Classifying Highly Supersymmetric Solutions

Jan Gutowski
King's College London
with U. Gran, G. Papadopoulos and D. Roest

arXiv:????.????, arXiv:0902.3642, arXiv:0710.1829, hep-th/0610331, hep-th/0606049

15-th European Workshop on String Theory

Outline

- IIB Supergravity and Killing Spinors

Outline

- IIB Supergravity and Killing Spinors
- Analysis of Solutions with $28<N<32$ supersymmetries

Outline

- IIB Supergravity and Killing Spinors
- Analysis of Solutions with $28<N<32$ supersymmetries

No assumptions about the spacetime geometry/fluxes are made - the analysis is completely general.

Outline

- IIB Supergravity and Killing Spinors
- Analysis of Solutions with $28<N<32$ supersymmetries

No assumptions about the spacetime geometry/fluxes are made - the analysis is completely general.

All maximally supersymmetric solutions, i.e. those with 32 linearly independent Killing spinors, are completely classified [Figueroa O'Farrill, Papadopoulos]

Outline

- IIB Supergravity and Killing Spinors
- Analysis of Solutions with $28<N<32$ supersymmetries

No assumptions about the spacetime geometry/fluxes are made - the analysis is completely general.

All maximally supersymmetric solutions, i.e. those with 32 linearly independent Killing spinors, are completely classified [Figueroa O'Farrill, Papadopoulos]

One finds: $\mathbb{R}^{9,1}, A d S_{5} \times S^{5}$ and a maximally supersymmetric plane wave solution.

- Conclusions

IIB Supergravity and Killing Spinors

The bosonic fields of IIB supergravity are the spacetime metric g, the axion σ and dilaton ϕ, two three-form field strengths $G^{\alpha}=d A^{\alpha}$ ($\alpha=1,2$), and a self-dual five-form field strength F

The axion and dilaton give rise to a complex 1-form P [Schwarz].
The 3-forms are combined to give a complex 3-form G.
To achieve this, introduce a $S U(1,1)$ matrix $U=\left(V_{+}^{\alpha}, V_{-}^{\alpha}\right), \alpha=1,2$ such that

$$
\begin{aligned}
& \quad V_{-}^{\alpha} V_{+}^{\beta}-V_{-}^{\beta} V_{+}^{\alpha}=\epsilon^{\alpha \beta}, \quad\left(V_{-}^{1}\right)^{*}=V_{+}^{2}, \quad\left(V_{-}^{2}\right)^{*}=V_{+}^{1} \\
& \epsilon^{12}=1=\epsilon_{12} .
\end{aligned}
$$

The $V_{ \pm}^{\alpha}$ are related to the axion and dilaton by

$$
\frac{V_{-}^{2}}{V_{-}^{1}}=\frac{1+i\left(\sigma+i e^{-\phi}\right)}{1-i\left(\sigma+i e^{-\phi}\right)} .
$$

Then P and G are defined by

$$
P_{M}=-\epsilon_{\alpha \beta} V_{+}^{\alpha} \partial_{M} V_{+}^{\beta}, \quad G_{M N R}=-\epsilon_{\alpha \beta} V_{+}^{\alpha} G_{M N R}^{\beta}
$$

The gravitino Killing spinor equation is

$$
\begin{array}{r}
\tilde{\nabla}_{M} \epsilon+\frac{i}{48} \Gamma^{N_{1} \ldots N_{4}} \epsilon F_{N_{1} \ldots N_{4} M}-\frac{1}{96}\left(\Gamma_{M}{ }^{N_{1} N_{2} N_{3}} G_{N_{1} N_{2} N_{3}}\right. \\
\left.-9 \Gamma^{N_{1} N_{2}} G_{M N_{1} N_{2}}\right)(C \epsilon)^{*}=0
\end{array}
$$

where

$$
\tilde{\nabla}_{M}=\partial_{M}-\frac{i}{2} Q_{M}+\frac{1}{4} \Omega_{M, A B} \Gamma^{A B}
$$

is the standard covariant derivative twisted with $U(1)$ connection Q_{M}, given in terms of the $S U(1,1)$ scalars by

$$
Q_{M}=-i \epsilon_{\alpha \beta} V_{-}^{\alpha} \partial_{M} V_{+}^{\beta}
$$

and Ω is the spin connection.

There is also an algebraic constraint

$$
P_{M} \Gamma^{M}(C \epsilon)^{*}+\frac{1}{24} G_{N_{1} N_{2} N_{3}} \Gamma^{N_{1} N_{2} N_{3}} \epsilon=0
$$

The Killing spinor ϵ is a complex Weyl spinor constructed from two copies of the same Majorana-Weyl representation Δ_{16}^{+}:

$$
\epsilon=\psi_{1}+i \psi_{2}
$$

Majorana-Weyl spinors ψ satisfy

$$
\psi=C\left(\psi^{*}\right)
$$

C is the charge conjugation matrix.

Spinors as Forms

- Let e_{1}, \ldots, e_{5} be a locally defined orthonormal basis of \mathbb{R}^{5}.
- Take U to be the span over \mathbb{R} of e_{1}, \ldots, e_{5}.
- The space of Dirac spinors is $\Delta_{c}=\Lambda^{*}(U \otimes \mathbb{C})$ (the complexified space of all forms on U).
- Δ_{c} decomposes into even forms Δ_{c}^{+}and odd forms Δ_{c}^{-}, which are the complex Weyl representations of $\operatorname{Spin}(9,1)$.
- The gamma matrices are represented on Δ_{c} as

$$
\begin{aligned}
\Gamma_{0} \eta & \left.=-e_{5} \wedge \eta+e_{5}\right\lrcorner \eta & & \\
\Gamma_{5} \eta & \left.=e_{5} \wedge \eta+e_{5}\right\lrcorner \eta & & \\
\Gamma_{i} \eta & \left.=e_{i} \wedge \eta+e_{i}\right\lrcorner \eta & & i=1, \ldots, 4 \\
\Gamma_{5+i} \eta & \left.=i e_{i} \wedge \eta-i e_{i}\right\lrcorner \eta & & i=1, \ldots, 4
\end{aligned}
$$

- Γ_{j} for $j=1, \ldots, 9$ are hermitian and Γ_{0} is anti-hermitian with respect to the inner product

$$
<z^{a} e_{a}, w^{b} e_{b}>=\sum_{a=1}^{5}\left(z^{a}\right)^{*} w^{a}
$$

This inner product can be extended from $U \otimes \mathbb{C}$ to Δ_{c}.

- There is a $\operatorname{Spin}(9,1)$ invariant inner product defined on Δ_{c} defined by

$$
B\left(\epsilon_{1}, \epsilon_{2}\right)=<\Gamma_{0} C\left(\epsilon_{1}\right)^{*}, \epsilon_{2}>
$$

B is skew-symmetric in $\epsilon_{1}, \epsilon_{2}$.
B vanishes when restricted to Δ_{c}^{+}or Δ_{c}^{-}.

- This defines a non-degenerate pairing $\mathcal{B}: \Delta_{c}^{+} \otimes \Delta_{c}^{-} \rightarrow \mathbb{R}$ given by

$$
\mathcal{B}(\epsilon, \xi)=\operatorname{Re} B(\epsilon, \xi)
$$

Canonical forms of spinors

We wish to write a spinor $\nu=\nu_{1}+i \nu_{2}$, where $\nu_{i} \in \Delta_{16}^{-}$in a simple canonical form.

Canonical forms of spinors

We wish to write a spinor $\nu=\nu_{1}+i \nu_{2}$, where $\nu_{i} \in \Delta_{16}^{-}$in a simple canonical form.
$\operatorname{Spin}(9,1)$ has one type of orbit with stability subgroup $\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$ in Δ_{16}^{-}[Figueroa-O'Farrill, Bryant].

$$
\Delta_{16}^{-}=\mathbb{R}<e_{5}+e_{12345}>+\Lambda^{1}\left(\mathbb{R}^{7}\right)+\Delta_{8}
$$

Canonical forms of spinors

We wish to write a spinor $\nu=\nu_{1}+i \nu_{2}$, where $\nu_{i} \in \Delta_{16}^{-}$in a simple canonical form.
$\operatorname{Spin}(9,1)$ has one type of orbit with stability subgroup $\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$ in Δ_{16}^{-}[Figueroa-O'Farrill, Bryant].

$$
\Delta_{16}^{-}=\mathbb{R}<e_{5}+e_{12345}>+\Lambda^{1}\left(\mathbb{R}^{7}\right)+\Delta_{8}
$$

$\mathbb{R}<e_{5}+e_{12345}>$ is the singlet generated by $e_{5}+e_{12345}$

Canonical forms of spinors

We wish to write a spinor $\nu=\nu_{1}+i \nu_{2}$, where $\nu_{i} \in \Delta_{16}^{-}$in a simple canonical form.
$\operatorname{Spin}(9,1)$ has one type of orbit with stability subgroup $\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$ in Δ_{16}^{-}[Figueroa-O'Farrill, Bryant].

$$
\Delta_{16}^{-}=\mathbb{R}<e_{5}+e_{12345}>+\Lambda^{1}\left(\mathbb{R}^{7}\right)+\Delta_{8}
$$

$\mathbb{R}<e_{5}+e_{12345}>$ is the singlet generated by $e_{5}+e_{12345}$
$\Lambda^{1}\left(\mathbb{R}^{7}\right)$ is the vector representation of $\operatorname{Spin}(7)$ spanned by $(\mathrm{j}, \mathrm{k}=1, \ldots, 4)$ $e_{j k 5}-\frac{1}{2} \epsilon_{j k m n} e_{m n 5}, i\left(e_{j k 5}+\frac{1}{2} \epsilon_{j k m n} e_{m n 5}\right)$ and $i\left(e_{5}-e_{12345}\right)$.

Canonical forms of spinors

We wish to write a spinor $\nu=\nu_{1}+i \nu_{2}$, where $\nu_{i} \in \Delta_{16}^{-}$in a simple canonical form.
$\operatorname{Spin}(9,1)$ has one type of orbit with stability subgroup $\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$ in Δ_{16}^{-}[Figueroa-O'Farrill, Bryant].

$$
\Delta_{16}^{-}=\mathbb{R}<e_{5}+e_{12345}>+\Lambda^{1}\left(\mathbb{R}^{7}\right)+\Delta_{8}
$$

$\mathbb{R}<e_{5}+e_{12345}>$ is the singlet generated by $e_{5}+e_{12345}$
$\Lambda^{1}\left(\mathbb{R}^{7}\right)$ is the vector representation of $\operatorname{Spin}(7)$ spanned by $(\mathrm{j}, \mathrm{k}=1, \ldots, 4)$ $e_{j k 5}-\frac{1}{2} \epsilon_{j k m n} e_{m n 5}, i\left(e_{j k 5}+\frac{1}{2} \epsilon_{j k m n} e_{m n 5}\right)$ and $i\left(e_{5}-e_{12345}\right)$.
Δ_{8} is the spin representation of $\operatorname{Spin}(7)$ spanned by $e_{j}+\frac{1}{6} \epsilon_{j q_{1} q_{2} q_{3}} e_{q_{1} q_{2} q_{3}}, i\left(e_{j}-\frac{1}{6} \epsilon_{j q_{1} q_{2} q_{3}} e_{q_{1} q_{2} q_{3}}\right)$.
$\operatorname{Spin}(7)$ acts transitively on the S^{7} in Δ_{8}, with stability subgroup G_{2}, and G_{2} acts transitively on the S^{6} in $\Lambda^{1}\left(\mathbb{R}^{7}\right)$ with stability subgroup $S U(3)$ [Salamon]

Using these transitive actions, any $\nu_{1} \in \Delta_{16}^{-}$can be written as

$$
\nu_{1}=a_{1}\left(e_{5}+e_{12345}\right)+i a_{2}\left(e_{5}-e_{12345}\right)+a_{3}\left(e_{1}+e_{234}\right)
$$

For all possible choices of (real) a_{1}, a_{2}, a_{3}, there exist $\operatorname{Spin}(9,1)$ transformations which set $\nu_{1}=e_{5}+e_{12345}$.
$\operatorname{Spin}(7)$ acts transitively on the S^{7} in Δ_{8}, with stability subgroup G_{2}, and G_{2} acts transitively on the S^{6} in $\Lambda^{1}\left(\mathbb{R}^{7}\right)$ with stability subgroup $S U(3)$ [Salamon]

Using these transitive actions, any $\nu_{1} \in \Delta_{16}^{-}$can be written as

$$
\nu_{1}=a_{1}\left(e_{5}+e_{12345}\right)+i a_{2}\left(e_{5}-e_{12345}\right)+a_{3}\left(e_{1}+e_{234}\right)
$$

For all possible choices of (real) a_{1}, a_{2}, a_{3}, there exist $\operatorname{Spin}(9,1)$ transformations which set $\nu_{1}=e_{5}+e_{12345}$.

This spinor is $\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$ invariant.
$\operatorname{Spin}(7)$ acts transitively on the S^{7} in Δ_{8}, with stability subgroup G_{2}, and G_{2} acts transitively on the S^{6} in $\Lambda^{1}\left(\mathbb{R}^{7}\right)$ with stability subgroup $S U(3)$ [Salamon]

Using these transitive actions, any $\nu_{1} \in \Delta_{16}^{-}$can be written as

$$
\nu_{1}=a_{1}\left(e_{5}+e_{12345}\right)+i a_{2}\left(e_{5}-e_{12345}\right)+a_{3}\left(e_{1}+e_{234}\right)
$$

For all possible choices of (real) a_{1}, a_{2}, a_{3}, there exist $\operatorname{Spin}(9,1)$ transformations which set $\nu_{1}=e_{5}+e_{12345}$.

This spinor is $\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$ invariant.
Having fixed ν_{1}, it remains to consider ν_{2} :
By using $\operatorname{Spin}(7)$ gauge transformations, which leave ν_{1} invariant, one can write

$$
\nu_{2}=b_{1}\left(e_{5}+e_{12345}\right)+i b_{2}\left(e_{5}-e_{12345}\right)+b_{3}\left(e_{1}+e_{234}\right)
$$

There are various cases
i) $b_{3} \neq 0$. Then using $\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$ gauge transformations one can take

$$
\nu_{2}=g\left(e_{1}+e_{234}\right)
$$

The stability subgroup of $\operatorname{Spin}(9,1)$ which leaves ν_{1} and ν_{2} invariant is G_{2}.
ii) If $b_{3}=0$ then

$$
\nu_{2}=g_{1}\left(e_{5}+e_{12345}\right)+i g_{2}\left(e_{5}-e_{12345}\right)
$$

and the stability subgroup is $S U(4) \ltimes \mathbb{R}^{8}$
iii) If $b_{2}=b_{3}=0$ then

$$
\nu_{2}=g\left(e_{5}+e_{12345}\right)
$$

and the stability subgroup is $\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}$.

$N=31$ Solutions: Algebraic Constraints

Suppose that there exists a solution with exactly (and no more than) 31 linearly independent Killing spinors over \mathbb{R}.

Consider the algebraic constraint

$$
P_{M} \Gamma^{M}\left(C \epsilon^{r}\right)^{*}+\frac{1}{24} G_{N_{1} N_{2} N_{3}} \Gamma^{N_{1} N_{2} N_{3}} \epsilon^{r}=0
$$

where ϵ^{r} are Killing spinors for $r=1, \ldots, 31$.

$N=31$ Solutions: Algebraic Constraints

Suppose that there exists a solution with exactly (and no more than) 31 linearly independent Killing spinors over \mathbb{R}.

Consider the algebraic constraint

$$
P_{M} \Gamma^{M}\left(C \epsilon^{r}\right)^{*}+\frac{1}{24} G_{N_{1} N_{2} N_{3}} \Gamma^{N_{1} N_{2} N_{3}} \epsilon^{r}=0
$$

where ϵ^{r} are Killing spinors for $r=1, \ldots, 31$.
The space of Killing spinors is orthogonal to a single normal spinor, $\nu \in \Delta_{c}^{-}$with respect to the $\operatorname{Spin}(9,1)$ invariant inner product \mathcal{B}. Using $\operatorname{Spin}(9,1)$ gauge transformations, this normal spinor can be brought into one of 3 canonical forms:

$$
\begin{aligned}
\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}: & & \nu=(n+i m)\left(e_{5}+e_{12345}\right) \\
S U(4) \ltimes \mathbb{R}^{8}: & & \nu=(n-\ell+i m) e_{5}+(n+\ell+i m) e_{12345} \\
G_{2}: & & \nu=n\left(e_{5}+e_{12345}\right)+i m\left(e_{1}+e_{234}\right)
\end{aligned}
$$

In general, one can write

$$
\epsilon^{r}=\sum_{i=1}^{32} f_{i}^{r} \eta^{i}
$$

where $f^{r}{ }_{i}$ are real, η^{p} for $p=1, \ldots, 16$ is a basis for Δ_{16}^{+}and $\eta^{16+p}=i \eta^{p}$.

The matrix with components f_{i}^{r} is of rank 31 .

In general, one can write

$$
\epsilon^{r}=\sum_{i=1}^{32} f_{i}^{r} \eta^{i}
$$

where $f^{r}{ }_{i}$ are real, η^{p} for $p=1, \ldots, 16$ is a basis for Δ_{16}^{+}and $\eta^{16+p}=i \eta^{p}$.

The matrix with components $f^{r}{ }_{i}$ is of rank 31.
The functions $f^{r}{ }_{i}$ are constrained by the orthogonality condition.
For example, take the case for which $\nu=(n+i m)\left(e_{5}+e_{12345}\right)$: set

$$
\epsilon^{r}=f^{r}{ }_{1}\left(1+e_{1234}\right)+f^{r}{ }_{17} i\left(1+e_{1234}\right)+f^{r}{ }_{k} \eta^{k}
$$

where η^{k} are the remaining basis elements orthogonal to $1+e_{1234}, i\left(1+e_{1234}\right)$.

Then the orthogonality relation implies

$$
n f^{r}{ }_{1}-m f^{r}{ }_{17}=0
$$

and so, taking without loss of generality $n \neq 0$; one finds

$$
\epsilon^{r}=\frac{f^{r}{ }_{17}}{n}(m+i n)\left(1+e_{1234}\right)+f^{r}{ }_{k} \eta^{k}
$$

Then the orthogonality relation implies

$$
n f_{1}^{r}-m f_{17}^{r}=0
$$

and so, taking without loss of generality $n \neq 0$; one finds

$$
\epsilon^{r}=\frac{f^{r} 17}{n}(m+i n)\left(1+e_{1234}\right)+f_{k}^{r} \eta^{k}
$$

Substituting this back into the algebraic Killing spinor equation, one finds

$$
P_{M} \Gamma^{M} C *\left[(m+i n)\left(1+e_{1234}\right)\right]+\frac{1}{24} G_{M_{1} M_{2} M_{3}} \Gamma^{M_{1} M_{2} M_{3}}(m+i n)\left(1+e_{1234}\right)=0
$$

and

$$
P_{M} \Gamma^{M} \eta^{p}=0, \quad G_{M_{1} M_{2} M_{3}} \Gamma^{M_{1} M_{2} M_{3}} \eta^{p}=0, \quad p=2, \ldots, 16
$$

Analogous equations are obtained for $S U(4) \ltimes \mathbb{R}^{8}$ and G_{2} invariant normals.

In all cases, the constraints $P_{M} \Gamma^{M} \eta^{p}=0$ fix $P=0$.
This means that the algebraic Killing spinor equation is linear over \mathbb{C}, so if there is a background with $N=31$ linearly independent solutions of the algebraic Killing spinor equation, then this equation must have 32 linearly independent solutions.

Analogous equations are obtained for $S U(4) \ltimes \mathbb{R}^{8}$ and G_{2} invariant normals.

In all cases, the constraints $P_{M} \Gamma^{M} \eta^{p}=0$ fix $P=0$.
This means that the algebraic Killing spinor equation is linear over \mathbb{C}, so if there is a background with $N=31$ linearly independent solutions of the algebraic Killing spinor equation, then this equation must have 32 linearly independent solutions.

This in turn fixes $G=0$. However, if $G=0$ then the gravitino Killing spinor equation also becomes linear over \mathbb{C}.

In this case, if the gravitino Killing spinor equation has 31 linearly independent solutions, it must have 32 solutions also. So the background is maximally supersymmetric.

$N=30$ Solutions: Algebraic Constraints

Having excluded $N=31$ solutions, consider $N=30$.
To simplify the analysis, we use a result of Figueroa O'Farrill, Hackett-Jones and Moutsopoulos.

This states that all solutions with $N>24$ linearly independent Killing spinors are homogeneous, and hence have $P=0$.

So, for $N=30$ solutions, the algebraic Killing spinor equation becomes linear over \mathbb{C} :

$$
\frac{1}{24} G_{N_{1} N_{2} N_{3}} \Gamma^{N_{1} N_{2} N_{3}} \epsilon=0
$$

To analyse the case of $N=30$ solutions, note that the Killing spinors are all orthogonal to a normal spinor $\nu \in \Delta_{c}^{-}$with respect to the inner product B.

This can be brought into canonical form using gauge transformations.

$$
\begin{aligned}
\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}: & & \nu=(n+i m)\left(e_{5}+e_{12345}\right) \\
S U(4) \ltimes \mathbb{R}^{8}: & & \nu=(n-\ell+i m) e_{5}+(n+\ell+i m) e_{12345} \\
G_{2}: & & \nu=n\left(e_{5}+e_{12345}\right)+i m\left(e_{1}+e_{234}\right)
\end{aligned}
$$

To analyse the case of $N=30$ solutions, note that the Killing spinors are all orthogonal to a normal spinor $\nu \in \Delta_{c}^{-}$with respect to the inner product B.

This can be brought into canonical form using gauge transformations.

$$
\begin{aligned}
\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}: & & \nu=(n+i m)\left(e_{5}+e_{12345}\right), \\
S U(4) \ltimes \mathbb{R}^{8}: & & \nu=(n-\ell+i m) e_{5}+(n+\ell+i m) e_{12345}, \\
G_{2}: & & \nu=n\left(e_{5}+e_{12345}\right)+i m\left(e_{1}+e_{234}\right),
\end{aligned}
$$

The solutions to the algebraic Killing spinor equation are

$$
\epsilon^{r}=\sum_{s=1}^{15} z^{r}{ }_{s} \eta^{s}
$$

where η^{i} is a basis normal to ν and z is an invertible 15×15 matrix of spacetime dependent complex functions.

There are three cases to consider, corresponding to the types of normal spinor ν.

In all cases, one can choose the basis $\left(\eta^{i}\right)$ to have 13 (very simple) common elements, which are orthogonal to $\nu: e_{p q}, e_{15 p q}, e_{1 p}, e_{1 q}$ for $p=2,3,4$ and $e_{15}-e_{2345}$.

There are three cases to consider, corresponding to the types of normal spinor ν.

In all cases, one can choose the basis $\left(\eta^{i}\right)$ to have 13 (very simple) common elements, which are orthogonal to $\nu: e_{p q}, e_{15 p q}, e_{1 p}, e_{1 q}$ for $p=2,3,4$ and $e_{15}-e_{2345}$.

The remaining two basis elements are case-dependent

$$
\begin{aligned}
\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}: & 1-e_{1234}, e_{15}+e_{2345}, \\
S U(4) \ltimes \mathbb{R}^{8}: & e_{15}+e_{2345},(n-\ell+i m) 1-(n+\ell+i m) e_{1234}, \\
G_{2}: & 1-e_{1234}, m\left(1+e_{1234}\right)+i n\left(e_{15}+e_{2345}\right)
\end{aligned}
$$

In all cases, evaluating the algebraic Killing spinor equation on the basis $\left(\eta^{i}\right)$ produces sufficient constraints to fix $G=0$.

Integrability Conditions for $\mathrm{N}=30$ Solutions

It remains to consider the integrability conditions of the Killing spinor equations for solutions with $G=P=0$.

The curvature $\mathcal{R}=[\mathcal{D}, \mathcal{D}]$ of the covariant connection \mathcal{D} of IIB supergravity can be expanded as

$$
\mathcal{R}_{M N}=\frac{1}{2}\left(T_{M N}^{2}\right)_{P Q} \Gamma^{P Q}+\frac{1}{4!}\left(T_{M N}^{4}\right)_{Q_{1} \ldots Q_{4}} \Gamma^{Q_{1} \ldots Q_{4}},
$$

where

$$
\begin{aligned}
\left(T_{M N}^{2}\right)_{P_{1} P_{2}} & =\frac{1}{4} R_{M N, P_{1} P_{2}}-\frac{1}{12} F_{M\left[P_{1}\right.} Q_{1} Q_{2} Q_{3} F_{\left.|N| P_{2}\right] Q_{1} Q_{2} Q_{3}}, \\
\left(T_{M N}^{4}\right)_{P_{1} \ldots P_{4}} & =\frac{i}{2} D_{[M} F_{N] P_{1} \ldots P_{4}}+\frac{1}{2} F_{M N Q_{1} Q_{2}\left[P_{1}\right.} F_{\left.P_{2} P_{3} P_{4}\right]} Q_{1} Q_{2}
\end{aligned}
$$

The T^{2} and T^{4} tensors satisfy various algebraic constraints, following from the Bianchi identities and field equations:

$$
\begin{aligned}
\left(T_{M N}^{2}\right)_{P_{1} P_{2}} & =\left(T_{P_{1} P_{2}}^{2}\right)_{M N}, \\
\left(T_{M\left[P_{1}\right.}^{2}\right)_{\left.P_{2} P_{3}\right]} & =0, \\
\left(T_{M N}^{2}\right)_{P}^{N} & =0, \\
\left(T_{\left[P_{1} P_{2}\right.}^{4}\right)_{\left.P_{3} P_{4} P_{5} P_{6}\right]} & =0 \\
\left(T_{M N}^{4}\right)_{P_{1} P_{2} P_{3}} N & =0, \\
\left(T_{M\left[P_{1}\right.}^{4}\right)_{\left.P_{2} P_{3} P_{4} P_{5}\right]} & =-\frac{1}{5!} \epsilon_{P_{1} P_{2} P_{3} P_{4} P_{5}} Q_{1} Q_{2} Q_{3} Q_{4} Q_{5}\left(T_{M\left[Q_{1}\right.}^{4}\right)_{\left.Q_{2} Q_{3} Q_{4} Q_{5}\right]} .
\end{aligned}
$$

And $\left(T^{4}{ }_{P_{1}(M}\right)_{N) P_{2} P_{3} P_{4}}$ is totally antisymmetric in $P_{1}, P_{2}, P_{3}, P_{4}$.

Analysis of Constraints

The integrability conditions of the gravitino Killing spinor equations

$$
\mathcal{R} \epsilon^{r}=0
$$

One can obtain constraints on the tensors T^{2} and T^{4} by directly evaluating these constraints on the basis elements η^{i} and using the constraints and symmetries of T^{2}, T^{4}.

Analysis of Constraints

The integrability conditions of the gravitino Killing spinor equations

$$
\mathcal{R} \epsilon^{r}=0
$$

One can obtain constraints on the tensors T^{2} and T^{4} by directly evaluating these constraints on the basis elements η^{i} and using the constraints and symmetries of T^{2}, T^{4}.

It is more straightforward to note that $\mathcal{R} \epsilon^{r}=0$, implies

$$
\mathcal{R}_{M N, a b^{\prime}}=u_{M N, r} \eta_{a}^{r} \nu_{b^{\prime}}+u_{M N} \chi_{a} \nu_{b^{\prime}}
$$

where u are complex valued, and η^{r}, χ is a basis for Δ_{c}^{+}.

We also have the formula

$$
\psi_{a} \nu_{b^{\prime}}=-\frac{1}{16} \sum_{k=0}^{2} \frac{1}{(2 k)!} B\left(\psi, \Gamma_{A_{1} A_{2} \ldots A_{2 k}} \nu\right)\left(\Gamma^{A_{1} A_{2} \ldots A_{2 k}}\right)_{a b^{\prime}},
$$

for any positive chirality spinor ψ.
Requiring that the holonomy of the supercovariant connection lie in $S L(16, \mathbb{C})$ implies that

$$
u_{M N} B(\chi, \nu)=0
$$

which eliminates the contribution to $\mathcal{R}_{M N, a b^{\prime}}$ from $u_{M N} \chi_{a} \nu_{b^{\prime}}$.

Hence we are left with

$$
\begin{aligned}
\mathcal{R}_{M N, a b^{\prime}} & =u_{M N, r} \eta_{a}^{r} \nu_{b^{\prime}} \\
& =-\frac{1}{16} u_{M N, r} \sum_{k=1}^{2} \frac{1}{(2 k)!} B\left(\eta^{r}, \Gamma_{A_{1} A_{2} \ldots A_{2 k}} \nu\right)\left(\Gamma^{A_{1} A_{2} \ldots A_{2 k}}\right)_{a b^{\prime}}
\end{aligned}
$$

which in turn relates T^{2}, T^{4} to $u_{M N, r}$ via

$$
\begin{aligned}
\left(T_{M N}^{2}\right)_{A_{1} A_{2}} & =-\frac{1}{16} u_{M N, r} B\left(\eta^{r}, \Gamma_{A_{1} A_{2} \nu}\right) \\
\left(T_{M N}^{4}\right)_{A_{1} A_{2} A_{3} A_{4}} & =-\frac{1}{16} u_{M N, r} B\left(\eta^{r}, \Gamma_{A_{1} A_{2} A_{3} A_{4} \nu} \nu\right)
\end{aligned}
$$

The method is then as follows

- Determine all components of T^{2} and T^{4} in terms of $u_{M N, r}$

The method is then as follows

- Determine all components of T^{2} and T^{4} in terms of $u_{M N, r}$
- Translate the T^{2} and T^{4} constraints into constraints on u

The method is then as follows

- Determine all components of T^{2} and T^{4} in terms of $u_{M N, r}$
- Translate the T^{2} and T^{4} constraints into constraints on u
- After some mildly involved computation, one finds that these are sufficient to fix $u_{M N, r}=0$.

The method is then as follows

- Determine all components of T^{2} and T^{4} in terms of $u_{M N, r}$
- Translate the T^{2} and T^{4} constraints into constraints on u
- After some mildly involved computation, one finds that these are sufficient to fix $u_{M N, r}=0$.
- This then implies that $T^{2}=0, T^{4}=0$.

The method is then as follows

- Determine all components of T^{2} and T^{4} in terms of $u_{M N, r}$
- Translate the T^{2} and T^{4} constraints into constraints on u
- After some mildly involved computation, one finds that these are sufficient to fix $u_{M N, r}=0$.
- This then implies that $T^{2}=0, T^{4}=0$.
- However these are equivalent (together with $P=0, G=0$) to the constraints on maximally supersymmetric backgrounds.
So all $N=30$ solutions are locally maximally supersymmetric.
There are also no quotients of maximally supersymmetric solutions which preserve 30 supersymmetries.

$N=29$ Solutions

Solutions with exactly $N=29$ linearly independent Killing spinors are excluded as follows:

- As $P=0$, the algebraic Killing spinor eqns are linear over \mathbb{C}.

$N=29$ Solutions

Solutions with exactly $N=29$ linearly independent Killing spinors are excluded as follows:

- As $P=0$, the algebraic Killing spinor eqns are linear over \mathbb{C}.
- So a background with $N=29$ linearly independent solutions to the algebraic Killing spinor equation must have at least 30 solutions to this equation.

$N=29$ Solutions

Solutions with exactly $N=29$ linearly independent Killing spinors are excluded as follows:

- As $P=0$, the algebraic Killing spinor eqns are linear over \mathbb{C}.
- So a background with $N=29$ linearly independent solutions to the algebraic Killing spinor equation must have at least 30 solutions to this equation.
- By the $N=30$ analysis, this is sufficient to fix $G=0$

Solutions with exactly $N=29$ linearly independent Killing spinors are excluded as follows:

- As $P=0$, the algebraic Killing spinor eqns are linear over \mathbb{C}.
- So a background with $N=29$ linearly independent solutions to the algebraic Killing spinor equation must have at least 30 solutions to this equation.
- By the $N=30$ analysis, this is sufficient to fix $G=0$
- As $G=0$, the gravitino Killing spinor equation is linear over \mathbb{C}, and so an exactly $N=29$ solution is excluded.

Conclusions

There are no solutions of IIB supergravity with exactly $N=29$, $N=30$ or $N=31$ linearly independent Killing spinors

Conclusions

There are no solutions of IIB supergravity with exactly $N=29$, $N=30$ or $N=31$ linearly independent Killing spinors

What about solutions with $N=28$ supersymmetries? A non-trivial example is known - the plane wave geometry of Bena and Roiban.

In fact in order to have a solution with exactly 28 linearly independent Killing spinors, one is forced to take $G \neq 0$.

Analysis of the Killing spinor equation integrability conditions with $G \neq 0$ is much more complicated!

The gravitino integrability conditions are

$$
\mathcal{S} \epsilon+\mathcal{T}(C \epsilon)^{*}=0
$$

where

$$
\begin{aligned}
& \mathcal{T}=-\frac{\kappa}{96}\left(\Gamma_{[N} L_{1} L_{2} L_{3} D_{M]} G_{L_{1} L_{2} L_{3}}+9 \Gamma^{\left.L_{1} L_{2} D_{[N} G_{M] L_{1} L_{2}}\right)}\right. \\
& +\frac{i \kappa^{2}}{32}\left(\frac{1}{3} F_{N M}{ }^{L_{1} L_{2} L_{3}} G_{L_{1} L_{2} L_{3}}+\Gamma^{L_{1} L_{2}} F_{\left[N \mid L_{1} L_{2}\right.} Q_{1} Q_{2} G_{\mid M] Q_{1} Q_{2}}\right. \\
& +\frac{1}{3} \Gamma_{[N} Q^{Q} F_{M] Q}{ }^{L_{1} L_{2} L_{3}} G_{L_{1} L_{2} L_{3}}-\frac{1}{2} \Gamma^{L_{1} \ldots L_{4}} F_{N M L_{1} L_{2}} Q_{G_{L_{3} L_{4} Q}} \\
& +\frac{1}{2} \Gamma_{[N} L_{1} L_{2} L_{3} F_{M] L_{1} L_{2}} Q_{1} Q_{2} G_{L_{3} Q_{1} Q_{2}}+\frac{1}{4} \Gamma^{L_{1} \ldots L_{4}} F_{L_{1} \ldots L_{4}}{ }^{Q} G_{N M Q} \\
& \left.-\frac{1}{2} \Gamma_{[N \mid} L_{1} L_{2} L_{3} F_{L_{1} L_{2} L_{3}} Q_{1} Q_{2} G_{\mid M] Q_{1} Q_{2}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{S}=\frac{1}{8} R_{N M}{ }^{L_{1} L_{2}} \Gamma_{L_{1} L_{2}}-\frac{1}{2} P_{[N} P_{M]}^{\star}+\frac{i \kappa}{48} \Gamma^{L_{1} \ldots L_{4}} D_{[N} F_{M] L_{1}} \ldots L_{4} \\
& +\frac{\kappa^{2}}{24}\left(-\Gamma^{L_{1}} L_{2} F_{\left[N \mid L_{1}\right.} Q_{1} Q_{2} Q_{3} F_{\mid M] L_{2} Q_{1} Q_{2} Q_{3}}+\frac{1}{2} \Gamma^{L_{1} \cdots L_{4}} F_{N M L} Q_{1} Q_{2} F_{L_{2} L_{3} L_{4} Q_{1} Q_{2}}\right. \\
& +\frac{1}{2} \Gamma_{[N} L_{1} L_{2} L_{3} F_{M] L_{1}} Q_{1} Q_{2} Q_{3} F_{\left.L_{2} L_{3} Q_{1} Q_{2} Q_{3}\right)} \\
& +\frac{\kappa^{2}}{32}\left(-\frac{1}{2} G_{[N} L_{1} L_{2} G_{M] L_{1} L_{2}}+\frac{1}{48} \Gamma_{N M} G^{L_{1}} L_{2} L_{3} G_{L_{1}}^{\star} L_{2} L_{3}\right. \\
& -\frac{1}{4} \Gamma_{[N}{ }^{L_{1}} G_{M]} L_{2} L_{3} G_{L_{1}}^{\star} L_{2} L_{3}+\frac{1}{8} \Gamma_{[N \mid} Q_{G_{Q}} L_{1} L_{2} G_{\mid M] L_{1} L_{2}} \\
& +\frac{3}{16} \Gamma^{L_{1} L_{2}} G_{N M}{ }^{L_{3}} G_{L_{1} L_{2} L_{3}}^{\star}-\Gamma^{L_{1} L_{2}} G_{\left[N \mid L_{1}\right.}{ }^{Q} G_{\mid M] L_{2} Q}^{\star} \\
& -\frac{3}{16} \Gamma^{L_{1} L_{2} G_{L_{1} L_{2}} Q_{G_{N M Q}}^{\star}+\frac{1}{16} \Gamma_{N M} L_{1} L_{2} G_{L_{1}} Q_{1} Q_{2} G_{L_{2}}^{\star} Q_{1} Q_{2}} \\
& -\frac{1}{16} \Gamma^{L_{1} \ldots L_{4}} G_{L_{1} L_{2} L_{3}} G_{N M L_{4}}^{\star}+\frac{1}{8} \Gamma_{[N \mid}^{L_{1} L_{2} L_{3} G_{L_{1} L_{2}} Q^{Q}{ }_{\mid M] L_{3} Q},{ }^{\star}} \\
& +\frac{1}{4} \Gamma^{L_{1} \ldots L_{4}} G_{\left[N \mid L_{1} L_{2}\right.} G_{\mid M] L_{3} L_{4}}+\frac{1}{16} \Gamma^{L_{1} \ldots L_{4}} G_{N M L_{1}} G_{L_{2}}^{\star} L_{3} L_{4} \\
& +\frac{1}{4} \Gamma_{[N \mid} L_{1} L_{2} L_{3} G_{\mid M] L_{1}} Q_{G^{\star}}^{L_{2} L_{3} Q}+\frac{1}{24} \Gamma_{[N \mid} L_{1} \ldots L_{5} G_{\mid M] L_{1} L_{2}} G_{L_{3}}^{\star} L_{4} L_{5} \\
& -\frac{1}{48} \Gamma_{[N \mid}{ }^{L_{1} \ldots L_{5} G_{L_{1}} L_{2} L_{3} G_{\mid M] L_{4} L_{5}}^{\star}-\frac{1}{32} \Gamma_{N M}{ }^{L_{1} \ldots L_{4}} G_{L_{1} L_{2}} Q_{G^{\star}}^{L_{3} L_{4} Q}} \\
& \left.-\frac{1}{288} \Gamma_{N M}{ }^{L_{1} \ldots L_{6}} G_{L_{1} L_{2} L_{3}} G_{L_{4} L_{5} L_{6}}\right)
\end{aligned}
$$

One can show [JG, Gran, Papadopoulos] that the Bena and Roiban plane wave is the unique solution with $N=28$ supersymmetries:

$$
\begin{aligned}
d s^{2} & =2 d w\left(d v-\left(\frac{9}{8}+2 h^{2}\right) \delta_{i j} x^{i} x^{j} d w\right)+\delta_{i j} d x^{i} d x^{j} \\
G & =-2 \sqrt{2} i e^{i \phi} d w \wedge\left(d x^{15}+d x^{26}+d x^{37}+d x^{48}\right) \\
F & =2 h d w \wedge\left(d x^{1256}-d x^{3478}\right)
\end{aligned}
$$

One can show [JG, Gran, Papadopoulos] that the Bena and Roiban plane wave is the unique solution with $N=28$ supersymmetries:

$$
\begin{aligned}
d s^{2} & =2 d w\left(d v-\left(\frac{9}{8}+2 h^{2}\right) \delta_{i j} x^{i} x^{j} d w\right)+\delta_{i j} d x^{i} d x^{j} \\
G & =-2 \sqrt{2} i e^{i \phi} d w \wedge\left(d x^{15}+d x^{26}+d x^{37}+d x^{48}\right) \\
F & =2 h d w \wedge\left(d x^{1256}-d x^{3478}\right)
\end{aligned}
$$

All homogeneous solutions with $N>24$ linearly independent Killing vectors could (in principle) be classified using similar methods.

One can show [JG, Gran, Papadopoulos] that the Bena and Roiban plane wave is the unique solution with $N=28$ supersymmetries:

$$
\begin{aligned}
d s^{2} & =2 d w\left(d v-\left(\frac{9}{8}+2 h^{2}\right) \delta_{i j} x^{i} x^{j} d w\right)+\delta_{i j} d x^{i} d x^{j} \\
G & =-2 \sqrt{2} i e^{i \phi} d w \wedge\left(d x^{15}+d x^{26}+d x^{37}+d x^{48}\right) \\
F & =2 h d w \wedge\left(d x^{1256}-d x^{3478}\right)
\end{aligned}
$$

All homogeneous solutions with $N>24$ linearly independent Killing vectors could (in principle) be classified using similar methods.

It has also been shown [Gran, JG, Papadopoulos, Roest], that there are no $N=31$ (and very recently, no $N=30$) solutions in $\mathrm{D}=11$ supergravity.

