarrow J_{m a g n}=d C
$$

The charges for the magnetic monopole are:

$$
\int d * F=0 \quad \int d F=H
$$

Is there something similar in linearized gravity?

Duality in linearized gravity

The Lorentzian Taub-NUT solution found in [Taub '51; Newman, Tamburino, Unti '63] is:

$$
\begin{aligned}
& \quad d s^{2}=-\frac{\lambda^{2}}{R^{2}}[d t+2 N \cos \theta d \phi]^{2}+\frac{R^{2}}{\lambda^{2}} d r^{2}+R^{2}\left[d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right] \\
& \text { where } \lambda^{2}=r^{2}-2 M r-N^{2} \text { and } R^{2}=r^{2}+N^{2}
\end{aligned}
$$

Duality in linearized gravity

The Lorentzian Taub-NUT solution found in [Taub'51; Newman, Tamburino, Unti' ${ }^{\prime} 63$] is:

$$
\begin{aligned}
& \quad d s^{2}=-\frac{\lambda^{2}}{R^{2}}[d t+2 N \cos \theta d \phi]^{2}+\frac{R^{2}}{\lambda^{2}} d r^{2}+R^{2}\left[d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right] \\
& \text { where } \lambda^{2}=r^{2}-2 M r-N^{2} \text { and } R^{2}=r^{2}+N^{2}
\end{aligned}
$$

We will consider linearized theory around flat space.

Duality in linearized gravity

The Lorentzian Taub-NUT solution found in [Taub '51; Newman, Tamburino, Unti' ${ }^{63}$] is:

$$
\begin{aligned}
& \quad d s^{2}=-\frac{\lambda^{2}}{R^{2}}[d t+2 N \cos \theta d \phi]^{2}+\frac{R^{2}}{\lambda^{2}} d r^{2}+R^{2}\left[d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right] \\
& \text { where } \lambda^{2}=r^{2}-2 M r-N^{2} \text { and } R^{2}=r^{2}+N^{2}
\end{aligned}
$$

We will consider linearized theory around flat space.

The duality can be expressed as a Hodge duality on the Riemann tensor:

$$
R_{\mu \nu \rho \sigma} \rightarrow \tilde{R}_{\mu \nu \rho \sigma}=\frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} R_{\rho \sigma}^{\alpha \beta} \quad M \rightarrow N
$$

[Henneaux, Teitelboim '04]

Generalizing the EM idea: [Buster, Cnockaert, Henneaux, Portugues ' ${ }^{\circ} 06$

The duality is taken on the Lorentz indices: $\tilde{R}_{\mu \nu \rho \sigma}=\frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} R^{\alpha \beta}{ }_{\rho \sigma}$.
We introduce a "magnetic" stress-energy tensor $\Theta_{\mu \nu}$:

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi T_{\mu \nu} \\
& R_{\mu \nu \alpha \beta}+R_{\mu \beta \nu \alpha}+R_{\mu \alpha \beta \nu}=0 \\
& \partial_{\epsilon} R_{\gamma \delta \alpha \beta}+\partial_{\alpha} R_{\gamma \delta \beta \epsilon}+\partial_{\beta} R_{\gamma \delta \epsilon \alpha}=0
\end{aligned}
$$

Generalizing the EM idea: [Bunster, Cnockaert, Henneaux, Portugues ${ }^{\text {'06] }}$

The duality is taken on the Lorentz indices: $\tilde{R}_{\mu \nu \rho \sigma}=\frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} R^{\alpha \beta}{ }_{\rho \sigma}$.
We introduce a "magnetic" stress-energy tensor $\Theta_{\mu \nu}$:

$$
\begin{array}{ll}
& G_{\mu \nu}=8 \pi T_{\mu \nu} \\
-\varepsilon_{\nu \alpha \beta \gamma} \tilde{G}^{\gamma}{ }_{\mu} \equiv \quad & R_{\mu \nu \alpha \beta}+R_{\mu \beta \nu \alpha}+R_{\mu \alpha \beta \nu}=-8 \pi \varepsilon_{\nu \alpha \beta \gamma} \Theta^{\gamma}{ }_{\mu} \\
& \partial_{\epsilon} R_{\gamma \delta \alpha \beta}+\partial_{\alpha} R_{\gamma \delta \beta \epsilon}+\partial_{\beta} R_{\gamma \delta \epsilon \alpha}=0
\end{array}
$$

Generalizing the EM idea: [Bunster, Cnockaert, Henneaux, Portugues ${ }^{\text {'06] }}$

The duality is taken on the Lorentz indices: $\tilde{R}_{\mu \nu \rho \sigma}=\frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} R^{\alpha \beta}{ }_{\rho \sigma}$.
We introduce a "magnetic" stress-energy tensor $\Theta_{\mu \nu}$:

$$
\begin{array}{ll}
& G_{\mu \nu}=8 \pi T_{\mu \nu} \\
-\varepsilon_{\nu \alpha \beta \gamma} \tilde{G}_{\mu}^{\gamma} \equiv \quad & R_{\mu \nu \alpha \beta}+R_{\mu \beta \nu \alpha}+R_{\mu \alpha \beta \nu}=-8 \pi \varepsilon_{\nu \alpha \beta \gamma} \Theta^{\gamma}{ }_{\mu} \\
& \partial_{\epsilon} R_{\gamma \delta \alpha \beta}+\partial_{\alpha} R_{\gamma \delta \beta \epsilon}+\partial_{\beta} R_{\gamma \delta \epsilon \alpha}=0
\end{array}
$$

Solution: $R_{\alpha \beta \lambda \mu}=r_{\alpha \beta \lambda \mu}+f(\Phi) \rightarrow \partial_{\alpha} \Phi^{\alpha \beta}{ }_{\gamma}=-16 \pi \Theta^{\beta}{ }_{\gamma}$

Generalizing the EM idea: [Bunster, Cnockaert, Henneaux, Portugues ${ }^{\text {'06] }}$

The duality is taken on the Lorentz indices: $\tilde{R}_{\mu \nu \rho \sigma}=\frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} R^{\alpha \beta}{ }_{\rho \sigma}$.
We introduce a "magnetic" stress-energy tensor $\Theta_{\mu \nu}$:

$$
-\varepsilon_{\nu \alpha \beta \gamma} \tilde{G}_{\mu}^{\gamma} \equiv \quad \begin{aligned}
& G_{\mu \nu}=8 \pi T_{\mu \nu} \\
& R_{\mu \nu \alpha \beta}+R_{\mu \beta \nu \alpha}+R_{\mu \alpha \beta \nu}=-8 \pi \varepsilon_{\nu \alpha \beta \gamma} \Theta^{\gamma}{ }_{\mu} \\
& \\
& \partial_{\epsilon} R_{\gamma \delta \alpha \beta}+\partial_{\alpha} R_{\gamma \delta \beta \epsilon}+\partial_{\beta} R_{\gamma \delta \epsilon \alpha}=0
\end{aligned}
$$

Solution: $R_{\alpha \beta \lambda \mu}=r_{\alpha \beta \lambda \mu}+f(\Phi) \rightarrow \partial_{\alpha} \Phi^{\alpha \beta}{ }_{\gamma}=-16 \pi \Theta^{\beta}{ }_{\gamma}$
Charges in general relativity:

$$
\begin{array}{ll}
P_{\mu}=\int T_{0 \mu} d^{3} x & L^{\mu \nu}=\int\left(x^{\mu} T^{0 \nu}-x^{\nu} T^{0 \mu}\right) d^{3} x \\
K_{\mu}=\int \Theta_{0 \mu} d^{3} x & \tilde{L}^{\mu \nu}=\int\left(x^{\mu} \Theta^{0 \nu}-x^{\nu} \Theta^{0 \mu}\right) d^{3} x
\end{array}
$$

[Ramaswamy, Sen '81],[Ashtekar, Sen '82],[Mueller, Perry '86], [Bossard, Nicolai, Stelle '09]

1. The Kerr-NUT black hole $\left.{ }_{[C a r t e r}{ }^{\prime} 68\right]$:

$$
\begin{aligned}
d s^{2}= & -\frac{\lambda^{2}}{R^{2}}\left[d t-\left(a \sin ^{2} \theta-2 N \cos \theta\right) d \phi\right]^{2} \\
& +\frac{\sin ^{2} \theta}{R^{2}}\left[\left(r^{2}+a^{2}+N^{2}\right) d \phi-a d t\right]^{2}+\frac{R^{2}}{\lambda^{2}} d r^{2}+R^{2} d \theta^{2},
\end{aligned}
$$

where $\lambda^{2}=r^{2}-2 M r+a^{2}-N^{2}$ and $R^{2}=r^{2}+(N+a \cos \theta)^{2}$

Gravitational duality on the linearized Schwarzschild (Kerr) solution gives us the linearized NUT (rotating) solution.

1. The Kerr-NUT black hole ${ }_{\left[\text {Carter }{ }^{\prime} 68\right] \text { : }}$

$$
\begin{aligned}
d s^{2}= & -\frac{\lambda^{2}}{R^{2}}\left[d t-\left(a \sin ^{2} \theta-2 N \cos \theta\right) d \phi\right]^{2} \\
& +\frac{\sin ^{2} \theta}{R^{2}}\left[\left(r^{2}+a^{2}+N^{2}\right) d \phi-a d t\right]^{2}+\frac{R^{2}}{\lambda^{2}} d r^{2}+R^{2} d \theta^{2},
\end{aligned}
$$

where $\lambda^{2}=r^{2}-2 M r+a^{2}-N^{2}$ and $R^{2}=r^{2}+(N+a \cos \theta)^{2}$

Gravitational duality on the linearized Schwarzschild (Kerr) solution gives us the linearized NUT (rotating) solution.

- Linearized Schwarzschild $(a=0, N=0): P_{0}=M$

1. The Kerr-NUT black hole $[$ Carter '68] :

$$
\begin{aligned}
d s^{2}= & -\frac{\lambda^{2}}{R^{2}}\left[d t-\left(a \sin ^{2} \theta-2 N \cos \theta\right) d \phi\right]^{2} \\
& +\frac{\sin ^{2} \theta}{R^{2}}\left[\left(r^{2}+a^{2}+N^{2}\right) d \phi-a d t\right]^{2}+\frac{R^{2}}{\lambda^{2}} d r^{2}+R^{2} d \theta^{2},
\end{aligned}
$$

where $\lambda^{2}=r^{2}-2 M r+a^{2}-N^{2}$ and $R^{2}=r^{2}+(N+a \cos \theta)^{2}$
Gravitational duality on the linearized Schwarzschild (Kerr) solution gives us the linearized NUT (rotating) solution.

- Linearized Schwarzschild $(a=0, N=0): ~ P_{0}=M$
- Linearized NUT $(a=0, M=0)$:

$$
\text { - } \Phi^{0 z}{ }_{0}=-16 \pi N \delta(x) \delta(y) \vartheta(z) \Rightarrow \Theta^{00}=N \delta(\mathbf{x}) \Rightarrow K_{0}=N
$$

1. The Kerr-NUT black hole $[$ Carter '68] :

$$
\begin{aligned}
d s^{2}= & -\frac{\lambda^{2}}{R^{2}}\left[d t-\left(a \sin ^{2} \theta-2 N \cos \theta\right) d \phi\right]^{2} \\
& +\frac{\sin ^{2} \theta}{R^{2}}\left[\left(r^{2}+a^{2}+N^{2}\right) d \phi-a d t\right]^{2}+\frac{R^{2}}{\lambda^{2}} d r^{2}+R^{2} d \theta^{2},
\end{aligned}
$$

where $\lambda^{2}=r^{2}-2 M r+a^{2}-N^{2}$ and $R^{2}=r^{2}+(N+a \cos \theta)^{2}$
Gravitational duality on the linearized Schwarzschild (Kerr) solution gives us the linearized NUT (rotating) solution.

- Linearized Schwarzschild $(a=0, N=0): ~ P_{0}=M$
- Linearized NUT $(a=0, M=0)$:
- $\Phi^{0 z}{ }_{0}=-16 \pi N \delta(x) \delta(y) \vartheta(z) \Rightarrow \Theta^{00}=N \delta(x) \Rightarrow K_{0}=N$.
- $\Phi_{\mu \nu \rho}=0 \Rightarrow \Delta L^{x y} / \Delta z=N \quad$ [Bonnor '69]
- Linearized Kerr: $P_{0}=M$ and $L^{x y}=M a$.
- Linearized Kerr: $P_{0}=M$ and $L^{x y}=M a$.
- Linearized NUT rotating:
- $\Phi^{0 z}{ }_{0}=-16 \pi N \delta(x) \delta(y) \vartheta(z) \quad \Phi^{0 y}{ }_{x}=-\Phi^{0 x}{ }_{y}=-\Phi^{x y}{ }_{0}=8 \pi N a \delta(x)$
- This describes a magnetic mass $K_{0}=N$ with a dual angular momentum $\tilde{L}^{x y}=N a$.
- Linearized Kerr: $P_{0}=M$ and $L^{x y}=M a$.
- Linearized NUT rotating:
- $\Phi^{0 z}{ }_{0}=-16 \pi N \delta(x) \delta(y) \vartheta(z) \quad \Phi^{0 y}{ }_{x}=-\Phi^{0 x}{ }_{y}=-\Phi^{x y}{ }_{0}=0$
- Linearized Kerr: $P_{0}=M$ and $L^{x y}=M a$.
- Linearized NUT rotating:
- $\Phi^{0 z}{ }_{0}=-16 \pi N \delta(x) \delta(y) \vartheta(z) \quad \Phi^{0 y}{ }_{x}=-\Phi^{0 x}{ }_{y}=-\Phi^{x y}{ }_{0}=0$
- "exotic" interpretations: [Argurio, F.D. '09]
- "Physical" Kerr with $\Phi^{z 0}{ }_{0}=16 \pi \operatorname{Ma\delta }(\mathbf{x})$
- $T_{00}=M \delta(\mathbf{x}) \quad \Theta_{00}=\operatorname{Ma\delta }(x) \delta(y) \delta^{\prime}(z)$
- $P_{0}=M$ and $\tilde{L}_{0 z}=M a$
- Linearized Kerr: $P_{0}=M$ and $L^{x y}=M a$.
- Linearized NUT rotating:
- $\Phi^{0 z}{ }_{0}=-16 \pi N \delta(x) \delta(y) \vartheta(z) \quad \Phi^{0 y}{ }_{x}=-\Phi^{0 x}{ }_{y}=-\Phi^{x y}{ }_{0}=0$
- "exotic" interpretations: [Argurio, F.D. '09]
- "Physical" Kerr with $\Phi^{z 0}{ }_{0}=16 \pi \operatorname{Ma\delta }(\mathbf{x})$
- $T_{00}=M \delta(\mathbf{x}) \quad \Theta_{00}=\operatorname{Ma} \delta(x) \delta(y) \delta^{\prime}(z)$
- $P_{0}=M$ and $\tilde{L}_{0 z}=M a$
-N
M
N
In the limit where

$$
\begin{gathered}
\epsilon \rightarrow 0, N \rightarrow \infty \\
\text { and } N \epsilon=M a
\end{gathered}
$$

2. The metric of the shock pp-wave is:

$$
d s^{2}=H(x, y, u) d u^{2}-d u d v+d x^{2}+d y^{2}
$$

where $H(x, y, u)=V(x, y) \delta(u)$ and V is harmonic in x and y.
2. The metric of the shock pp-wave is:

$$
d s^{2}=H(x, y, u) d u^{2}-d u d v+d x^{2}+d y^{2}
$$

where $H(x, y, u)=V(x, y) \delta(u)$ and V is harmonic in x and y.
Under gravitational duality: $V(x, y) \rightarrow \tilde{V}(x, y)$
V and \tilde{V} are harmonic conjugate functions.
2. The metric of the shock pp-wave is:

$$
d s^{2}=H(x, y, u) d u^{2}-d u d v+d x^{2}+d y^{2}
$$

where $H(x, y, u)=V(x, y) \delta(u)$ and V is harmonic in x and y.
Under gravitational duality: $V(x, y) \rightarrow \tilde{V}(x, y)$

V and \tilde{V} are harmonic conjugate functions.

Example: Aichelburg-SexI pp-wave vs. NUT-wave

- The boosted Schwarzschild with $\gamma \rightarrow \infty, M \rightarrow 0$ and $M \gamma=p$:

$$
V(x, y)=-8 p \ln \left(\sqrt{x^{2}+y^{2}}\right) \quad \text { Charges: } P_{0}=p=\left|P_{3}\right|
$$

[Aichelburg, Sexl '71],[Dray, t'Hooft '85]
2. The metric of the shock pp-wave is:

$$
d s^{2}=H(x, y, u) d u^{2}-d u d v+d x^{2}+d y^{2}
$$

where $H(x, y, u)=V(x, y) \delta(u)$ and V is harmonic in x and y.
Under gravitational duality: $V(x, y) \rightarrow \tilde{V}(x, y)$

V and \tilde{V} are harmonic conjugate functions.

Example: Aichelburg-SexI pp-wave vs. NUT-wave

- The boosted Schwarzschild with $\gamma \rightarrow \infty, M \rightarrow 0$ and $M \gamma=p$:

$$
V(x, y)=-8 p \ln \left(\sqrt{x^{2}+y^{2}}\right) \quad \text { Charges: } P_{0}=p=\left|P_{3}\right|
$$

[Aichelburg, Sexl '71],[Dray, t'Hooft '85]

- The boosted NUT metric with $\gamma \rightarrow \infty, N \rightarrow 0$ and $N \gamma=k$

$$
\tilde{V}(x, y)=-8 k \arctan (x / y) \quad \text { Charges: } K_{0}=k=\left|K_{3}\right|
$$

$\mathcal{N}=2$ Supersymmetric solutions with NUT charge

We consider $\mathcal{N}=2$ pure supergravity in $D=4$
gravity multiplet: $g_{\mu \nu}, \psi_{\mu}, A_{\mu}$

The charged Taub-NUT solution [Brill ${ }^{64]}$ is a solution of the bosonic e.o.m.:
$d s^{2}=-\frac{\lambda}{R^{2}}(d t+2 N \cos \theta d \phi)^{2}+\frac{R^{2}}{\lambda} d r^{2}+\left(r^{2}+N^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$
where $\lambda=r^{2}-N^{2}-2 M r+Q^{2}+H^{2}$ and $R^{2}=r^{2}+N^{2}$

$$
A_{t}=\frac{Q r+N H}{r^{2}+N^{2}} \quad A_{\phi}=\frac{-H\left(r^{2}-N^{2}\right)+2 N Q r}{r^{2}+N^{2}} \cos \theta
$$

$\mathcal{N}=2$ Supersymmetric solutions with NUT charge

We consider $\mathcal{N}=2$ pure supergravity in $D=4$
gravity multiplet: $g_{\mu \nu}, \psi_{\mu}, A_{\mu}$
The charged Taub-NUT solution [Brill'64] is a solution of the bosonic e.o.m.:
$d s^{2}=-\frac{\lambda}{R^{2}}(d t+2 N \cos \theta d \phi)^{2}+\frac{R^{2}}{\lambda} d r^{2}+\left(r^{2}+N^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$
where $\lambda=r^{2}-N^{2}-2 M r+Q^{2}+H^{2}$ and $R^{2}=r^{2}+N^{2}$

$$
A_{t}=\frac{Q r+N H}{r^{2}+N^{2}} \quad A_{\phi}=\frac{-H\left(r^{2}-N^{2}\right)+2 N Q r}{r^{2}+N^{2}} \cos \theta
$$

It is easy to see that in the case $N=0$, we recover the supersymmetric Reissner-Nordström black hole solution.

What do we already know ?

- All supersymmetric solutions have been classified [Tod'83]
- All modifications of the (r.h.s. of the) supersymmetry algebra [Van Holten, Van Proeyen '82],[Ferrara, Porrati '98]

What do we already know ?

- All supersymmetric solutions have been classified [Tod'83]
- All modifications of the (r.h.s. of the) supersymmetry algebra [Van Holten, Van Proeyen '82],[Ferrara, Porrati '98]

Strategy

- Review of the susy of the R.N. black hole solution.
- Consider modifications of the supersymmetry algebra to deal with the supersymmetry of the charged Taub-NUT (or duals of supersymmetric solutions).

What do we already know ?

- All supersymmetric solutions have been classified [Tod '83]
- All modifications of the (r.h.s. of the) supersymmetry algebra [Van Holten, Van Proeyen '82],[Ferrara, Porrati '98]

Strategy

- Review of the susy of the R.N. black hole solution.
- Consider modifications of the supersymmetry algebra to deal with the supersymmetry of the charged Taub-NUT (or duals of supersymmetric solutions).

Important Hint

Reissner-Nordström with Q and H can be obtained from the Q-charged solution by an EM duality rotation. [Romans '92]

To be supersymmetric, the solution must possess non-trivial killing spinors:

$$
\delta \psi_{\mu}=\hat{\nabla}_{\mu} \epsilon=\hat{D}_{\mu} \epsilon+\frac{i}{4} F_{a b} \gamma^{a b} \gamma_{\mu} \epsilon=0
$$

The BPS bound for R.N. can be obtained as a necessary condition for their existence:

$$
\left[\hat{\nabla}_{\mu}, \hat{\nabla}_{\nu}\right] \epsilon=0 \rightarrow \Theta X_{\mu \nu} \epsilon=0
$$

This equation possess non-trivial solutions iff

$$
\operatorname{det} \Theta=0 \Rightarrow \quad M^{2}=Q^{2}+H^{2}
$$

To be supersymmetric, the solution must possess non-trivial killing spinors:

$$
\delta \psi_{\mu}=\hat{\nabla}_{\mu} \epsilon=\hat{D}_{\mu} \epsilon+\frac{i}{4} F_{a b} \gamma^{a b} \gamma_{\mu} \epsilon=0
$$

The BPS bound for R.N. can be obtained as a necessary condition for their existence:

$$
\left[\hat{\nabla}_{\mu}, \hat{\nabla}_{\nu}\right] \epsilon=0 \rightarrow \Theta X_{\mu \nu} \epsilon=0
$$

This equation possess non-trivial solutions iff

$$
\operatorname{det} \Theta=0 \Rightarrow \quad M^{2}=Q^{2}+H^{2}
$$

The projection on the spinor is

$$
\left[M-i\left(Q-\gamma_{5} H\right) \gamma_{0}\right] \epsilon=0
$$

This is precisely the r.h.s. of the $\mathcal{N}=2$ supersymmetry algebra

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\gamma^{\mu} C P_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

To be supersymmetric, the solution must possess non-trivial killing spinors:

$$
\delta \psi_{\mu}=\hat{\nabla}_{\mu} \epsilon=\hat{D}_{\mu} \epsilon+\frac{i}{4} F_{a b} \gamma^{a b} \gamma_{\mu} \epsilon=0
$$

The BPS bound for T.N. can be obtained as a necessary condition for their existence:

$$
\left[\hat{\nabla}_{\mu}, \hat{\nabla}_{\nu}\right] \epsilon=0 \rightarrow \Theta X_{\mu \nu} \epsilon=0
$$

This equation possess non-trivial solutions iff [Alonso-Alberca, Meessen, Ortin 'ood,[Kallosh, Kastor, Ortin, Torma '94],[Alvarez, Meessen, Ortin '97], [Hull '98]

$$
\operatorname{det} \Theta=0 \Rightarrow N^{2}+M^{2}=Q^{2}+H^{2} \Rightarrow N U T \text { is present }
$$

The projection on the spinor is

$$
\left[M-i\left(Q-\gamma_{5} H\right) \gamma_{0}\right] \epsilon=0
$$

This is precisely the r.h.s. of the $\mathcal{N}=2$ supersymmetry algebra

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\gamma^{\mu} C P_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

To be supersymmetric, the solution must possess non-trivial killing spinors:

$$
\delta \psi_{\mu}=\hat{\nabla}_{\mu} \epsilon=\hat{D}_{\mu} \epsilon+\frac{i}{4} F_{a b} \gamma^{a b} \gamma_{\mu} \epsilon=0
$$

The BPS bound for T.N. can be obtained as a necessary condition for their existence:

$$
\left[\hat{\nabla}_{\mu}, \hat{\nabla}_{\nu}\right] \epsilon=0 \rightarrow \Theta X_{\mu \nu} \epsilon=0
$$

This equation possess non-trivial solutions iff [Alonso-Alberca, Meessen, Ortin ${ }^{\prime}$ ood],[Kallosh, Kastor, Ortin, Torma '94],[Alvarez, Meessen, Ortin '97], [Hull '98]

$$
\operatorname{det} \Theta=0 \Rightarrow N^{2}+M^{2}=Q^{2}+H^{2} \Rightarrow N U T \text { is present }
$$

The projection on the spinor is r-dependent but constant for $r \rightarrow \infty$

$$
\left[M-\gamma_{5} N-i\left(Q-\gamma_{5} H\right) \gamma_{0}\right] \epsilon=0
$$

This is precisely the r.h.s. of the $\mathcal{N}=2$ supersymmetry algebra

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\gamma^{\mu} C P_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

To be supersymmetric, the solution must possess non-trivial killing spinors:

$$
\delta \psi_{\mu}=\hat{\nabla}_{\mu} \epsilon=\hat{D}_{\mu} \epsilon+\frac{i}{4} F_{a b} \gamma^{a b} \gamma_{\mu} \epsilon=0
$$

The BPS bound for T.N. can be obtained as a necessary condition for their existence:

$$
\left[\hat{\nabla}_{\mu}, \hat{\nabla}_{\nu}\right] \epsilon=0 \rightarrow \Theta X_{\mu \nu} \epsilon=0
$$

This equation possess non-trivial solutions iff [Alonso-Alberca, Meessen, Ortin 'o0],[Kallosh, Kastor, Ortin, Torma '94],[Alvarez, Meessen, Ortin '97], [Hull '98]

$$
\operatorname{det} \Theta=0 \Rightarrow N^{2}+M^{2}=Q^{2}+H^{2} \Rightarrow N U T \text { is present }
$$

The projection on the spinor is r-dependent but constant for $r \rightarrow \infty$

$$
\left[M-\gamma_{5} N-i\left(Q-\gamma_{5} H\right) \gamma_{0}\right] \epsilon=0
$$

This is precisely the r.h.s. of the $\mathcal{N}=2$ supersymmetry algebra?

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} \stackrel{?}{=} \gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}} \epsilon)
$$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i\left(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}}_{\epsilon}\right)
$$

The supersymmetric variation of the supercharge is: [Barnich, Brandt $\left.{ }^{\prime} 02\right]$, Barrich, Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right] \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{2} \\
& =-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \delta_{\epsilon_{1}, \bar{\epsilon}_{1}} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .
\end{aligned}
$$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i\left(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}}_{\epsilon}\right)
$$

The supersymmetric variation of the supercharge is: [Barrich, Brandt '02],[Barnich, Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right] \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{2} \\
& =-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon_{1} d \Sigma_{\mu \nu}+c . c .
\end{aligned}
$$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i\left(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}}_{\epsilon}\right)
$$

The supersymmetric variation of the supercharge is: [Barrich, Brandt '02],[Barnich, Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right] \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{2} \\
& =-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon_{1} d \Sigma_{\mu \nu}+c . c .
\end{aligned}
$$

Introducing the real Witten-Nester two-form [Nester '81],[Witten '81], [Gibbons, Hull '82],[Hull '83]

$$
\begin{aligned}
\oint \hat{E}^{\mu \nu} d \Sigma_{\mu \nu} & =\oint\left[E^{\mu \nu}+H^{\mu \nu}\right] d \Sigma_{\mu \nu}=\frac{1}{4 \pi} \oint\left[\varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon+c . c .\right] d \Sigma_{\mu \nu} \\
& =\bar{\epsilon}\left[\gamma^{\mu} P_{\mu}-i\left(U+\gamma_{5} V\right)\right] \epsilon
\end{aligned}
$$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i\left(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}}_{\epsilon}\right)
$$

The supersymmetric variation of the supercharge is: [Barnich, Brandt '02],[Barnich, Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right] \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{2} \\
& =-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon_{1} d \Sigma_{\mu \nu}+c . c .
\end{aligned}
$$

Introducing the real Witten-Nester two-form [Nester '81],[Witten '81], [Gibbons, Hull '82], [Hull '83]

$$
\begin{aligned}
\oint \hat{E}^{\mu \nu} d \Sigma_{\mu \nu} & =\oint\left[E^{\mu \nu}+H^{\mu \nu}\right] d \Sigma_{\mu \nu}=\frac{1}{4 \pi} \oint\left[\varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon+c . c .\right] d \Sigma_{\mu \nu} \\
& =\bar{\epsilon}\left[\gamma^{\mu} P_{\mu}-i\left(U+\gamma_{5} V\right)\right] \epsilon
\end{aligned}
$$

So we obtain: $\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\gamma^{\mu} C P_{\mu}-i\left(U+\gamma_{5} V\right) C$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i\left(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}}_{\epsilon}\right)
$$

The supersymmetric variation of the supercharge is: [Barnich, Brandt '02],[Barnich, Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right] \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{2} \\
& =-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon_{1} d \Sigma_{\mu \nu}+c . c .
\end{aligned}
$$

Introducing the real Witten-Nester two-form [Nester '81],[Witten '81], [Gibbons, Hull '82], [Hull '83]

$$
\begin{aligned}
\oint \hat{E}^{\mu \nu} d \Sigma_{\mu \nu} & =\oint\left[E^{\mu \nu}+H^{\mu \nu}\right] d \Sigma_{\mu \nu}=\frac{1}{4 \pi} \oint\left[\varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon+c . c .\right] d \Sigma_{\mu \nu} \\
& =\bar{\epsilon}\left[\gamma^{\mu} P_{\mu}-i\left(U+\gamma_{5} V\right)\right] \epsilon
\end{aligned}
$$

So we obtain: $\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} \stackrel{?}{=} \gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i\left(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}}_{\epsilon}\right)
$$

The supersymmetric variation of the supercharge is: [Barnich, Brandt $\left.{ }^{\prime} 02\right]$, [Barrich, Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right] \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{2} \\
& =-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon_{1} d \Sigma_{\mu \nu}+c . c .
\end{aligned}
$$

Introducing the complexified Witten-Nester two-form [Nester '81],[Witten '81],
[Gibbons, Hull '82],.Hull '83]

$$
\begin{aligned}
\oint \hat{F}^{\mu \nu} d \Sigma_{\mu \nu} & =\oint\left[F^{\mu \nu}+H^{\mu \nu}\right] d \Sigma_{\mu \nu}=\frac{1}{2 \pi} \oint\left[\varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon+c, / c .\right] d \Sigma_{\mu \nu} \\
& =\bar{\epsilon}\left[\gamma^{\mu} P_{\mu}+\gamma_{5} \gamma^{\mu} K_{\mu}-i\left(U+\gamma_{5} V\right)\right] \epsilon
\end{aligned}
$$

So we obtain: $\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} \stackrel{?}{=} \gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i\left(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}}_{\epsilon}\right)
$$

The supersymmetric variation of the supercharge is: [Barnich, Brandt $\left.{ }^{\prime} 02\right]$, Barrich, Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right]+T_{\text {sym }} \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} C \epsilon_{2}+T_{\text {sym }} \\
& =-\frac{i}{2 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon_{1} d \Sigma_{\mu \nu}+c, / c .
\end{aligned}
$$

Introducing the complexified Witten-Nester two-form [Nester'81],Witten'81].
[Gibbons, Hull ' 82], [Hull ' 83]

$$
\begin{aligned}
\oint \hat{F}^{\mu \nu} d \Sigma_{\mu \nu} & =\oint\left[F^{\mu \nu}+H^{\mu \nu}\right] d \Sigma_{\mu \nu}=\frac{1}{2 \pi} \oint\left[\varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon+c / c .\right] d \Sigma_{\mu \nu} \\
& =\bar{\epsilon}\left[\gamma^{\mu} P_{\mu}+\gamma_{5} \gamma^{\mu} K_{\mu}-i\left(U+\gamma_{5} V\right)\right] \epsilon
\end{aligned}
$$

So we obtain: $\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}{ }^{?} \gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i\left(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}}_{\epsilon}\right)
$$

The supersymmetric variation of the supercharge is: [Barrich, Brandt '02],[Barnich, Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q^{\prime}\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right] \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, Q^{\star}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}^{\prime}, \mathcal{Q}^{\star}\right\} C \epsilon_{2} \\
& =-\frac{i}{2 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon_{1} d \Sigma_{\mu \nu}+c, / c .
\end{aligned}
$$

Introducing the complexified Witten-Nester two-form [Nester '81],[Witten '81],
[Gibbons, Hull '82], [Hull '83]

$$
\begin{aligned}
\oint \hat{F}^{\mu \nu} d \Sigma_{\mu \nu} & =\oint\left[F^{\mu \nu}+H^{\mu \nu}\right] d \Sigma_{\mu \nu}=\frac{1}{2 \pi} \oint\left[\varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon+c, / c .\right] d \Sigma_{\mu \nu} \\
& =\bar{\epsilon}\left[\gamma^{\mu} P_{\mu}+\gamma_{5} \gamma^{\mu} K_{\mu}-i\left(U+\gamma_{5} V\right)\right] \epsilon
\end{aligned}
$$

So we obtain: $\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\} \stackrel{?}{=} \gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C$

The bosonic supercharge in supergravity is

$$
Q[\epsilon, \bar{\epsilon}]=-\frac{i}{4 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \psi_{\sigma} d \Sigma_{\mu \nu}+c . c .=i(\bar{\epsilon} \mathcal{Q}+\overline{\mathcal{Q}} \epsilon)
$$

The supersymmetric variation of the supercharge is: [Barrich, Brandt '02],[Barnich,
Compere '08]

$$
\begin{aligned}
\delta_{\epsilon_{1}, \bar{\epsilon}_{1}} Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right] & =i\left[Q^{\prime}\left[\epsilon_{1}, \bar{\epsilon}_{1}\right], Q\left[\epsilon_{2}, \bar{\epsilon}_{2}\right]\right] \\
& =i \bar{\epsilon}_{2}\left\{\mathcal{Q}, \mathcal{Q}^{\prime}\right\} C \epsilon_{1}-i \bar{\epsilon}_{1}\left\{\mathcal{Q}^{\prime}, \mathcal{Q}^{\star}\right\} C \epsilon_{2} \\
& =-\frac{i}{2 \pi} \oint \varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon}_{2} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon_{1} d \Sigma_{\mu \nu}+c, / c .
\end{aligned}
$$

Introducing the complexified Witten-Nester two-form [Nester '81],[Witten '81],
[Gibbons, Hull '82],[Hull ' 83]

$$
\begin{aligned}
\oint \hat{F}^{\mu \nu} d \Sigma_{\mu \nu} & =\oint\left[F^{\mu \nu}+H^{\mu \nu}\right] d \Sigma_{\mu \nu}=\frac{1}{2 \pi} \oint\left[\varepsilon^{\mu \nu \rho \sigma} \bar{\epsilon} \gamma_{5} \gamma_{\rho} \hat{\nabla}_{\sigma} \epsilon+c, / c \cdot\right] d \Sigma_{\mu \nu} \\
& =\bar{\epsilon}\left[\gamma^{\mu} P_{\mu}+\gamma_{5} \gamma^{\mu} K_{\mu}-i\left(U+\gamma_{5} V\right)\right] \epsilon
\end{aligned}
$$

So we obtain: $\left\{\mathcal{Q}, \mathcal{Q}^{\prime}{ }^{\star}\right\}=\gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C$

Did we solve our problem ? This is a non-hermitian algebra:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\prime \star}\right\}=\gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

\mathcal{Q}^{\prime} must be related to $\mathcal{Q} \leftrightarrow$ no doubling of the number of \mathcal{Q}.
Proposal:

$$
\mathcal{Q}^{\prime \star}=\mathcal{Q}^{\star} e^{\arctan \left(K_{0} / P_{0}\right) \gamma_{5}}
$$

Did we solve our problem ? This is a non-hermitian algebra:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\prime \star}\right\}=\gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

\mathcal{Q}^{\prime} must be related to $\mathcal{Q} \leftrightarrow$ no doubling of the number of \mathcal{Q}.
Proposal: $\quad \mathcal{Q}^{\star}{ }^{\star}=\mathcal{Q}^{\star} e^{\arctan \left(K_{0} / P_{0}\right) \gamma_{5}}$
We obtain:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\sqrt{P_{0}^{2}+K_{0}^{2}}+\frac{1}{\sqrt{P_{0}^{2}+K_{0}^{2}}}\left[P_{i} P_{0}+K_{i} K_{0}+\gamma_{5}\left(K_{i} P_{0}-P_{i} K_{0}\right)\right] \gamma^{i} \gamma_{0}
$$

Did we solve our problem ? This is a non-hermitian algebra:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\prime \star}\right\}=\gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

\mathcal{Q}^{\prime} must be related to $\mathcal{Q} \leftrightarrow$ no doubling of the number of \mathcal{Q}.
Proposal: $\quad \mathcal{Q}^{\star}{ }^{\star}=\mathcal{Q}^{\star} e^{\arctan \left(K_{0} / P_{0}\right) \gamma_{5}}$
We obtain:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\sqrt{P_{0}^{2}+K_{0}^{2}}+\frac{1}{\sqrt{P_{0}^{2}+K_{0}^{2}}}\left[P_{i} P_{0}+K_{i} K_{0}+\gamma_{5}\left(K_{i} P_{0}-P_{i} K_{0}\right)\right] \gamma^{i} \gamma_{0}
$$

Did we solve our problem ? This is a non-hermitian algebra:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\prime \star}\right\}=\gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

\mathcal{Q}^{\prime} must be related to $\mathcal{Q} \leftrightarrow$ no doubling of the number of \mathcal{Q}.
Proposal: $\quad \mathcal{Q}^{\prime \star}=\mathcal{Q}^{\star} e^{\arctan \left(K_{0} / P_{0}\right) \gamma_{5}}$
We obtain:
$\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\sqrt{P_{0}^{2}+K_{0}^{2}}+\frac{1}{\sqrt{P_{0}^{2}+K_{0}^{2}}}\left[P_{i} P_{0}+K_{i} K_{0}+\gamma_{5}\left(K_{i} P_{0}-P_{i} K_{0}\right)\right] \gamma^{i} \gamma_{0}$

We only consider $P_{\mu}=\lambda K_{\mu}$ where $\lambda=$ cst.

- No known solutions with $P_{\mu} \neq \lambda K_{\mu}$
- r.h.s of the generalized SUSY algebra does not have vanishing eigenvalues when $P_{\mu} \neq \lambda K_{\mu}$

Hermitian superalgebra with redefined generators:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\gamma^{\mu} C P^{\prime}{ }_{\mu}-i\left(U^{\prime}+\gamma_{5} V^{\prime}\right) C
$$

where:

$$
P^{\prime}{ }_{0}=\sqrt{P_{0}^{2}+K_{0}^{2}} P_{i}^{\prime}=\frac{P_{i} P_{0}+K_{i} K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}} U^{\prime}=\frac{U P_{0}-V K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}} V^{\prime}=\frac{V P_{0}+U K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}}
$$

Hermitian superalgebra with redefined generators:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\gamma^{\mu} C P^{\prime}{ }_{\mu}-i\left(U^{\prime}+\gamma_{5} V^{\prime}\right) C
$$

where:

$$
P^{\prime}{ }_{0}=\sqrt{P_{0}^{2}+K_{0}^{2}} P^{\prime}{ }_{i}=\frac{P_{i} P_{0}+K_{i} K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}} U^{\prime}=\frac{U P_{0}-V K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}} V^{\prime}=\frac{V P_{0}+U K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}}
$$

Example: The charged Taub-NUT:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\prime \star}\right\}=M+\gamma_{5} N-i\left(Q+\gamma_{5} H\right) \gamma_{0}
$$

We obtain:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\sqrt{M^{2}+N^{2}}-\frac{i}{\sqrt{M^{2}+N^{2}}}\left((Q M-H N)+\gamma_{5}(H M+Q N)\right)
$$

Hermitian superalgebra with redefined generators:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\gamma^{\mu} C P^{\prime}{ }_{\mu}-i\left(U^{\prime}+\gamma_{5} V^{\prime}\right) C
$$

where:

$$
P^{\prime}{ }_{0}=\sqrt{P_{0}^{2}+K_{0}^{2}} P_{i}^{\prime}=\frac{P_{i} P_{0}+K_{i} K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}} \quad U^{\prime}=\frac{U P_{0}-V K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}} \quad V^{\prime}=\frac{V P_{0}+U K_{0}}{\sqrt{P_{0}^{2}+K_{0}^{2}}}
$$

Example: The charged Taub-NUT:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\prime} \star\right\}=M+\gamma_{5} N-i\left(Q+\gamma_{5} H\right) \gamma_{0}
$$

We obtain:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\sqrt{M^{2}+N^{2}}-\frac{i}{\sqrt{M^{2}+N^{2}}}\left((Q M-H N)+\gamma_{5}(H M+Q N)\right)
$$

The previous rotation is actually acting as a gravitational duality rotation on the bosonic charges: $\quad\left(\alpha_{m}=\arctan \left(K_{0} / P_{0}\right)\right)$

$$
\left(\begin{array}{cc}
\cos \alpha_{m} & \sin \alpha_{m} \\
-\sin \alpha_{m} & \cos \alpha_{m}
\end{array}\right)\binom{M}{N}=\binom{M^{\prime}}{0}
$$

$\mathcal{N}=1$ Supersymmetric solutions with NUT charge

The bosonic part of the $\mathcal{N}=1$ supergravity Lagrangian is just the Einstein-Hilbert action.
The Aichelburg-Sexl pp-wave is an half BPS solution with BPS bound

$$
P_{0}=\left|P_{3}\right|=p
$$

The constant killing spinor satisfies:

$$
\left(\gamma_{0}+\gamma_{3}\right) \epsilon=0
$$

$\mathcal{N}=1$ Supersymmetric solutions with NUT charge

The bosonic part of the $\mathcal{N}=1$ supergravity Lagrangian is just the Einstein-Hilbert action.
The Aichelburg-Sexl pp-wave is an half BPS solution with BPS bound

$$
P_{0}=\left|P_{3}\right|=p
$$

The constant killing spinor satisfies:

$$
\left(\gamma_{0}+\gamma_{3}\right) \epsilon=0
$$

Conservation of SUSY under gravitational duality:

The NUT-wave was also checked to be an half-BPS solution of the theory with BPS bound $K_{0}=\left|K_{3}\right|=k$ and constant killing spinor.

$\mathcal{N}=1$ Supersymmetric solutions with NUT charge

The bosonic part of the $\mathcal{N}=1$ supergravity Lagrangian is just the Einstein-Hilbert action.
The Aichelburg-Sexl pp-wave is an half BPS solution with BPS bound

$$
P_{0}=\left|P_{3}\right|=p
$$

The constant killing spinor satisfies:

$$
\left(\gamma_{0}+\gamma_{3}\right) \epsilon=0
$$

Conservation of SUSY under gravitational duality:

The NUT-wave was also checked to be an half-BPS solution of the theory with BPS bound $K_{0}=\left|K_{3}\right|=k$ and constant killing spinor.

This stems for the existence of the same phenomena in $\mathcal{N}=1$ supergravity where the supersymmetry algebra has to be modified like:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\prime}\right\}=\gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}
$$

Conclusions:

In linearized Gravity:

- Duality invariant Einstein equations introducing a magnetic stress-energy tensor $\Theta_{\mu \nu}$.
- Dual Poincare charges: Taub-NUT, and the Kerr-NUT. New interpretation for Kerr's source.
- We have derived a NUT-wave, a shock wave dual to the Aichelburg-Sexl pp-wave.

Conclusions:

In linearized Gravity:

- Duality invariant Einstein equations introducing a magnetic stress-energy tensor $\Theta_{\mu \nu}$.
- Dual Poincare charges: Taub-NUT, and the Kerr-NUT. New interpretation for Kerr's source.
- We have derived a NUT-wave, a shock wave dual to the Aichelburg-Sexl pp-wave.

In (linearized) supergravity:

- Checked SUSY of solutions obtain by duality rotations on known supersymmetric solutions: Taub-NUT
- Looking at the complex Witten-Nester form, we modified the supersymmetry algebra to introduce the NUT charge:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\prime \star}\right\}=\gamma^{\mu} C P_{\mu}+\gamma_{5} \gamma^{\mu} C K_{\mu}-i\left(U+\gamma_{5} V\right) C
$$

Conclusions:

In linearized Gravity:

- Duality invariant Einstein equations introducing a magnetic stress-energy tensor $\Theta_{\mu \nu}$.
- Dual Poincare charges: Taub-NUT, and the Kerr-NUT. New interpretation for Kerr's source.
- We have derived a NUT-wave, a shock wave dual to the Aichelburg-Sexl pp-wave.

In (linearized) supergravity:

- Checked SUSY of solutions obtain by duality rotations on known supersymmetric solutions: Taub-NUT
- Looking at the complex Witten-Nester form, we modified the supersymmetry algebra to introduce the NUT charge:

$$
\left\{\mathcal{Q}, \mathcal{Q}^{\star}\right\}=\gamma^{\mu} C P^{\prime}{ }_{\mu}-i\left(U^{\prime}+\gamma_{5} V^{\prime}\right) C
$$

Future work

- Definition of the NUT charge in the full theory ? Gravitational duality for the non-linear theory? [Compere, Virmani '09??]
- What about more supersymmetry ? $(\mathcal{N}=4,8$?) or higher-dimensions? (M-theory superalgebra ?)
- Generalize these ideas to AIAdS spacetimes.
- J enters the superalgebra (Also Witten-Nester). Dual charges ? work in progress..
- Plebanski-Demianski solution: $\Lambda, Q+i H, M+i N$ and $a+i \alpha$: Link between rotating and C -metrics by duality ?
- AdS/CFT: dual graviton as a source for the Cotton Tensor [Leigh, Petkou '07],[de Haro '08]

ThaNk yoU!

