Classifying Highly Supersymmetric Solutions

Jan Gutowski

King's College London

with U. Gran, G. Papadopoulos and D. Roest

arXiv:????, arXiv:0902.3642, arXiv:0710.1829, hep-th/0610331, hep-th/0606049

15-th European Workshop on String Theory

• IIB Supergravity and Killing Spinors

- IIB Supergravity and Killing Spinors
- $\bullet\,$ Analysis of Solutions with 28 < N < 32 supersymmetries

- IIB Supergravity and Killing Spinors
- $\bullet\,$ Analysis of Solutions with 28 < N < 32 supersymmetries

No assumptions about the spacetime geometry/fluxes are made - the analysis is completely general.

- IIB Supergravity and Killing Spinors
- $\bullet\,$ Analysis of Solutions with 28 < N < 32 supersymmetries

No assumptions about the spacetime geometry/fluxes are made - the analysis is completely general.

All *maximally supersymmetric* solutions, i.e. those with 32 linearly independent Killing spinors, are completely classified [Figueroa O'Farrill, Papadopoulos]

- IIB Supergravity and Killing Spinors
- $\bullet\,$ Analysis of Solutions with 28 < N < 32 supersymmetries

No assumptions about the spacetime geometry/fluxes are made - the analysis is completely general.

All *maximally supersymmetric* solutions, i.e. those with 32 linearly independent Killing spinors, are completely classified [Figueroa O'Farrill, Papadopoulos]

One finds: $\mathbb{R}^{9,1}$, $AdS_5\times S^5$ and a maximally supersymmetric plane wave solution.

Conclusions

The bosonic fields of IIB supergravity are the spacetime metric g, the axion σ and dilaton ϕ , two three-form field strengths $G^{\alpha} = dA^{\alpha}$ ($\alpha = 1, 2$), and a self-dual five-form field strength F

The axion and dilaton give rise to a complex 1-form P [Schwarz].

The 3-forms are combined to give a complex 3-form G.

To achieve this, introduce a SU(1,1) matrix $U=(V^{\alpha}_+,V^{\alpha}_-),~\alpha=1,2$ such that

$$\begin{split} V^{\alpha}_{-}V^{\beta}_{+} - V^{\beta}_{-}V^{\alpha}_{+} &= \epsilon^{\alpha\beta} \ , \quad (V^{1}_{-})^{*} = V^{2}_{+}, \qquad (V^{2}_{-})^{*} = V^{1}_{+} \end{split}$$
 $\epsilon^{12} = 1 = \epsilon_{12}. \end{split}$ The V^{α}_{\pm} are related to the axion and dilaton by

$$\frac{V_{-}^2}{V_{-}^1} = \frac{1 + i(\sigma + ie^{-\phi})}{1 - i(\sigma + ie^{-\phi})} \ .$$

Then ${\boldsymbol{P}}$ and ${\boldsymbol{G}}$ are defined by

$$P_M = -\epsilon_{\alpha\beta} V^{\alpha}_+ \partial_M V^{\beta}_+, \quad G_{MNR} = -\epsilon_{\alpha\beta} V^{\alpha}_+ G^{\beta}_{MNR}$$

The gravitino Killing spinor equation is

$$\tilde{\nabla}_{M}\epsilon + \frac{i}{48}\Gamma^{N_{1}...N_{4}}\epsilon F_{N_{1}...N_{4}M} - \frac{1}{96}(\Gamma_{M}{}^{N_{1}N_{2}N_{3}}G_{N_{1}N_{2}N_{3}} -9\Gamma^{N_{1}N_{2}}G_{MN_{1}N_{2}})(C\epsilon)^{*} = 0$$

where

$$\tilde{\nabla}_M = \partial_M - \frac{i}{2}Q_M + \frac{1}{4}\Omega_{M,AB}\Gamma^{AB}$$

is the standard covariant derivative twisted with U(1) connection Q_M , given in terms of the SU(1,1) scalars by

$$Q_M = -i\epsilon_{\alpha\beta}V^{\alpha}_{-}\partial_M V^{\beta}_{+}$$

and Ω is the spin connection.

There is also an algebraic constraint

$$P_M \Gamma^M (C\epsilon)^* + \frac{1}{24} G_{N_1 N_2 N_3} \Gamma^{N_1 N_2 N_3} \epsilon = 0$$

The Killing spinor ϵ is a complex Weyl spinor constructed from two copies of the same Majorana-Weyl representation Δ_{16}^+ :

 $\epsilon = \psi_1 + i\psi_2$

Majorana-Weyl spinors ψ satisfy

 $\psi = C(\psi^*)$

C is the charge conjugation matrix.

- Let e_1, \ldots, e_5 be a locally defined orthonormal basis of \mathbb{R}^5 .
- Take U to be the span over \mathbb{R} of e_1, \ldots, e_5 .
- The space of Dirac spinors is $\Delta_c = \Lambda^*(U \otimes \mathbb{C})$ (the complexified space of all forms on U).
- Δ_c decomposes into even forms Δ_c^+ and odd forms Δ_c^- , which are the complex Weyl representations of Spin(9, 1).

• The gamma matrices are represented on Δ_c as

$$\begin{split} &\Gamma_0\eta &= -e_5 \wedge \eta + e_5 \lrcorner \eta \\ &\Gamma_5\eta &= e_5 \wedge \eta + e_5 \lrcorner \eta \\ &\Gamma_i\eta &= e_i \wedge \eta + e_i \lrcorner \eta \\ &\Gamma_{5+i}\eta &= ie_i \wedge \eta - ie_i \lrcorner \eta \\ \end{split}$$

• Γ_j for $j = 1, \dots, 9$ are hermitian and Γ_0 is anti-hermitian with respect to the inner product

$$< z^a e_a, w^b e_b > = \sum_{a=1}^5 (z^a)^* w^a$$
,

This inner product can be extended from $U \otimes \mathbb{C}$ to Δ_c .

• There is a Spin(9,1) invariant inner product defined on Δ_c defined by

 $B(\epsilon_1, \epsilon_2) = <\Gamma_0 C(\epsilon_1)^*, \epsilon_2 >$

B is skew-symmetric in ϵ_1, ϵ_2 .

B vanishes when restricted to Δ_c^+ or Δ_c^- .

• This defines a non-degenerate pairing $\mathcal{B}: \Delta_c^+ \otimes \Delta_c^- \to \mathbb{R}$ given by

 $\mathcal{B}(\epsilon,\xi) = \operatorname{Re} B(\epsilon,\xi)$

We wish to write a spinor $\nu=\nu_1+i\nu_2,$ where $\nu_i\in\Delta_{16}^-$ in a simple canonical form.

We wish to write a spinor $\nu = \nu_1 + i\nu_2$, where $\nu_i \in \Delta_{16}^-$ in a simple canonical form.

Spin(9,1) has one type of orbit with stability subgroup $Spin(7)\ltimes \mathbb{R}^8$ in Δ^-_{16} [Figueroa-O'Farrill, Bryant].

$$\Delta_{16}^{-} = \mathbb{R} < e_5 + e_{12345} > +\Lambda^1(\mathbb{R}^7) + \Delta_8 ,$$

We wish to write a spinor $\nu = \nu_1 + i\nu_2$, where $\nu_i \in \Delta_{16}^-$ in a simple canonical form.

Spin(9,1) has one type of orbit with stability subgroup $Spin(7) \ltimes \mathbb{R}^8$ in Δ_{16}^- [Figueroa-O'Farrill, Bryant].

$$\Delta_{16}^{-} = \mathbb{R} < e_5 + e_{12345} > +\Lambda^1(\mathbb{R}^7) + \Delta_8 ,$$

 $\mathbb{R} < e_5 + e_{12345} >$ is the singlet generated by $e_5 + e_{12345}$

We wish to write a spinor $\nu = \nu_1 + i\nu_2$, where $\nu_i \in \Delta_{16}^-$ in a simple canonical form.

Spin(9,1) has one type of orbit with stability subgroup $Spin(7) \ltimes \mathbb{R}^8$ in Δ_{16}^- [Figueroa-O'Farrill, Bryant].

$$\Delta_{16}^{-} = \mathbb{R} < e_5 + e_{12345} > +\Lambda^1(\mathbb{R}^7) + \Delta_8 ,$$

$$\begin{split} \mathbb{R} &< e_5 + e_{12345} > \text{is the singlet generated by } e_5 + e_{12345} \\ \Lambda^1(\mathbb{R}^7) \text{ is the vector representation of } Spin(7) \text{ spanned by (j,k=1,...,4)} \\ e_{jk5} - \frac{1}{2}\epsilon_{jkmn}e_{mn5}, i(e_{jk5} + \frac{1}{2}\epsilon_{jkmn}e_{mn5}) \text{ and } i(e_5 - e_{12345}). \end{split}$$

We wish to write a spinor $\nu = \nu_1 + i\nu_2$, where $\nu_i \in \Delta_{16}^-$ in a simple canonical form.

Spin(9,1) has one type of orbit with stability subgroup $Spin(7) \ltimes \mathbb{R}^8$ in Δ_{16}^- [Figueroa-O'Farrill, Bryant].

$$\Delta_{16}^{-} = \mathbb{R} < e_5 + e_{12345} > +\Lambda^1(\mathbb{R}^7) + \Delta_8 ,$$

 $\mathbb{R} < e_5 + e_{12345} >$ is the singlet generated by $e_5 + e_{12345}$

 $\Lambda^{1}(\mathbb{R}^{7}) \text{ is the vector representation of } Spin(7) \text{ spanned by (j,k=1,...,4)} \\ e_{jk5} - \frac{1}{2}\epsilon_{jkmn}e_{mn5}, i(e_{jk5} + \frac{1}{2}\epsilon_{jkmn}e_{mn5}) \text{ and } i(e_{5} - e_{12345}).$

 $\begin{array}{l} \Delta_8 \text{ is the spin representation of } Spin(7) \text{ spanned by} \\ e_j + \frac{1}{6} \epsilon_{jq_1q_2q_3} e_{q_1q_2q_3}, i(e_j - \frac{1}{6} \epsilon_{jq_1q_2q_3} e_{q_1q_2q_3}). \end{array}$

Spin(7) acts transitively on the S^7 in Δ_8 , with stability subgroup G_2 , and G_2 acts transitively on the S^6 in $\Lambda^1(\mathbb{R}^7)$ with stability subgroup SU(3) [Salamon]

Using these transitive actions, any $\nu_1\in \Delta_{16}^-$ can be written as

 $\nu_1 = a_1(e_5 + e_{12345}) + ia_2(e_5 - e_{12345}) + a_3(e_1 + e_{234})$

For all possible choices of (real) a_1,a_2,a_3 , there exist Spin(9,1) transformations which set $\nu_1=e_5+e_{12345}$.

Spin(7) acts transitively on the S^7 in Δ_8 , with stability subgroup G_2 , and G_2 acts transitively on the S^6 in $\Lambda^1(\mathbb{R}^7)$ with stability subgroup SU(3) [Salamon]

Using these transitive actions, any $\nu_1\in \Delta_{16}^-$ can be written as

 $\nu_1 = a_1(e_5 + e_{12345}) + ia_2(e_5 - e_{12345}) + a_3(e_1 + e_{234})$

For all possible choices of (real) a_1, a_2, a_3 , there exist Spin(9,1) transformations which set $\nu_1 = e_5 + e_{12345}$.

This spinor is $Spin(7) \ltimes \mathbb{R}^8$ invariant.

Spin(7) acts transitively on the S^7 in Δ_8 , with stability subgroup G_2 , and G_2 acts transitively on the S^6 in $\Lambda^1(\mathbb{R}^7)$ with stability subgroup SU(3) [Salamon]

Using these transitive actions, any $\nu_1\in \Delta_{16}^-$ can be written as

 $\nu_1 = a_1(e_5 + e_{12345}) + ia_2(e_5 - e_{12345}) + a_3(e_1 + e_{234})$

For all possible choices of (real) a_1,a_2,a_3 , there exist Spin(9,1) transformations which set $\nu_1=e_5+e_{12345}$.

This spinor is $Spin(7) \ltimes \mathbb{R}^8$ invariant.

Having fixed ν_1 , it remains to consider ν_2 : By using Spin(7) gauge transformations, which leave ν_1 invariant, one can write

 $\nu_2 = b_1(e_5 + e_{12345}) + ib_2(e_5 - e_{12345}) + b_3(e_1 + e_{234})$

There are various cases

i) $b_3 \neq 0$. Then using $Spin(7) \ltimes \mathbb{R}^8$ gauge transformations one can take

 $\nu_2 = g(e_1 + e_{234})$

The stability subgroup of Spin(9,1) which leaves ν_1 and ν_2 invariant is $G_2.$

ii) If $b_3 = 0$ then

$$\nu_2 = g_1(e_5 + e_{12345}) + ig_2(e_5 - e_{12345})$$

and the stability subgroup is $SU(4) \ltimes \mathbb{R}^8$

iii) If $b_2=b_3=0$ then $\nu_2=g(e_5+e_{12345})$

and the stability subgroup is $Spin(7) \ltimes \mathbb{R}^8$.

N = 31 Solutions: Algebraic Constraints

Suppose that there exists a solution with exactly (and no more than) 31 linearly independent Killing spinors over \mathbb{R} .

Consider the algebraic constraint

$$P_M \Gamma^M (C\epsilon^r)^* + \frac{1}{24} G_{N_1 N_2 N_3} \Gamma^{N_1 N_2 N_3} \epsilon^r = 0$$

where ϵ^r are Killing spinors for $r = 1, \ldots, 31$.

N = 31 Solutions: Algebraic Constraints

Suppose that there exists a solution with exactly (and no more than) 31 linearly independent Killing spinors over \mathbb{R} .

Consider the algebraic constraint

$$P_M \Gamma^M (C \epsilon^r)^* + \frac{1}{24} G_{N_1 N_2 N_3} \Gamma^{N_1 N_2 N_3} \epsilon^r = 0$$

where ϵ^r are Killing spinors for $r = 1, \ldots, 31$.

The space of Killing spinors is orthogonal to a single *normal spinor*, $\nu \in \Delta_c^-$ with respect to the Spin(9,1) invariant inner product \mathcal{B} . Using Spin(9,1) gauge transformations, this normal spinor can be brought into one of 3 canonical forms:

$$Spin(7) \ltimes \mathbb{R}^8: \qquad \nu = (n+im)(e_5 + e_{12345}), \\ SU(4) \ltimes \mathbb{R}^8: \qquad \nu = (n-\ell+im)e_5 + (n+\ell+im)e_{12345}, \\ G_2: \qquad \nu = n(e_5 + e_{12345}) + im(e_1 + e_{234}),$$

In general, one can write

$$\epsilon^r = \sum_{i=1}^{32} f^r{}_i \eta^i$$

where $f^r{}_i$ are real, η^p for p = 1, ..., 16 is a basis for Δ^+_{16} and $\eta^{16+p} = i\eta^p$.

The matrix with components $f^r{}_i$ is of rank 31.

In general, one can write

$$\epsilon^r = \sum_{i=1}^{32} f^r{}_i \eta^i$$

where $f^r{}_i$ are real, η^p for p = 1, ..., 16 is a basis for Δ^+_{16} and $\eta^{16+p} = i\eta^p$.

The matrix with components $f^r{}_i$ is of rank 31.

The functions f_{i}^{r} are constrained by the orthogonality condition.

For example, take the case for which $\nu = (n + im)(e_5 + e_{12345})$: set

$$\epsilon^{r} = f^{r}_{1}(1 + e_{1234}) + f^{r}_{17}i(1 + e_{1234}) + f^{r}_{k}\eta^{k}$$

where η^k are the remaining basis elements orthogonal to $1 + e_{1234}, i(1 + e_{1234}).$

Then the orthogonality relation implies

$$nf_{1}^{r} - mf_{17}^{r} = 0$$

and so, taking without loss of generality $n \neq 0$; one finds

$$\epsilon^{r} = \frac{f_{17}^{r}}{n}(m+in)(1+e_{1234}) + f_{k}^{r}\eta^{k}$$

Then the orthogonality relation implies

$$nf_{1}^{r} - mf_{17}^{r} = 0$$

and so, taking without loss of generality $n \neq 0$; one finds

$$\epsilon^{r} = \frac{f^{r}_{17}}{n}(m+in)(1+e_{1234}) + f^{r}_{\ k}\eta^{k}$$

Substituting this back into the algebraic Killing spinor equation, one finds

$$P_M \Gamma^M C * [(m+in)(1+e_{1234})] + \frac{1}{24} G_{M_1 M_2 M_3} \Gamma^{M_1 M_2 M_3}(m+in)(1+e_{1234}) = 0$$

and

$$P_M \Gamma^M \eta^p = 0, \qquad G_{M_1 M_2 M_3} \Gamma^{M_1 M_2 M_3} \eta^p = 0, \quad p = 2, \dots, 16$$

Analogous equations are obtained for $SU(4) \ltimes \mathbb{R}^8$ and G_2 invariant normals.

In all cases, the constraints $P_M \Gamma^M \eta^p = 0$ fix P = 0 .

This means that the algebraic Killing spinor equation is linear over \mathbb{C} , so if there is a background with N = 31 linearly independent solutions of the algebraic Killing spinor equation, then this equation must have 32 linearly independent solutions.

Analogous equations are obtained for $SU(4) \ltimes \mathbb{R}^8$ and G_2 invariant normals.

In all cases, the constraints $P_M \Gamma^M \eta^p = 0$ fix P = 0.

This means that the algebraic Killing spinor equation is linear over \mathbb{C} , so if there is a background with N = 31 linearly independent solutions of the algebraic Killing spinor equation, then this equation must have 32 linearly independent solutions.

This in turn fixes G = 0. However, if G = 0 then the gravitino Killing spinor equation also becomes linear over \mathbb{C} .

In this case, if the gravitino Killing spinor equation has 31 linearly independent solutions, it must have 32 solutions also. So the background is maximally supersymmetric.

Having excluded N = 31 solutions, consider N = 30.

To simplify the analysis, we use a result of Figueroa O'Farrill, Hackett-Jones and Moutsopoulos.

This states that all solutions with N > 24 linearly independent Killing spinors are homogeneous, and hence have P = 0.

So, for N=30 solutions, the algebraic Killing spinor equation becomes linear over $\mathbb{C}:$

$$\frac{1}{24}G_{N_1N_2N_3}\Gamma^{N_1N_2N_3}\epsilon = 0$$

To analyse the case of N=30 solutions, note that the Killing spinors are all orthogonal to a normal spinor $\nu\in\Delta_c^-$ with respect to the inner product B.

This can be brought into canonical form using gauge transformations.

$$\begin{aligned} Spin(7) &\ltimes \mathbb{R}^8: & \nu = (n+im)(e_5+e_{12345}), \\ SU(4) &\ltimes \mathbb{R}^8: & \nu = (n-\ell+im)e_5+(n+\ell+im)e_{12345}, \\ G_2: & \nu = n(e_5+e_{12345})+im(e_1+e_{234}), \end{aligned}$$

To analyse the case of N = 30 solutions, note that the Killing spinors are all orthogonal to a normal spinor $\nu \in \Delta_c^-$ with respect to the inner product B.

This can be brought into canonical form using gauge transformations.

$$\begin{aligned} Spin(7) &\ltimes \mathbb{R}^8: & \nu = (n+im)(e_5+e_{12345}), \\ SU(4) &\ltimes \mathbb{R}^8: & \nu = (n-\ell+im)e_5+(n+\ell+im)e_{12345}, \\ G_2: & \nu = n(e_5+e_{12345})+im(e_1+e_{234}), \end{aligned}$$

The solutions to the algebraic Killing spinor equation are

$$\epsilon^r = \sum_{s=1}^{15} z^r{}_s \eta^s \; ,$$

where η^i is a basis normal to ν and z is an invertible 15×15 matrix of spacetime dependent complex functions.

There are three cases to consider, corresponding to the types of normal spinor ν .

In all cases, one can choose the basis (η^i) to have 13 (very simple) common elements, which are orthogonal to ν : $e_{pq}, e_{15pq}, e_{1p}, e_{1q}$ for p = 2, 3, 4 and $e_{15} - e_{2345}$.

There are three cases to consider, corresponding to the types of normal spinor ν .

In all cases, one can choose the basis (η^i) to have 13 (very simple) common elements, which are orthogonal to ν : e_{pq} , e_{15pq} , e_{1p} , e_{1q} for p = 2, 3, 4 and $e_{15} - e_{2345}$.

The remaining two basis elements are case-dependent

$$\begin{aligned} Spin(7) &\ltimes \mathbb{R}^8: & 1 - e_{1234}, e_{15} + e_{2345}, \\ SU(4) &\ltimes \mathbb{R}^8: & e_{15} + e_{2345}, (n - \ell + im)1 - (n + \ell + im)e_{1234}, \\ G_2: & 1 - e_{1234}, m(1 + e_{1234}) + in(e_{15} + e_{2345}) \end{aligned}$$

In all cases, evaluating the algebraic Killing spinor equation on the basis (η^i) produces sufficient constraints to fix G = 0.

It remains to consider the integrability conditions of the Killing spinor equations for solutions with G = P = 0.

The curvature $\mathcal{R} = [\mathcal{D}, \mathcal{D}]$ of the covariant connection \mathcal{D} of IIB supergravity can be expanded as

$$\mathcal{R}_{MN} = \frac{1}{2} (T_{MN}^2)_{PQ} \Gamma^{PQ} + \frac{1}{4!} (T_{MN}^4)_{Q_1 \dots Q_4} \Gamma^{Q_1 \dots Q_4} ,$$

where

The T^2 and T^4 tensors satisfy various algebraic constraints, following from the Bianchi identities and field equations:

$$\begin{array}{rcl} (T^2_{MN})_{P_1P_2} &=& (T^2_{P_1P_2})_{MN} \ , \\ (T^2_{M[P_1})_{P_2P_3]} &=& 0 \ , \\ (T^2_{MN})_P{}^N &=& 0 \ , \\ (T^4_{[P_1P_2]})_{P_3P_4P_5P_6]} &=& 0 \\ (T^4_{MN})_{P_1P_2P_3}{}^N &=& 0 \ , \\ (T^4_{M[P_1]})_{P_2P_3P_4P_5]} &=& -\frac{1}{5!} \epsilon_{P_1P_2P_3P_4P_5}{}^{Q_1Q_2Q_3Q_4Q_5} (T^4_{M[Q_1})_{Q_2Q_3Q_4Q_5}] \ . \end{array}$$

And $(T^4{}_{P_1(M)})_{N)P_2P_3P_4}$ is totally antisymmetric in P_1 , P_2 , P_3 , P_4 .

The integrability conditions of the gravitino Killing spinor equations

 $\mathcal{R}\epsilon^r = 0$

One can obtain constraints on the tensors T^2 and T^4 by directly evaluating these constraints on the basis elements η^i and using the constraints and symmetries of T^2 , T^4 .

The integrability conditions of the gravitino Killing spinor equations

$\mathcal{R}\epsilon^r = 0$

One can obtain constraints on the tensors T^2 and T^4 by directly evaluating these constraints on the basis elements η^i and using the constraints and symmetries of T^2 , T^4 .

It is more straightforward to note that $\mathcal{R}\epsilon^r = 0$, implies

$$\mathcal{R}_{MN,ab'} = u_{MN,r} \eta_a^r \nu_{b'} + u_{MN} \chi_a \nu_{b'}$$

where u are complex valued, and η^r, χ is a basis for Δ_c^+ .

We also have the formula

$$\psi_a \nu_{b'} = -\frac{1}{16} \sum_{k=0}^2 \frac{1}{(2k)!} B(\psi, \Gamma_{A_1 A_2 \dots A_{2k}} \nu) (\Gamma^{A_1 A_2 \dots A_{2k}})_{ab'} ,$$

for any positive chirality spinor ψ .

Requiring that the holonomy of the supercovariant connection lie in $SL(16,\mathbb{C})$ implies that

 $u_{MN}B(\chi,\nu)=0$

which eliminates the contribution to $\mathcal{R}_{MN,ab'}$ from $u_{MN}\chi_a\nu_{b'}$.

Hence we are left with

$$\mathcal{R}_{MN,ab'} = u_{MN,r} \eta_a^r \nu_{b'}$$

= $-\frac{1}{16} u_{MN,r} \sum_{k=1}^2 \frac{1}{(2k)!} B(\eta^r, \Gamma_{A_1A_2...A_{2k}} \nu) (\Gamma^{A_1A_2...A_{2k}})_{ab'}$

which in turn relates $T^2\mbox{, }T^4$ to $u_{MN,r}$ via

$$(T_{MN}^2)_{A_1A_2} = -\frac{1}{16}u_{MN,r}B(\eta^r, \Gamma_{A_1A_2}\nu)$$

$$(T_{MN}^4)_{A_1A_2A_3A_4} = -\frac{1}{16}u_{MN,r}B(\eta^r, \Gamma_{A_1A_2A_3A_4}\nu)$$

• Determine all components of T^2 and T^4 in terms of $u_{MN,r}$

- Determine all components of T^2 and T^4 in terms of $u_{MN,r}$
- Translate the T^2 and T^4 constraints into constraints on u

- Determine all components of T^2 and T^4 in terms of $u_{MN,r}$
- Translate the T^2 and T^4 constraints into constraints on u
- After some mildly involved computation, one finds that these are sufficient to fix $u_{MN,r} = 0$.

- Determine all components of T^2 and T^4 in terms of $u_{MN,r}$
- Translate the T^2 and T^4 constraints into constraints on u
- After some mildly involved computation, one finds that these are sufficient to fix $u_{MN,r} = 0$.
- This then implies that $T^2 = 0$, $T^4 = 0$.

- Determine all components of T^2 and T^4 in terms of $u_{MN,r}$
- Translate the T^2 and T^4 constraints into constraints on \boldsymbol{u}
- After some mildly involved computation, one finds that these are sufficient to fix $u_{MN,r} = 0$.
- This then implies that $T^2 = 0$, $T^4 = 0$.
- However these are equivalent (together with P = 0, G = 0) to the constraints on maximally supersymmetric backgrounds.

So all N = 30 solutions are locally maximally supersymmetric.

There are also no quotients of maximally supersymmetric solutions which preserve 30 supersymmetries.

• As P = 0, the algebraic Killing spinor eqns are linear over \mathbb{C} .

- As P = 0, the algebraic Killing spinor eqns are linear over \mathbb{C} .
- So a background with N=29 linearly independent solutions to the algebraic Killing spinor equation must have at least 30 solutions to this equation.

- As P = 0, the algebraic Killing spinor eqns are linear over \mathbb{C} .
- So a background with N=29 linearly independent solutions to the algebraic Killing spinor equation must have at least 30 solutions to this equation.
- By the ${\cal N}=30$ analysis, this is sufficient to fix ${\cal G}=0$

- As P = 0, the algebraic Killing spinor eqns are linear over \mathbb{C} .
- So a background with N=29 linearly independent solutions to the algebraic Killing spinor equation must have at least 30 solutions to this equation.
- By the N = 30 analysis, this is sufficient to fix G = 0
- As G = 0, the gravitino Killing spinor equation is linear over \mathbb{C} , and so an exactly N = 29 solution is excluded.

There are no solutions of IIB supergravity with exactly $N=29{\rm ,}$ $N=30~{\rm or}~N=31$ linearly independent Killing spinors

There are no solutions of IIB supergravity with exactly $N=29{\rm ,}$ $N=30~{\rm or}~N=31$ linearly independent Killing spinors

What about solutions with N=28 supersymmetries? A non-trivial example is known - the plane wave geometry of Bena and Roiban.

In fact in order to have a solution with exactly 28 linearly independent Killing spinors, one is *forced* to take $G \neq 0$.

Analysis of the Killing spinor equation integrability conditions with $G \neq 0$ is <u>much</u> more complicated!

The gravitino integrability conditions are

 $\mathcal{S}\epsilon + \mathcal{T}(C\epsilon)^* = 0$

where

$$\begin{split} \mathcal{T} &= -\frac{\kappa}{96} (\Gamma_{[N}{}^{L_{1}L_{2}L_{3}}D_{M}]{}^{G}L_{1}L_{2}L_{3} + 9\Gamma^{L_{1}L_{2}}D_{[N}{}^{G}M]L_{1}L_{2}) \\ &+ \frac{i\kappa^{2}}{32} (\frac{1}{3}F_{NM}{}^{L_{1}L_{2}L_{3}}G_{L_{1}L_{2}L_{3}} + \Gamma^{L_{1}L_{2}}F_{[N|L_{1}L_{2}}{}^{Q_{1}Q_{2}}G_{|M]}Q_{1}Q_{2} \\ &+ \frac{1}{3}\Gamma_{[N}{}^{Q}F_{M]}Q^{L_{1}L_{2}L_{3}}G_{L_{1}L_{2}L_{3}} - \frac{1}{2}\Gamma^{L_{1}...L_{4}}F_{NML_{1}L_{2}}{}^{Q}G_{L_{3}L_{4}}Q \\ &+ \frac{1}{2}\Gamma_{[N}{}^{L_{1}L_{2}L_{3}}F_{M]}L_{1}L_{2}{}^{Q_{1}Q_{2}}G_{L_{3}}Q_{1}Q_{2} + \frac{1}{4}\Gamma^{L_{1}...L_{4}}F_{L_{1}...L_{4}}{}^{Q}G_{NMQ} \\ &- \frac{1}{2}\Gamma_{[N]}{}^{L_{1}L_{2}L_{3}}F_{L_{1}L_{2}L_{3}}{}^{Q_{1}Q_{2}}G_{|M]}Q_{1}Q_{2}) \,. \end{split}$$

$$\begin{split} \mathcal{S} &= \frac{1}{8} R_{NM}^{L_{1}L_{2}} \Gamma_{L_{1}L_{2}} - \frac{1}{2} P_{[N} P_{M}^{\star}] + \frac{i\kappa}{48} \Gamma^{L_{1}...L_{4}} D_{[N} F_{M]}L_{1}...L_{4} \\ &+ \frac{\kappa^{2}}{24} (-\Gamma^{L_{1}L_{2}} F_{[N]L_{1}}^{Q_{1}Q_{2}Q_{3}} F_{[M]}L_{2}Q_{1}Q_{2}Q_{3} + \frac{1}{2} \Gamma^{L_{1}...L_{4}} F_{NML_{1}}^{Q_{1}Q_{2}} F_{L_{2}L_{3}L_{4}}Q_{1}Q_{2} \\ &+ \frac{1}{2} \Gamma_{[N}^{L_{1}L_{2}L_{3}} F_{M]}L_{1}^{Q_{1}Q_{2}Q_{3}} F_{L_{2}L_{3}}Q_{1}Q_{2}Q_{3}) \\ &+ \frac{\kappa^{2}}{32} (-\frac{1}{2} G_{[N}^{L_{1}L_{2}} G_{M]}^{\star}L_{1}L_{2} + \frac{1}{48} \Gamma_{NM} G^{L_{1}L_{2}L_{3}} G_{L_{1}L_{2}L_{3}}^{\star} \\ &- \frac{1}{4} \Gamma_{[N}^{L_{1}G_{M}]}^{L_{2}L_{3}} G_{L_{1}L_{2}L_{3}}^{\star} + \frac{1}{8} \Gamma_{[N]}^{Q} G_{Q}^{L_{1}L_{2}} G_{[M]L_{1}L_{2}}^{\star} \\ &+ \frac{3}{16} \Gamma^{L_{1}L_{2}} G_{NM}^{L_{3}} G_{L_{1}L_{2}L_{3}}^{\star} - \Gamma^{L_{1}L_{2}} G_{[N]L_{1}}^{Q} G_{[M]L_{2}}^{H} \\ &- \frac{3}{16} \Gamma^{L_{1}L_{2}} G_{L_{1}L_{2}}^{Q} G_{NMQ}^{\star} + \frac{1}{16} \Gamma_{NM}^{L_{1}L_{2}} G_{L_{1}}^{Q_{1}Q_{2}} G_{L_{2}}^{\star} Q_{1}Q_{2} \\ &- \frac{3}{16} \Gamma^{L_{1}L_{2}} G_{L_{1}L_{2}}^{Q} G_{NMQ}^{\star} + \frac{1}{16} \Gamma_{NM}^{L_{1}L_{2}L_{3}} G_{L_{1}L_{2}}^{Q} G_{[M]L_{3}}^{\star} Q \\ &- \frac{1}{16} \Gamma^{L_{1}...L_{4}} G_{L_{1}L_{2}L_{3}} G_{NML_{4}}^{\star} + \frac{1}{8} \Gamma_{[N]}^{L_{1}L_{2}L_{3}} G_{L_{1}L_{2}}^{Q} G_{[M]L_{3}}^{\star} Q \\ &+ \frac{1}{4} \Gamma_{[N]}^{L_{1}L_{2}L_{3}} G_{[M]L_{1}}^{Q} G_{L_{2}L_{3}}^{\star} Q \\ &+ \frac{1}{4} \Gamma_{[N]}^{L_{1}L_{2}L_{3}} G_{[M]L_{1}}^{Q} G_{L_{2}L_{3}}^{\star} Q \\ &+ \frac{1}{4} \Gamma_{[N]}^{L_{1}L_{2}L_{3}} G_{[M]L_{1}}^{Q} G_{L_{2}L_{3}}^{\star} Q \\ &+ \frac{1}{4} \Gamma_{[N]}^{L_{1}L_{2}L_{3}} G_{[M]L_{1}}^{L_{1}Q} G_{L_{2}L_{3}}^{\star} Q \\ &+ \frac{1}{4} \Gamma_{[N]}^{L_{1}...L_{5}} G_{L_{1}L_{2}L_{3}} G_{[M]L_{4}}^{\star} Q \\ &+ \frac{1}{48} \Gamma_{[N]}^{L_{1}...L_{5}} G_{L_{1}L_{2}L_{3}} G_{[M]L_{4}}^{\star} Q \\ &+ \frac{1}{288} \Gamma_{NM}^{L_{1}...L_{6}} G_{L_{1}L_{2}L_{3}} G_{L_{4}}^{\star} L_{5} \\ \end{split}$$

One can show [JG, Gran, Papadopoulos] that the Bena and Roiban plane wave is the unique solution with N=28 supersymmetries:

$$ds^{2} = 2dw(dv - (\frac{9}{8} + 2h^{2})\delta_{ij}x^{i}x^{j}dw) + \delta_{ij}dx^{i}dx^{j}$$
$$G = -2\sqrt{2}ie^{i\phi}dw \wedge (dx^{15} + dx^{26} + dx^{37} + dx^{48})$$

$$F = 2hdw \wedge (dx^{1256} - dx^{3478})$$

One can show [JG, Gran, Papadopoulos] that the Bena and Roiban plane wave is the unique solution with N = 28 supersymmetries:

$$ds^{2} = 2dw(dv - (\frac{9}{8} + 2h^{2})\delta_{ij}x^{i}x^{j}dw) + \delta_{ij}dx^{i}dx^{j}$$
$$G = -2\sqrt{2}ie^{i\phi}dw \wedge (dx^{15} + dx^{26} + dx^{37} + dx^{48})$$

$$F = 2hdw \wedge (dx^{1256} - dx^{3478})$$

All homogeneous solutions with N > 24 linearly independent Killing vectors could (in principle) be classified using similar methods.

One can show [JG, Gran, Papadopoulos] that the Bena and Roiban plane wave is the unique solution with N = 28 supersymmetries:

$$ds^{2} = 2dw(dv - (\frac{9}{8} + 2h^{2})\delta_{ij}x^{i}x^{j}dw) + \delta_{ij}dx^{i}dx^{j}$$
$$G = -2\sqrt{2}ie^{i\phi}dw \wedge (dx^{15} + dx^{26} + dx^{37} + dx^{48})$$

$$F = 2hdw \wedge (dx^{1256} - dx^{3478})$$

All homogeneous solutions with N > 24 linearly independent Killing vectors could (in principle) be classified using similar methods.

It has also been shown [Gran, JG, Papadopoulos, Roest], that there are no N = 31 (and very recently, no N = 30) solutions in D=11 supergravity.