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Introduction & Motivation

Many systems in nature exhibit critical points with

non-relativistic scale invariancez > 1:

~x→ λ~x t→ λzt .
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Introduction & Motivation

Many systems in nature exhibit critical points with

non-relativistic scale invariancez > 1:

~x→ λ~x t→ λzt .

Such systems have Lifshitz symmetries: translations, rotations

and NR dilatations.

Aim: to construct holographic techniques for (strongly

coupled) systems with NR symmetries.

Systems with Schrödinger invariance.

Holographic approach to the study of such systems: [Son, 2008]

[Balasubramanian, McGreevy, 2008]
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Symmetries
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Symmetries

�φ = 0 andφ = eimx−

ψ(x+, ~x)

schz(d+ 3) ⊂ so(2, d+ 2)

The Schrödinger algebra forz 6= 1 consists of:

SL(2,R)

(only for z = 2)







H time translation

D dilatation

C special conformal (∃ only for z = 2)

Heisenberg







N mass operator (only central forz = 2)

Pa momenta (a = 1, . . . , d)

Va Galilean boosts

SO(d) Mab rotations
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Geodesic properties

ds2 = −
1

r2z
dt2 +

1

r2

(
−2dtdξ + dr2 + d~x2

)

Geodesically Tidal forces Bulk to boundary

complete [Podolsky, 1998] geodesics

z = 1 (AdS) no constant yes

1 < z < 2 no divergent no

z = 2 no finite (bounded) no

z > 2 no finite (unbounded) no
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Causality # 1

ds2 = −
1

r2z
dt2 +

1

r2

(
−2dtdξ + dr2 + d~x2

)

For z > 1 the space-time is non-distinguishing [Hubeny, Rangamani,

Ross, 2005] .

non-distinguishing: There exist distinct points with

identical past and future.

5th Aegean Summer School, Milos, September 2009 – p. 6/17



Causality # 1

ds2 = −
1

r2z
dt2 +

1

r2

(
−2dtdξ + dr2 + d~x2

)

For z > 1 the space-time is non-distinguishing [Hubeny, Rangamani,

Ross, 2005] .

non-distinguishing: There exist distinct points with

identical past and future.

The argument uses that light cones near the boundary (r = 0)

flatten out forz > 1.

5th Aegean Summer School, Milos, September 2009 – p. 6/17



Causality # 1

ds2 = −
1

r2z
dt2 +

1

r2

(
−2dtdξ + dr2 + d~x2

)

For z > 1 the space-time is non-distinguishing [Hubeny, Rangamani,

Ross, 2005] .

non-distinguishing: There exist distinct points with

identical past and future.

The argument uses that light cones near the boundary (r = 0)

flatten out forz > 1.

Causal future of(t0, ξ0, r0, x0) contains{(t, ξ, r, x) | t > t0}.
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Causality # 2

Causal Ladder:

- Globally hyperbolic -> Minkowski, de Sitter

- Stably causal -> Anti-de Sitter, plane waves

- Strongly causal

- Distinguishing

- Causal -> Schrödinger (z > 1)

- Chronological
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Global coordinates #1
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Global coordinates #1

Does there exist a time-independent global coordinate system?

Necessary condition: ∃ timelike Killing vector in the Poincaré

patch whose norm is nowhere vanishing.

Only for z = 2 does there exist such a Killing vector:

H + ω2C.

If there exists a time-independent global coordinate system

then only forz = 2.

There is one generator that commutes withH + ω2C, namely

N .
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Global coordinates #2

To construct a coordinate trafo:(t, ξ, r, ~x)→ (T, V,R, ~X) that

“diagonalizes”H + ω2C andN : H + ω2C = ∂
∂T

andN = ∂
∂V

t = ω−1 tanωT

r = R
cos ωT

boundary: r = 0→ R = 0

~x =
~X

cos ωT

ξ = V + ω
2

(

R2 + ~X2
)

tanωT

ds2 = −dt2

r4 + 1
r2 (−2dtdξ + dr2 + d~x2)

= −dT 2

R4 + 1
R2

(

−2dTdV − ω2
(

R2 + ~X2
)

dT 2 + dR2 + d ~X2
)
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Global coordinates #3

ds2 = −dT 2

R4 + 1
R2

(

−2dTdV − ω2
(

R2 + ~X2
)

dT 2 + dR2 + d ~X2
)

Terms proportional toω establish geodesic completeness via

“harmonic trapping”.

5th Aegean Summer School, Milos, September 2009 – p. 10/17



Global coordinates #3

ds2 = −dT 2

R4 + 1
R2

(

−2dTdV − ω2
(

R2 + ~X2
)

dT 2 + dR2 + d ~X2
)

Terms proportional toω establish geodesic completeness via

“harmonic trapping”.

NRCFT: primary operators correspond to energy eigenstatesof

a system in a harmonic potential [Nishida, Son, 2007]

5th Aegean Summer School, Milos, September 2009 – p. 10/17



Global coordinates #3

ds2 = −dT 2

R4 + 1
R2

(

−2dTdV − ω2
(

R2 + ~X2
)

dT 2 + dR2 + d ~X2
)

Terms proportional toω establish geodesic completeness via

“harmonic trapping”.

NRCFT: primary operators correspond to energy eigenstatesof

a system in a harmonic potential [Nishida, Son, 2007]

“Boundary”:R = cst andV = cst

ds2 |R,V =cst= −
(
1 + ω2ρ2

)
dT 2 + dρ2 + ρ2dΩ2

d−1

takes the form of a Newtonian limit with isotropic harmonic

oscillator potential.
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A Hilbert space for scalars #1

Free complex scalar:(�−m2
0)φ = 0 in global coordinates.
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Free complex scalar:(�−m2
0)φ = 0 in global coordinates.

Mode decomposition:φ =
∑

M (aMφM + b∗Mφ
∗

M).

Inner product:〈φM | φM ′〉 = i
2

∫

ΣT
dΣµφ∗

M

←→
∂µφM ′.
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A Hilbert space for scalars #1

Free complex scalar:(�−m2
0)φ = 0 in global coordinates.

Mode decomposition:φ =
∑

M (aMφM + b∗Mφ
∗

M).

Inner product:〈φM | φM ′〉 = i
2

∫

ΣT
dΣµφ∗

M

←→
∂µφM ′.

ΣT :

T = cst d ~X2

Induced metric:ds2|T=cst =
1

R2

(

dR2 +
︷ ︸︸ ︷

dρ2 + ρ2dΩ2
d−1

)

Lightlike with normal
(

∂
∂V

)µ
= δ

µ
V

dΣµ = δ
µ
VR

−(d+1)ρd−1dR dρ dΩd−1.

5th Aegean Summer School, Milos, September 2009 – p. 11/17



A Hilbert space for scalars #2

〈φM | φM ′〉 = i
2

∫

ΣT
dR dρ dΩd−1R

−(d+1)ρd−1φ∗

M

←→
∂V φM ′
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2

∫

ΣT
dR dρ dΩd−1R

−(d+1)ρd−1φ∗

M

←→
∂V φM ′

Take modes to be eigenfunctions ofH + ω2C = ∂
∂T

and

N = ∂
∂V

.
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〈φM | φM ′〉 = i
2

∫

ΣT
dR dρ dΩd−1R

−(d+1)ρd−1φ∗

M

←→
∂V φM ′

Take modes to be eigenfunctions ofH + ω2C = ∂
∂T

and

N = ∂
∂V

.

Solutions to the Klein–Gordon equation are separable:

φM = e−iEMT e−imV YL(angles)ϕM(ρ)φM(R) .
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A Hilbert space for scalars #2

〈φM | φM ′〉 = i
2

∫

ΣT
dR dρ dΩd−1R

−(d+1)ρd−1φ∗

M

←→
∂V φM ′

Take modes to be eigenfunctions ofH + ω2C = ∂
∂T

and

N = ∂
∂V

.

Solutions to the Klein–Gordon equation are separable:

φM = e−iEMT e−imV YL(angles)ϕM(ρ)φM(R) .

In 〈φM | φM ′〉 there is no
∫
dV integral. The modesφM will be

orthonormal iffm = m′ (Bargmann superselection).

5th Aegean Summer School, Milos, September 2009 – p. 12/17



A Hilbert space for scalars #3

ds2 |R,V =cst= −
(
1 + ω2ρ2

)
dT 2 + dρ2 + ρ2dΩ2

d−1

The equation forϕM(ρ) is identical to the time-independent

Schrödinger equation for a particle in ad-dimensional isotropic

harmonic oscillator:

ϕM(ρ) = e−
1
2

ωmρ2

ρLLL−1+d/2
n (ωmρ2) .

L
L−1+d/2
n (ωmρ2) are generalized Laguerre polynomials of

degreen.
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A Hilbert space for scalars #3

ds2 |R,V =cst= −
(
1 + ω2ρ2

)
dT 2 + dρ2 + ρ2dΩ2

d−1

The equation forϕM(ρ) is identical to the time-independent

Schrödinger equation for a particle in ad-dimensional isotropic

harmonic oscillator:

ϕM(ρ) = e−
1
2

ωmρ2

ρLLL−1+d/2
n (ωmρ2) .

L
L−1+d/2
n (ωmρ2) are generalized Laguerre polynomials of

degreen.

〈φM | φM ′〉∝ ei(EM−EM′ )T δLL′δnn′

∫
dRR−(d+1)φM(R)φM ′(R)
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A Hilbert space for scalars #4

General solution forφM(R):

φM(R) = e−
1
2

ωmR2

R∆+F (n+ L
2

+ d
4
− EM

2ω
, 1 + ∆+−∆−

2
, ωmR2)

∆± = d+2
2
±

√
(d+2)2

4
+m2

0 +m2

F is a confluent hypergeometric function.
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A Hilbert space for scalars #4

General solution forφM(R):

φM(R) = e−
1
2

ωmR2

R∆+F (n+ L
2

+ d
4
− EM

2ω
, 1 + ∆+−∆−

2
, ωmR2)

∆± = d+2
2
±

√
(d+2)2

4
+m2

0 +m2

F is a confluent hypergeometric function.

Breitenlohner–Freedman bound:m2
0 +m2 > − (d+2)2

4
.

5th Aegean Summer School, Milos, September 2009 – p. 14/17



A Hilbert space for scalars #4

General solution forφM(R):

φM(R) = e−
1
2

ωmR2

R∆+F (n+ L
2

+ d
4
− EM

2ω
, 1 + ∆+−∆−

2
, ωmR2)

∆± = d+2
2
±

√
(d+2)2

4
+m2

0 +m2

F is a confluent hypergeometric function.

For simplicity consider only modes withm2
0 +m2 > 0. These

modes are normalizable iffEM = 2ω
(
k + n+ L

2
+ d

4

)
and

given by

φM(R) = e−
1
2

ωmR2

R∆+L
(∆+−∆−)/2
k (ωmR2) .
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A Hilbert space for scalars #5

Thus form2
0 +m2 > 0 with m fixedwe have the mode

decomposition:

φ =
∑

k,n,L

(
ak,n,Lφk,n,L + b∗k,n,Lφ

∗

k,n,L

)

φk,n,L = Ak,n,L e
−iEk,n,LT e−imV YL(angles) e−

1
2

ωm(R2+ρ2)R∆+ρL ×

×LL−1+d/2
n (ωmρ2)L

(∆+−∆−)/2
k (ωmR2)

Ek,n,L = 2ω
(
k + n+ L

2
+ d

4

)

with coefficients given by

ak,n,L = 〈φk,n,L | φ〉 bk,n,L = 〈φk,n,L | φ
∗〉 .
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Causality and initial data #1

T is a global time function (differentiable along timelike

curves).
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Causality and initial data #1

T is a global time function (differentiable along timelike

curves).

T cannot be always increasing along future directed timelike

curves otherwise the space-time is stably causal [Hawking, Ellis,

1975].

SinceSchz=2 is not stably causalT must on some timelike

curves take on the same value more than once.

The surfaceT = cst is intersected by certain timelike curves

more than once.→ The setT = cst is not achronal.
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Causality and initial data #2

T = cst is not achronalbut it is an initial data surface.
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T = cst is not achronalbut it is an initial data surface.

Questions:

What kind of curves intersectT = cst more than once?
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Causality and initial data #2

T = cst is not achronalbut it is an initial data surface.

Questions:

What kind of curves intersectT = cst more than once?

Is there a well-posed initial value formulation?
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