Properties of Schrödinger Space-times

Jelle Hartong

University of Bern

Based on
0904.3304 Matthias Blau, J. H., Blaise Rollier
and work in progress

Introduction \& Motivation

- Many systems in nature exhibit critical points with non-relativistic scale invariance $z>1$:

$$
\vec{x} \rightarrow \lambda \vec{x} \quad t \rightarrow \lambda^{z} t .
$$

Introduction \& Motivation

- Many systems in nature exhibit critical points with non-relativistic scale invariance $z>1$:

$$
\vec{x} \rightarrow \lambda \vec{x} \quad t \rightarrow \lambda^{z} t .
$$

- Such systems have Lifshitz symmetries: translations, rotations and NR dilatations.

Introduction \& Motivation

- Many systems in nature exhibit critical points with non-relativistic scale invariance $z>1$:

$$
\vec{x} \rightarrow \lambda \vec{x} \quad t \rightarrow \lambda^{z} t .
$$

- Such systems have Lifshitz symmetries: translations, rotations and NR dilatations.
\square Aim: to construct holographic techniques for (strongly coupled) systems with NR symmetries.

Introduction \& Motivation

- Many systems in nature exhibit critical points with non-relativistic scale invariance $z>1$:

$$
\vec{x} \rightarrow \lambda \vec{x} \quad t \rightarrow \lambda^{z} t .
$$

- Such systems have Lifshitz symmetries: translations, rotations and NR dilatations.
\square Aim: to construct holographic techniques for (strongly coupled) systems with NR symmetries.
\square Systems with Schrödinger invariance.

Introduction \& Motivation

- Many systems in nature exhibit critical points with non-relativistic scale invariance $z>1$:

$$
\vec{x} \rightarrow \lambda \vec{x} \quad t \rightarrow \lambda^{z} t .
$$

- Such systems have Lifshitz symmetries: translations, rotations and NR dilatations.
\square Aim: to construct holographic techniques for (strongly coupled) systems with NR symmetries.
- Systems with Schrödinger invariance.
- Holographic approach to the study of such systems: [Son, 2008] [Balasubramanian, McGreevy, 2008]

Contents

\square For any $z>1$:
Review of properties of Schrödinger space-times in Poincaré-like coordinates

Causal properties
For $z=2$:

- Global coordinates

Hilbert space for scalars
Comments on Cauchy problem for scalars

Symmetries

$\square \phi=0$ and $\phi=e^{i m x^{-}} \psi\left(x^{+}, \vec{x}\right)$

Symmetries

$\square \square \phi=0$ and $\phi=e^{i m x^{-}} \psi\left(x^{+}, \vec{x}\right)$
$\operatorname{sch}_{z}(d+3) \subset \operatorname{so}(2, d+2)$

Symmetries

$\square \phi=0$ and $\phi=e^{i m x^{-}} \psi\left(x^{+}, \vec{x}\right)$
$\square \operatorname{sch}_{z}(d+3) \subset \mathrm{so}(2, d+2)$
\square The Schrödinger algebra for $z \neq 1$ consists of:

\[\)	$S L(2, \mathbb{R})$
$\text { (only for } z=2)$	\(\begin{cases}H \& time translation

D \& dilatation

C \& special conformal (\exists only for z=2)\end{cases}
\]

Heisenberg \(\left\{\begin{array}{ll}N \& mass operator (only central for z=2)

P_{a} \& momenta(a=1, ···, d)

V_{a} \& Galilean boosts\end{array}\right\}\)| $S O(d)$ | $M_{a b}$ |
| :--- | :--- |
| rotations | |

Geodesic properties

$$
d s^{2}=-\frac{1}{r^{2 z}} d t^{2}+\frac{1}{r^{2}}\left(-2 d t d \xi+d r^{2}+d \vec{x}^{2}\right)
$$

Geodesically	Tidal forces	Bulk to boundary
complete	[Podolsky, 1998]	geodesics

$z=1($ AdS $)$	no	constant	yes
$1<z<2$	no	divergent	no
$z=2$	no	finite (bounded)	no
$z>2$	no	finite (unbounded)	no

Causality \# 1

$$
d s^{2}=-\frac{1}{r^{2 z}} d t^{2}+\frac{1}{r^{2}}\left(-2 d t d \xi+d r^{2}+d \bar{x}^{2}\right)
$$

\square For $z>1$ the space-time is non-distinguishing [Hubeny, Rangamani, Ross, 2005] .
non-distinguishing: There exist distinct points with identical past and future.

Causality \# 1

$$
d s^{2}=-\frac{1}{r^{2 z}} d t^{2}+\frac{1}{r^{2}}\left(-2 d t d \xi+d r^{2}+d \vec{x}^{2}\right)
$$

\square For $z>1$ the space-time is non-distinguishing [Hubeny, Rangamani, Ross, 2005] .
non-distinguishing: There exist distinct points with identical past and future.
\square The argument uses that light cones near the boundary ($r=0$) flatten out for $z>1$.

Causality \# 1

$$
d s^{2}=-\frac{1}{r^{2 z}} d t^{2}+\frac{1}{r^{2}}\left(-2 d t d \xi+d r^{2}+d \vec{x}^{2}\right)
$$

\square For $z>1$ the space-time is non-distinguishing [Hubeny, Rangamani, Ross, 2005] .
non-distinguishing: There exist distinct points with identical past and future.
\square The argument uses that light cones near the boundary ($r=0$) flatten out for $z>1$.

- Causal future of $\left(t_{0}, \xi_{0}, r_{0}, x_{0}\right)$ contains $\left\{(t, \xi, r, x) \mid t>t_{0}\right\}$.

Causality \# 2

Causal Ladder:

- Globally hyperbolic -> Minkowski, de Sitter
- Stably causal -> Anti-de Sitter, plane waves
- Strongly causal
- Distinguishing
- Causal -> Schrödinger $(z>1)$
- Chronological

Global coordinates \#1

\square Does there exist a time-independent global coordinate system?

Global coordinates \#1

\square Does there exist a time-independent global coordinate system?

- Necessary condition: \exists timelike Killing vector in the Poincaré patch whose norm is nowhere vanishing.

Global coordinates \#1

\square Does there exist a time-independent global coordinate system?

- Necessary condition: \exists timelike Killing vector in the Poincaré patch whose norm is nowhere vanishing.
- Only for $z=2$ does there exist such a Killing vector:
$H+\omega^{2} C$.

Global coordinates \#1

\square Does there exist a time-independent global coordinate system?

- Necessary condition: \exists timelike Killing vector in the Poincaré patch whose norm is nowhere vanishing.
- Only for $z=2$ does there exist such a Killing vector:
$H+\omega^{2} C$.
\square If there exists a time-independent global coordinate system then only for $z=2$.

Global coordinates \#1

\square Does there exist a time-independent global coordinate system?

- Necessary condition: \exists timelike Killing vector in the Poincaré patch whose norm is nowhere vanishing.
- Only for $z=2$ does there exist such a Killing vector:
$H+\omega^{2} C$.
\square If there exists a time-independent global coordinate system then only for $z=2$.
\square There is one generator that commutes with $H+\omega^{2} C$, namely N.

Global coordinates \#2

\square To construct a coordinate trafo: $(t, \xi, r, \vec{x}) \rightarrow(T, V, R, \vec{X})$ that "diagonalizes" $H+\omega^{2} C$ and $N: H+\omega^{2} C=\frac{\partial}{\partial T}$ and $N=\frac{\partial}{\partial V}$

$$
\begin{aligned}
t & =\omega^{-1} \tan \omega T \\
r & =\frac{R}{\cos \omega T} \quad \quad \text { boundary: } r=0 \rightarrow R=0 \\
\vec{x} & =\frac{\vec{x}}{\cos \omega T} \\
\xi & =V+\frac{\omega}{2}\left(R^{2}+\vec{X}^{2}\right) \tan \omega T \\
d s^{2} & =-\frac{d t^{2}}{r^{4}}+\frac{1}{r^{2}}\left(-2 d t d \xi+d r^{2}+d \vec{x}^{2}\right) \\
& =-\frac{d T^{2}}{R^{4}}+\frac{1}{R^{2}}\left(-2 d T d V-\omega^{2}\left(R^{2}+\vec{X}^{2}\right) d T^{2}+d R^{2}+d \vec{X}^{2}\right)
\end{aligned}
$$

Global coordinates \#3

$$
d s^{2}=-\frac{d T^{2}}{R^{4}}+\frac{1}{R^{2}}\left(-2 d T d V-\omega^{2}\left(R^{2}+\vec{X}^{2}\right) d T^{2}+d R^{2}+d \vec{X}^{2}\right)
$$

- Terms proportional to ω establish geodesic completeness via "harmonic trapping".

Global coordinates \#3

$$
d s^{2}=-\frac{d T^{2}}{R^{4}}+\frac{1}{R^{2}}\left(-2 d T d V-\omega^{2}\left(R^{2}+\vec{X}^{2}\right) d T^{2}+d R^{2}+d \vec{X}^{2}\right)
$$

- Terms proportional to ω establish geodesic completeness via "harmonic trapping".
- NRCFT: primary operators correspond to energy eigenstates of a system in a harmonic potential [Nishida, Son, 2007]

Global coordinates \#3

$$
d s^{2}=-\frac{d T^{2}}{R^{4}}+\frac{1}{R^{2}}\left(-2 d T d V-\omega^{2}\left(R^{2}+\vec{X}^{2}\right) d T^{2}+d R^{2}+d \vec{X}^{2}\right)
$$

- Terms proportional to ω establish geodesic completeness via "harmonic trapping".
\square NRCFT: primary operators correspond to energy eigenstates of a system in a harmonic potential [Nishida, Son, 2007]
- "Boundary": $R=\mathrm{cst}$ and $V=\mathrm{cst}$

$$
\left.d s^{2}\right|_{R, V=\mathrm{cst}}=-\left(1+\omega^{2} \rho^{2}\right) d T^{2}+d \rho^{2}+\rho^{2} d \Omega_{d-1}^{2}
$$

takes the form of a Newtonian limit with isotropic harmonic oscillator potential.

A Hilbert space for scalars \#1

\square Free complex scalar: $\left(\square-m_{0}^{2}\right) \phi=0$ in global coordinates.

A Hilbert space for scalars \#1

\square Free complex scalar: $\left(\square-m_{0}^{2}\right) \phi=0$ in global coordinates.
\square Mode decomposition: $\phi=\sum_{M}\left(a_{M} \phi_{M}+b_{M}^{*} \phi_{M}^{*}\right)$.

A Hilbert space for scalars \#1

\square Free complex scalar: $\left(\square-m_{0}^{2}\right) \phi=0$ in global coordinates.
\square Mode decomposition: $\phi=\sum_{M}\left(a_{M} \phi_{M}+b_{M}^{*} \phi_{M}^{*}\right)$.
\square Inner product: $\left\langle\phi_{M} \mid \phi_{M^{\prime}}\right\rangle=\frac{i}{2} \int_{\Sigma_{T}} d \Sigma^{\mu} \phi_{M}^{*} \overleftrightarrow{\partial_{\mu}} \phi_{M^{\prime}}$

A Hilbert space for scalars \#1

\square Free complex scalar: $\left(\square-m_{0}^{2}\right) \phi=0$ in global coordinates.
\square Mode decomposition: $\phi=\sum_{M}\left(a_{M} \phi_{M}+b_{M}^{*} \phi_{M}^{*}\right)$.
\square Inner product: $\left\langle\phi_{M} \mid \phi_{M^{\prime}}\right\rangle=\frac{i}{2} \int_{\Sigma_{T}} d \Sigma^{\mu} \phi_{M}^{*} \overleftrightarrow{\partial_{\mu}} \phi_{M^{\prime}}$
$-\Sigma_{T}$:
$T=\mathrm{cst}$

$$
(d R^{2}+\overbrace{d \rho^{2}+\rho^{2} d \Omega_{d-1}^{2}}^{d \vec{X}^{2}})
$$

- Lightlike with normal $\left(\frac{\partial}{\partial V}\right)^{\mu}=\delta_{V}^{\mu}$
$\square d \Sigma^{\mu}=\delta_{V}^{\mu} R^{-(d+1)} \rho^{d-1} d R d \rho d \Omega_{d-1}$.

A Hilbert space for scalars \#2

$\square\left\langle\phi_{M} \mid \phi_{M^{\prime}}\right\rangle=\frac{i}{2} \int_{\Sigma_{T}} d R d \rho d \Omega_{d-1} R^{-(d+1)} \rho^{d-1} \phi_{M}^{*} \overleftrightarrow{\partial_{V}} \phi_{M^{\prime}}$

A Hilbert space for scalars \#2

$\square\left\langle\phi_{M} \mid \phi_{M^{\prime}}\right\rangle=\frac{i}{2} \int_{\Sigma_{T}} d R d \rho d \Omega_{d-1} R^{-(d+1)} \rho^{d-1} \phi_{M}^{*} \overleftrightarrow{\partial_{V}} \phi_{M^{\prime}}$
\square Take modes to be eigenfunctions of $H+\omega^{2} C=\frac{\partial}{\partial T}$ and $N=\frac{\partial}{\partial V}$.

A Hilbert space for scalars \#2

$\square\left\langle\phi_{M} \mid \phi_{M^{\prime}}\right\rangle=\frac{i}{2} \int_{\Sigma_{T}} d R d \rho d \Omega_{d-1} R^{-(d+1)} \rho^{d-1} \phi_{M}^{*} \overleftrightarrow{\partial_{V}} \phi_{M^{\prime}}$
\square Take modes to be eigenfunctions of $H+\omega^{2} C=\frac{\partial}{\partial T}$ and $N=\frac{\partial}{\partial V}$.
\square Solutions to the Klein-Gordon equation are separable:

$$
\phi_{M}=e^{-i E_{M} T} e^{-i m V} Y_{L}(\text { angles }) \varphi_{M}(\rho) \phi_{M}(R)
$$

A Hilbert space for scalars \#2

$\square\left\langle\phi_{M} \mid \phi_{M^{\prime}}\right\rangle=\frac{i}{2} \int_{\Sigma_{T}} d R d \rho d \Omega_{d-1} R^{-(d+1)} \rho^{d-1} \phi_{M}^{*} \overleftrightarrow{\partial_{V}} \phi_{M^{\prime}}$
\square Take modes to be eigenfunctions of $H+\omega^{2} C=\frac{\partial}{\partial T}$ and $N=\frac{\partial}{\partial V}$.
\square Solutions to the Klein-Gordon equation are separable:

$$
\phi_{M}=e^{-i E_{M} T} e^{-i m V} Y_{L}(\text { angles }) \varphi_{M}(\rho) \phi_{M}(R) .
$$

- In $\left\langle\phi_{M} \mid \phi_{M^{\prime}}\right\rangle$ there is no $\int d V$ integral. The modes ϕ_{M} will be orthonormal iff $m=m^{\prime}$ (Bargmann superselection).

A Hilbert space for scalars \#3

$$
\left.d s^{2}\right|_{R, V=\mathrm{cst}}=-\left(1+\omega^{2} \rho^{2}\right) d T^{2}+d \rho^{2}+\rho^{2} d \Omega_{d-1}^{2}
$$

\square The equation for $\varphi_{M}(\rho)$ is identical to the time-independent Schrödinger equation for a particle in a d-dimensional isotropic harmonic oscillator:

$$
\varphi_{M}(\rho)=e^{-\frac{1}{2} \omega m \rho^{2}} \rho^{L} L_{n}^{L-1+d / 2}\left(\omega m \rho^{2}\right) .
$$

$L_{n}^{L-1+d / 2}\left(\omega m \rho^{2}\right)$ are generalized Laguerre polynomials of degree n.

A Hilbert space for scalars \#3

$$
\left.d s^{2}\right|_{R, V=\mathrm{cst}}=-\left(1+\omega^{2} \rho^{2}\right) d T^{2}+d \rho^{2}+\rho^{2} d \Omega_{d-1}^{2}
$$

\square The equation for $\varphi_{M}(\rho)$ is identical to the time-independent Schrödinger equation for a particle in a d-dimensional isotropic harmonic oscillator:

$$
\varphi_{M}(\rho)=e^{-\frac{1}{2} \omega m \rho^{2}} \rho^{L} L_{n}^{L-1+d / 2}\left(\omega m \rho^{2}\right) .
$$

$L_{n}^{L-1+d / 2}\left(\omega m \rho^{2}\right)$ are generalized Laguerre polynomials of degree n.
$\square\left\langle\phi_{M} \mid \phi_{M^{\prime}}\right\rangle \propto e^{i\left(E_{M}-E_{M^{\prime}}\right) T} \delta_{L L^{\prime}} \delta_{n n^{\prime}} \int d R R^{-(d+1)} \phi_{M}(R) \phi_{M^{\prime}}(R)$

A Hilbert space for scalars \#4

General solution for $\phi_{M}(R)$:

$$
\begin{aligned}
\phi_{M}(R) & =e^{-\frac{1}{2} \omega m R^{2}} R^{\Delta_{+}} F\left(n+\frac{L}{2}+\frac{d}{4}-\frac{E_{M}}{2 \omega}, 1+\frac{\Delta_{+}-\Delta_{-}}{2}, \omega m R^{2}\right) \\
\Delta_{ \pm} & =\frac{d+2}{2} \pm \sqrt{\frac{(d+2)^{2}}{4}+m_{0}^{2}+m^{2}}
\end{aligned}
$$

F is a confluent hypergeometric function.

A Hilbert space for scalars \#4

General solution for $\phi_{M}(R)$:
$\phi_{M}(R)=e^{-\frac{1}{2} \omega m R^{2}} R^{\Delta_{+}} F\left(n+\frac{L}{2}+\frac{d}{4}-\frac{E_{M}}{2 \omega}, 1+\frac{\Delta_{+}-\Delta_{-}}{2}, \omega m R^{2}\right)$
$\Delta_{ \pm}=\frac{d+2}{2} \pm \sqrt{\frac{(d+2)^{2}}{4}+m_{0}^{2}+m^{2}}$
F is a confluent hypergeometric function.

Breitenlohner-Freedman bound: $m_{0}^{2}+m^{2}>-\frac{(d+2)^{2}}{4}$.

A Hilbert space for scalars \#4

General solution for $\phi_{M}(R)$:
$\phi_{M}(R)=e^{-\frac{1}{2} \omega m R^{2}} R^{\Delta_{+}} F\left(n+\frac{L}{2}+\frac{d}{4}-\frac{E_{M}}{2 \omega}, 1+\frac{\Delta_{+}-\Delta_{-}}{2}, \omega m R^{2}\right)$
$\Delta_{ \pm}=\frac{d+2}{2} \pm \sqrt{\frac{(d+2)^{2}}{4}+m_{0}^{2}+m^{2}}$
F is a confluent hypergeometric function.
\square For simplicity consider only modes with $m_{0}^{2}+m^{2}>0$. These modes are normalizable iff $E_{M}=2 \omega\left(k+n+\frac{L}{2}+\frac{d}{4}\right)$ and given by

$$
\phi_{M}(R)=e^{-\frac{1}{2} \omega m R^{2}} R^{\Delta_{+}} L_{k}^{\left(\Delta_{+}-\Delta_{-}\right) / 2}\left(\omega m R^{2}\right) .
$$

A Hilbert space for scalars \#5

\square Thus for $m_{0}^{2}+m^{2}>0$ with m fixed we have the mode decomposition:

$$
\begin{aligned}
\phi= & \sum_{k, n, L}\left(a_{k, n, L} \phi_{k, n, L}+b_{k, n, L}^{*} \phi_{k, n, L}^{*}\right) \\
\phi_{k, n, L}= & A_{k, n, L} e^{-i E_{k, n, L} T} e^{-i m V} Y_{L}(\text { angles }) e^{-\frac{1}{2} \omega m\left(R^{2}+\rho^{2}\right)} R^{\Delta_{+}} \rho^{L} \times \\
& \times L_{n}^{L-1+d / 2}\left(\omega m \rho^{2}\right) L_{k}^{\left(\Delta_{+}-\Delta_{-}\right) / 2}\left(\omega m R^{2}\right) \\
E_{k, n, L}= & 2 \omega\left(k+n+\frac{L}{2}+\frac{d}{4}\right)
\end{aligned}
$$

with coefficients given by

$$
a_{k, n, L}=\left\langle\phi_{k, n, L} \mid \phi\right\rangle \quad b_{k, n, L}=\left\langle\phi_{k, n, L} \mid \phi^{*}\right\rangle .
$$

Causality and initial data \#1

$\square T$ is a global time function (differentiable along timelike curves).

Causality and initial data \#1

$\square T$ is a global time function (differentiable along timelike curves).
$\square T$ cannot be always increasing along future directed timelike curves otherwise the space-time is stably causal [Hawking, Ellis, 1975].

Causality and initial data \#1

$\square T$ is a global time function (differentiable along timelike curves).
$\square T$ cannot be always increasing along future directed timelike curves otherwise the space-time is stably causal [Hawking, Ellis, 1975].
\square Since $S c h_{z=2}$ is not stably causal T must on some timelike curves take on the same value more than once.

Causality and initial data \#1

$\square T$ is a global time function (differentiable along timelike curves).
$\square T$ cannot be always increasing along future directed timelike curves otherwise the space-time is stably causal [Hawking, Ellis, 1975].
\square Since $S c h_{z=2}$ is not stably causal T must on some timelike curves take on the same value more than once.
\square The surface $T=$ cst is intersected by certain timelike curves more than once.

Causality and initial data \#1

$\square T$ is a global time function (differentiable along timelike curves).
$\square T$ cannot be always increasing along future directed timelike curves otherwise the space-time is stably causal [Hawking, Ellis, 1975].
\square Since $S c h_{z=2}$ is not stably causal T must on some timelike curves take on the same value more than once.
\square The surface $T=$ cst is intersected by certain timelike curves more than once. \rightarrow The set $T=$ cst is not achronal.

Causality and initial data \#2

$\square T=\mathrm{cst}$ is not achronal but it is an initial data surface.

Causality and initial data \#2

$\square T=$ cst is not achronal but it is an initial data surface.
\square Questions:
What kind of curves intersect $T=$ cst more than once?

Causality and initial data \#2

$\square T=$ cst is not achronal but it is an initial data surface.
\square Questions:
What kind of curves intersect $T=$ cst more than once?
Is there a well-posed initial value formulation?

