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Outline

IIB Supergravity and Killing Spinors

Analysis of Solutions with 28 < N < 32 supersymmetries

No assumptions about the spacetime geometry/fluxes are
made - the analysis is completely general.

All maximally supersymmetric solutions, i.e. those with 32 linearly
independent Killing spinors, are completely classified [Figueroa
O’Farrill, Papadopoulos]

One finds: R9,1
, AdS5 × S5 and a maximally supersymmetric plane

wave solution.
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IIB Supergravity and Killing Spinors

The bosonic fields of IIB supergravity are the spacetime metric g, the
axion σ and dilaton φ , two three-form field strengths Gα = dAα

(α = 1, 2), and a self-dual five-form field strength F

The axion and dilaton give rise to a complex 1-form P [Schwarz].

The 3-forms are combined to give a complex 3-form G.

To achieve this, introduce a SU(1, 1) matrix U = (V α+ , V
α
− ), α = 1, 2

such that

V α−V
β
+ − V

β
−V

α
+ = εαβ , (V 1

−)∗ = V 2
+, (V 2

−)∗ = V 1
+

ε12 = 1 = ε12.



The V α± are related to the axion and dilaton by

V 2
−
V 1
−

=
1 + i(σ + ie−φ)
1− i(σ + ie−φ)

.

Then P and G are defined by

PM = −εαβV α+ ∂MV
β
+ , GMNR = −εαβV α+G

β
MNR



The gravitino Killing spinor equation is

∇̃M ε+
i

48
ΓN1...N4εFN1...N4M −

1
96

(ΓMN1N2N3GN1N2N3

−9ΓN1N2GMN1N2)(Cε)∗ = 0

where

∇̃M = ∂M −
i

2
QM +

1
4

ΩM,ABΓAB

is the standard covariant derivative twisted with U(1) connection QM ,
given in terms of the SU(1, 1) scalars by

QM = −iεαβV α− ∂MV
β
+

and Ω is the spin connection.



There is also an algebraic constraint

PMΓM (Cε)∗ +
1
24
GN1N2N3ΓN1N2N3ε = 0

The Killing spinor ε is a complex Weyl spinor constructed from two
copies of the same Majorana-Weyl representation ∆+

16:

ε = ψ1 + iψ2

Majorana-Weyl spinors ψ satisfy

ψ = C(ψ∗)

C is the charge conjugation matrix.



Spinors as Forms

Let e1, . . . , e5 be a locally defined orthonormal basis of R5
.

Take U to be the span over R of e1, . . . , e5.

The space of Dirac spinors is ∆c = Λ∗(U ⊗C) (the complexified
space of all forms on U).

∆c decomposes into even forms ∆+
c and odd forms ∆−c , which are

the complex Weyl representations of Spin(9, 1).



The gamma matrices are represented on ∆c as

Γ0η = −e5 ∧ η + e5yη
Γ5η = e5 ∧ η + e5yη
Γiη = ei ∧ η + eiyη i = 1, . . . , 4

Γ5+iη = iei ∧ η − ieiyη i = 1, . . . , 4

Γj for j = 1, . . . , 9 are hermitian and Γ0 is anti-hermitian with
respect to the inner product

< zaea, w
beb >=

5∑
a=1

(za)∗wa ,

This inner product can be extended from U ⊗C to ∆c.



There is a Spin(9, 1) invariant inner product defined on ∆c defined
by

B(ε1, ε2) =< Γ0C(ε1)∗, ε2 >

B is skew-symmetric in ε1, ε2.

B vanishes when restricted to ∆+
c or ∆−c .

This defines a non-degenerate pairing B : ∆+
c ⊗∆−c → R given by

B(ε, ξ) = Re B(ε, ξ)



Canonical forms of spinors

We wish to write a spinor ν = ν1 + iν2, where νi ∈ ∆−16 in a simple
canonical form.

Spin(9, 1) has one type of orbit with stability subgroup Spin(7) n R8
in

∆−16 [Figueroa-O’Farrill, Bryant].

∆−16 = R < e5 + e12345 > +Λ1(R7) + ∆8 ,

R < e5 + e12345 > is the singlet generated by e5 + e12345

Λ1(R7) is the vector representation of Spin(7) spanned by (j,k=1,...,4)
ejk5 − 1

2εjkmnemn5, i(ejk5 + 1
2εjkmnemn5) and i(e5 − e12345).

∆8 is the spin representation of Spin(7) spanned by
ej + 1

6εjq1q2q3eq1q2q3 , i(ej −
1
6εjq1q2q3eq1q2q3).
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Spin(7) acts transitively on the S7 in ∆8, with stability subgroup G2,

and G2 acts transitively on the S6 in Λ1(R7) with stability subgroup
SU(3) [Salamon]

Using these transitive actions, any ν1 ∈ ∆−16 can be written as

ν1 = a1(e5 + e12345) + ia2(e5 − e12345) + a3(e1 + e234)

For all possible choices of (real) a1, a2, a3, there exist Spin(9, 1)
transformations which set ν1 = e5 + e12345 .

This spinor is Spin(7) n R8
invariant.

Having fixed ν1, it remains to consider ν2:
By using Spin(7) gauge transformations, which leave ν1 invariant, one
can write

ν2 = b1(e5 + e12345) + ib2(e5 − e12345) + b3(e1 + e234)
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There are various cases

i) b3 6= 0. Then using Spin(7) n R8
gauge transformations one can

take
ν2 = g(e1 + e234)

The stability subgroup of Spin(9, 1) which leaves ν1 and ν2
invariant is G2.

ii) If b3 = 0 then

ν2 = g1(e5 + e12345) + ig2(e5 − e12345)

and the stability subgroup is SU(4) n R8

iii) If b2 = b3 = 0 then
ν2 = g(e5 + e12345)

and the stability subgroup is Spin(7) n R8
.



N = 31 Solutions: Algebraic Constraints

Suppose that there exists a solution with exactly (and no more than) 31
linearly independent Killing spinors over R.

Consider the algebraic constraint

PMΓM (Cεr)∗ +
1
24
GN1N2N3ΓN1N2N3εr = 0

where εr are Killing spinors for r = 1, . . . , 31.

The space of Killing spinors is orthogonal to a single normal spinor,
ν ∈ ∆−c with respect to the Spin(9, 1) invariant inner product B.
Using Spin(9, 1) gauge transformations, this normal spinor can be
brought into one of 3 canonical forms:

Spin(7) n R8 : ν = (n+ im)(e5 + e12345) ,
SU(4) n R8 : ν = (n− `+ im)e5 + (n+ `+ im)e12345 ,

G2 : ν = n(e5 + e12345) + im(e1 + e234) ,
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In general, one can write

εr =
32∑
i=1

friη
i

where fri are real, ηp for p = 1, . . . , 16 is a basis for ∆+
16 and

η16+p = iηp.

The matrix with components fri is of rank 31.

The functions fri are constrained by the orthogonality condition.

For example, take the case for which ν = (n+ im)(e5 + e12345): set

εr = fr1(1 + e1234) + fr17i(1 + e1234) + frkη
k

where ηk are the remaining basis elements orthogonal to
1 + e1234, i(1 + e1234).
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Then the orthogonality relation implies

nfr1 −mfr17 = 0

and so, taking without loss of generality n 6= 0; one finds

εr =
fr17
n

(m+ in)(1 + e1234) + frkη
k

Substituting this back into the algebraic Killing spinor equation, one finds

PMΓMC∗[(m+in)(1+e1234)]+
1
24
GM1M2M3ΓM1M2M3(m+in)(1+e1234) = 0

and

PMΓMηp = 0, GM1M2M3ΓM1M2M3ηp = 0, p = 2, . . . , 16
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Analogous equations are obtained for SU(4) n R8
and G2 invariant

normals.

In all cases, the constraints PMΓMηp = 0 fix P = 0 .

This means that the algebraic Killing spinor equation is linear over C, so
if there is a background with N = 31 linearly independent solutions of
the algebraic Killing spinor equation, then this equation must have 32
linearly independent solutions.

This in turn fixes G = 0. However, if G = 0 then the gravitino Killing
spinor equation also becomes linear over C.

In this case, if the gravitino Killing spinor equation has 31 linearly
independent solutions, it must have 32 solutions also. So the background
is maximally supersymmetric.
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N = 30 Solutions: Algebraic Constraints

Having excluded N = 31 solutions, consider N = 30.

To simplify the analysis, we use a result of Figueroa O’Farrill,
Hackett-Jones and Moutsopoulos.

This states that all solutions with N > 24 linearly independent Killing
spinors are homogeneous, and hence have P = 0.

So, for N = 30 solutions, the algebraic Killing spinor equation becomes
linear over C:

1
24
GN1N2N3ΓN1N2N3ε = 0



To analyse the case of N = 30 solutions, note that the Killing spinors are
all orthogonal to a normal spinor ν ∈ ∆−c with respect to the inner
product B.

This can be brought into canonical form using gauge transformations.

Spin(7) n R8 : ν = (n+ im)(e5 + e12345) ,
SU(4) n R8 : ν = (n− `+ im)e5 + (n+ `+ im)e12345 ,

G2 : ν = n(e5 + e12345) + im(e1 + e234) ,

The solutions to the algebraic Killing spinor equation are

εr =
15∑
s=1

zrsη
s ,

where ηi is a basis normal to ν and z is an invertible 15× 15 matrix of
spacetime dependent complex functions.
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There are three cases to consider, corresponding to the types of normal
spinor ν.

In all cases, one can choose the basis (ηi) to have 13 (very simple)
common elements, which are orthogonal to ν: epq, e15pq, e1p, e1q for
p = 2, 3, 4 and e15 − e2345.

The remaining two basis elements are case-dependent

Spin(7) n R8 : 1− e1234, e15 + e2345 ,

SU(4) n R8 : e15 + e2345, (n− `+ im)1− (n+ `+ im)e1234 ,
G2 : 1− e1234,m(1 + e1234) + in(e15 + e2345)

In all cases, evaluating the algebraic Killing spinor equation on the basis
(ηi) produces sufficient constraints to fix G = 0.



There are three cases to consider, corresponding to the types of normal
spinor ν.

In all cases, one can choose the basis (ηi) to have 13 (very simple)
common elements, which are orthogonal to ν: epq, e15pq, e1p, e1q for
p = 2, 3, 4 and e15 − e2345.

The remaining two basis elements are case-dependent

Spin(7) n R8 : 1− e1234, e15 + e2345 ,

SU(4) n R8 : e15 + e2345, (n− `+ im)1− (n+ `+ im)e1234 ,
G2 : 1− e1234,m(1 + e1234) + in(e15 + e2345)

In all cases, evaluating the algebraic Killing spinor equation on the basis
(ηi) produces sufficient constraints to fix G = 0.



Integrability Conditions for N=30 Solutions

It remains to consider the integrability conditions of the Killing spinor
equations for solutions with G = P = 0.

The curvature R = [D,D] of the covariant connection D of IIB
supergravity can be expanded as

RMN =
1
2

(T 2
MN )PQΓPQ +

1
4!

(T 4
MN )Q1...Q4ΓQ1...Q4 ,

where

(T 2
MN )P1P2 = 1

4RMN,P1P2 − 1
12FM [P1

Q1Q2Q3F|N |P2]Q1Q2Q3 ,

(T 4
MN )P1...P4 = i

2D[MFN ]P1...P4 + 1
2FMNQ1Q2[P1FP2P3P4]

Q1Q2



The T 2 and T 4 tensors satisfy various algebraic constraints, following
from the Bianchi identities and field equations:

(T 2
MN )P1P2 = (T 2

P1P2
)MN ,

(T 2
M [P1

)P2P3] = 0 ,

(T 2
MN )PN = 0 ,

(T 4
[P1P2

)P3P4P5P6] = 0

(T 4
MN )P1P2P3

N = 0 ,

(T 4
M [P1

)P2P3P4P5] = − 1
5!
εP1P2P3P4P5

Q1Q2Q3Q4Q5(T 4
M [Q1

)Q2Q3Q4Q5] .

And (T 4
P1(M )N)P2P3P4 is totally antisymmetric in P1, P2, P3, P4.



Analysis of Constraints

The integrability conditions of the gravitino Killing spinor equations

Rεr = 0

One can obtain constraints on the tensors T 2 and T 4 by directly
evaluating these constraints on the basis elements ηi and using the
constraints and symmetries of T 2, T 4.

It is more straightforward to note that Rεr = 0, implies

RMN,ab′ = uMN,rη
r
aνb′ + uMNχaνb′

where u are complex valued, and ηr, χ is a basis for ∆+
c .
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We also have the formula

ψaνb′ = − 1
16

2∑
k=0

1
(2k)!

B(ψ,ΓA1A2...A2kν)(ΓA1A2...A2k)ab′ ,

for any positive chirality spinor ψ.

Requiring that the holonomy of the supercovariant connection lie in
SL(16,C) implies that

uMNB(χ, ν) = 0

which eliminates the contribution to RMN,ab′ from uMNχaνb′ .



Hence we are left with

RMN,ab′ = uMN,rη
r
aνb′

= − 1
16
uMN,r

2∑
k=1

1
(2k)!

B(ηr,ΓA1A2...A2kν)(ΓA1A2...A2k)ab′

which in turn relates T 2, T 4 to uMN,r via

(T 2
MN )A1A2 = − 1

16
uMN,rB(ηr,ΓA1A2ν)

(T 4
MN )A1A2A3A4 = − 1

16
uMN,rB(ηr,ΓA1A2A3A4ν)



The method is then as follows

Determine all components of T 2 and T 4 in terms of uMN,r

Translate the T 2 and T 4 constraints into constraints on u

After some mildly involved computation, one finds that these are
sufficient to fix uMN,r = 0.

This then implies that T 2 = 0, T 4 = 0.

However these are equivalent (together with P = 0, G = 0) to the
constraints on maximally supersymmetric backgrounds.

So all N = 30 solutions are locally maximally supersymmetric.

There are also no quotients of maximally supersymmetric solutions which
preserve 30 supersymmetries.
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N = 29 Solutions

Solutions with exactly N = 29 linearly independent Killing spinors are
excluded as follows:

As P = 0, the algebraic Killing spinor eqns are linear over C.

So a background with N = 29 linearly independent solutions to the
algebraic Killing spinor equation must have at least 30 solutions to
this equation.

By the N = 30 analysis, this is sufficient to fix G = 0
As G = 0, the gravitino Killing spinor equation is linear over C, and
so an exactly N = 29 solution is excluded.
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Conclusions

There are no solutions of IIB supergravity with exactly N = 29,
N = 30 or N = 31 linearly independent Killing spinors

What about solutions with N = 28 supersymmetries? A non-trivial
example is known - the plane wave geometry of Bena and Roiban.

In fact in order to have a solution with exactly 28 linearly independent
Killing spinors, one is forced to take G 6= 0.

Analysis of the Killing spinor equation integrability conditions with G 6= 0
is much more complicated!
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The gravitino integrability conditions are

Sε+ T (Cε)∗ = 0

where
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One can show [JG, Gran, Papadopoulos] that the Bena and Roiban plane
wave is the unique solution with N = 28 supersymmetries:

ds2 = 2dw(dv − (
9
8

+ 2h2)δijxixjdw) + δijdx
idxj

G = −2
√

2ieiφdw ∧ (dx15 + dx26 + dx37 + dx48)

F = 2hdw ∧ (dx1256 − dx3478)

All homogeneous solutions with N > 24 linearly independent Killing
vectors could (in principle) be classified using similar methods.

It has also been shown [Gran, JG, Papadopoulos, Roest], that
there are no N = 31 (and very recently, no N = 30) solutions in
D=11 supergravity.
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