Geometric Unification

In F-theory

Jonathan J. Heckman

Based on work with C. Vafa, as well as:

C. Beasley, V. Bouchard, S. Cecotti, M. Cheng, G.L. Kane, J. Marsano

N. Saulina, S. Schäfer-Nameki, J. Seo, J. Shao, A. Tavanfar

See Also:

(In Various Combinations)

Donagi & Wijnholt

Hayashi, Kawano, Tatar, Toda, Tsuchiya, Watari, Yamazaki

Blumenhagen, Braun, Grimm, Jurke, Weigand

Marsano, Saulina, Schäfer-Nameki

Aparicio, Cerdeño, Font, Ibáñez

Randall, Simmons-Duffin

Chen, Chung, Jiang, Li, Nanopoulos, Xie,

 $+\cdots$

Outline

Motivation

• F-theory GUTs

Flavor

The Point of E_8

Motivation

Standard Model/MSSM ⊂ Strings?

What is possible in string constructions?

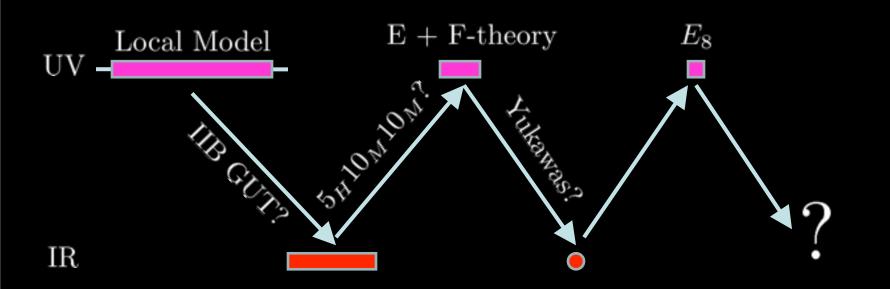
Hybrid Strategy:

Top Down: Specify All Details in UV (Global Models)

Where to look first?

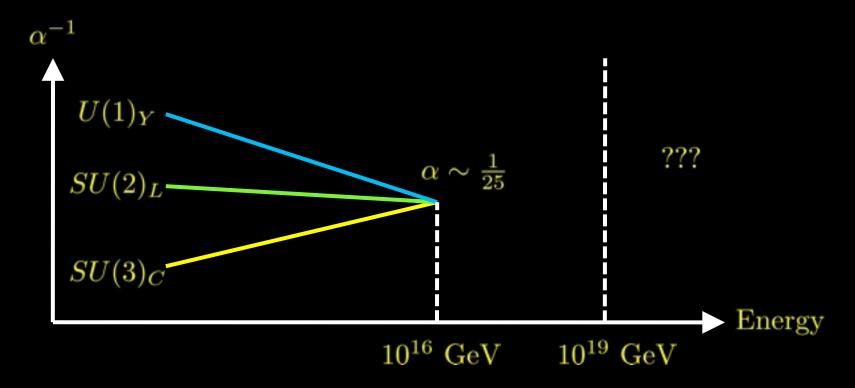
Bottom Up: Decouple some of UV (Local Models)

Too flexible?



Simplifying Assumptions:

1) Low energy supersymmetry & Unification:



2) $M_{GUT}/M_{pl} \ll 1$

Assumption 1: GUTs

$$SU(5)_{GUT} \supset SU(3)_C \times SU(2)_L \times U(1)_Y$$

$$10_{M} = \begin{bmatrix} 0 & U & U & Q & Q \\ -U & 0 & U & Q & Q \\ -U & -U & 0 & Q & Q \\ -Q & -Q & -Q & 0 & E \\ -Q & -Q & -Q & -E & 0 \end{bmatrix} \qquad 5_{H} = \begin{bmatrix} T_{u} \\ T_{u} \\ T_{u} \\ H_{u} \\ H_{u} \end{bmatrix}$$

$$\overline{5}_M = \begin{bmatrix} D & D & D & L & L \end{bmatrix}$$

$$\overline{5}_H = \begin{bmatrix} T_d & T_d & T_d & H_d & H_d \end{bmatrix}$$

$$L_{GUT} \supset 5_H \times 10_M \times 10_M \Rightarrow t \text{ quark mass}$$

$$L_{GUT} \supset \overline{5}_H \times \overline{5}_M \times 10_M \Rightarrow b \text{ quark \& } \tau \text{ lepton mass}$$

Stringy GUTs Need E_N

Stringy Matter From Adjoint Breaking:

$$E_8 \supset E_6 \times SU(3)$$
 $248 \rightarrow (27,3) + \cdots$

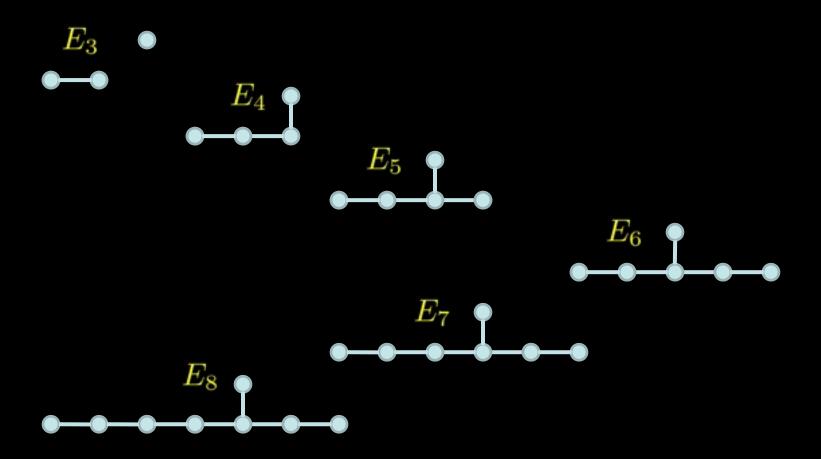
$$\operatorname{adj}(E_{6,7,8}) \ni 16 \text{ of } \operatorname{SO}(10) \not\in \operatorname{adj}(U, USp, SO)$$

Interaction Terms Embed in Bigger Groups Too:

$$E_8 \supset SU(5) \times SU(5)$$
 $248^3 \rightarrow 5 \times 10 \times 10 \text{ of } SU(5)$

Pert. forbidden in U(5) D-brane construction

GUTs and E_N



How much E is necessary? How much is aesthetics?

Assumption 2: $M_{GUT}/M_{pl} \ll 1$

10D Gravity:
$$R^{3,1} \times \mathcal{M}_6 \Rightarrow G^{4D}_{Newton} \sim \frac{1}{Vol(\mathcal{M}_6)}$$

4D Gravity decouples when $Vol(\mathcal{M}_6) \to \infty$

Gauge Theory on $R^{3,1} \times \mathcal{M}_k \subset R^{3,1} \times \mathcal{M}_6$:

$$\Rightarrow g_{YM}^2 \sim \frac{1}{Vol(\mathcal{M}_k)} \Rightarrow Vol(\mathcal{M}_k) \not \nearrow \infty$$

Local Flexibility

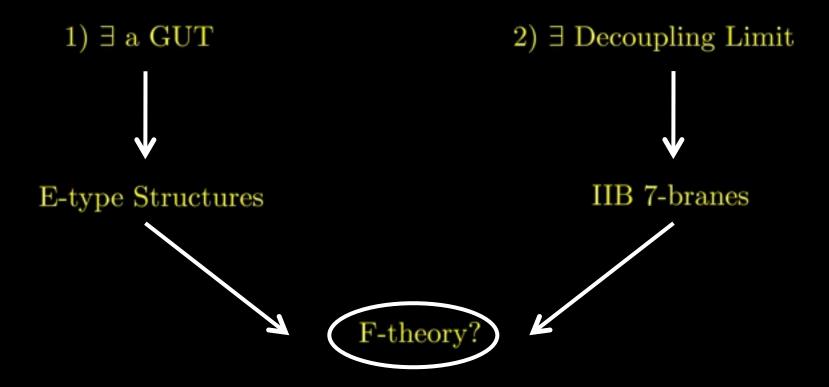
Local Model suggests GUT from p - brane, p = 3, 4, 5, 6, 7

 \Rightarrow Type II strings

E-type Structure: $g_s \to O(1)$

F-theory branes: 3-branes & 7-branes

E-type and 4d Chiral Matter \Rightarrow 7-branes



Roadmap

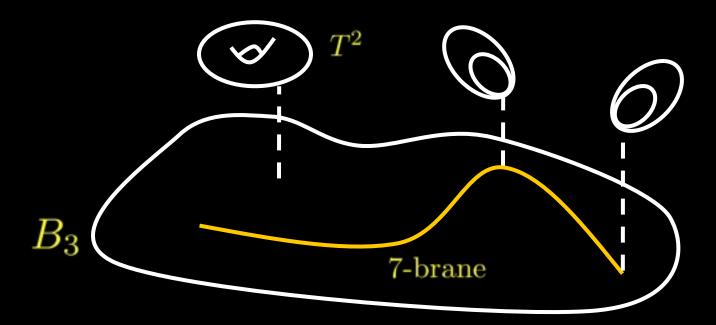
Motivation

F-theory Review I

F-theory = Strongly Coupled Formulation of IIB in 12d

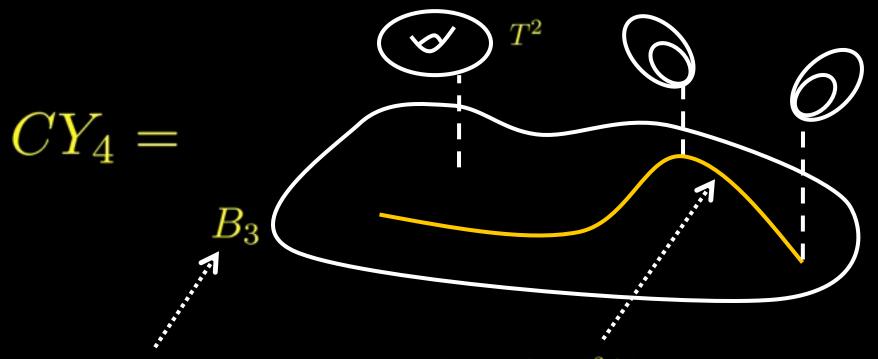
$$\tau_{IIB} = C_0 + ie^{-\phi}$$
 is cplx str. of a T^2

This T^2 pinches off near 7-branes:



F-theory Review II

4d
$$\mathcal{N} = 1 \Rightarrow F / R^{3,1} \times Elliptic CY_4$$



Local Model $\Rightarrow Vol(B_3) \to \infty$ $CY_4 \sim S \times C^2/\Gamma_{ADE} \Rightarrow 7$ -brane on S

Geometry \Rightarrow Gauge Theory

$$F - th/R^{3,1} \times S \times C^2/\Gamma_{ADE} \Rightarrow 8d \text{ SYM w/gp } G_{ADE}$$

Example: 8d SU(N) at z = 0 from $y^2 = x^2 + z^N$

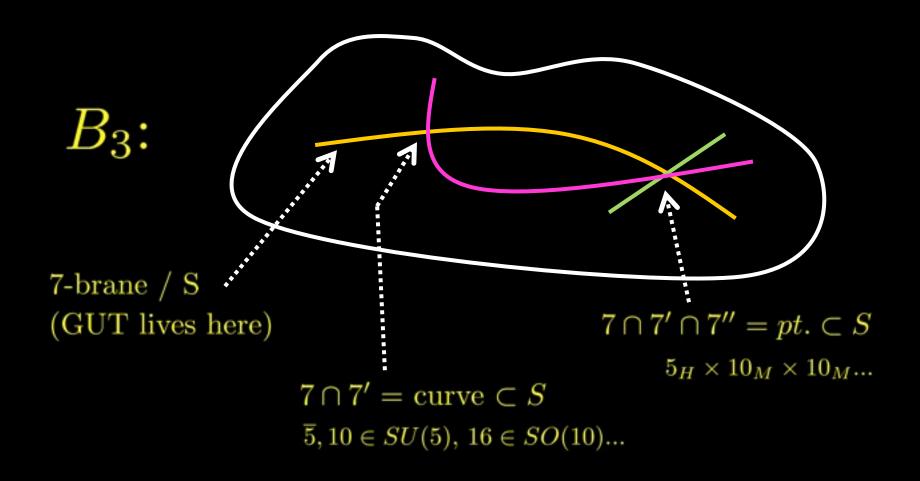
 $10d \Rightarrow \text{Gravity (decoupled in 4D)}$

8d:7 on $R^{3,1}\times$ Cplx. Surface \Rightarrow Gauge Group

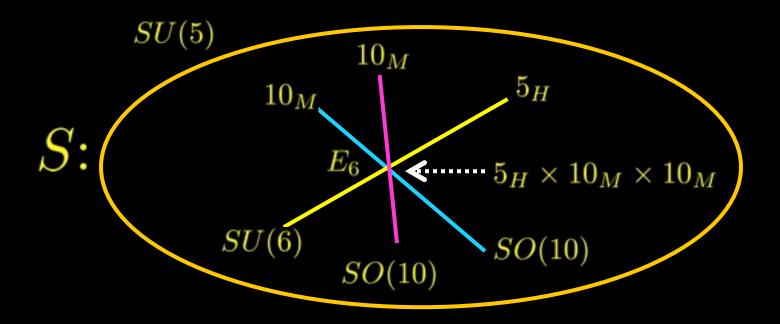
 $6d:7\cap7'$ on $R^{3,1}\times$ Cplx. Curve \Rightarrow 6D Matter

 $4d: 7 \cap 7' \cap 7''$ on $R^{3,1} \times \text{ pt. } \Rightarrow \int d^2\theta ABC \text{ or } \int d^4\theta \frac{A^{\dagger}BC}{\Lambda_{UV}}$

F-theory GUTs



Example



$$E_6 \supset SU(5) \times U(1) \times U(1)$$

$$78 \rightarrow 5_{+6,0} + 10_{-3,+1} + 10_{-3,-1} + \cdots$$

$$78^3 \rightarrow 5_{+6,0} \times 10_{-3,+1} \times 10_{-3,-1}$$

4d Spectrum

$$G_S \xrightarrow{\text{instanton}} \Gamma_S \times H_S$$

4d matter \iff zero modes in instanton background

S Modes:
$$\overline{\mathcal{D}}_A \Psi = 0$$

$$\Sigma$$
 Modes: $\overline{\mathcal{D}}_{A+A'}\sigma = 0$ –

$$\Rightarrow$$
 Index Computation

$$\int_{M} ch(V) Td(M)$$

Beasley JJH Vafa I '08 Donagi Wijnholt I '08

Minimal Spectrum

Beasley JJH Vafa II '08

$$G_S = SU(5) \xrightarrow{U(1)_Y \text{ flux}} SU(3) \times SU(2) \times U(1)_Y$$

No bulk exotics \Rightarrow unique internal flux

Higgs:
$$\int_{\Sigma_H} F_{U(1)_Y} \neq 0$$
: $\overline{5}_H = \begin{bmatrix} T_d & T_d & T_d & H_d & H_d \\ \end{bmatrix}$ out in

Matter:
$$\int_{\Sigma_U} F_{U(1)_Y} = 0$$

Matter:
$$\int_{\Sigma_U} F_{U(1)_{\perp}} = 3$$

$$3 imes \overline{5}_M$$

$$3 \times 10_M$$

 $_{
m in}$

Roadmap

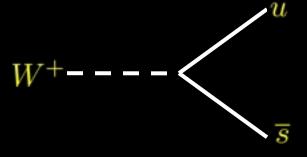
F-theory GUTs

SM/MSSM Flavor

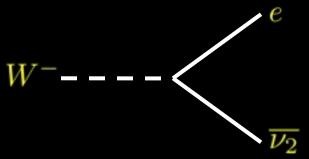
$$W \supset m_u^{ij} \cdot U_L^i U_R^j + m_d^{ij} \cdot D_L^i D_R^j + m_l^{ij} \cdot E_L^i E_R^j + m_\nu^{ij} \cdot N_L^i N^j$$

Diagonalize: $V_L \cdot m \cdot V_R^{\dagger} = \operatorname{diag}(\widetilde{m}_1, \widetilde{m}_2, \widetilde{m}_3)$

$$V_{CKM}^{(quark)} = V_u^L \cdot V_d^{L\dagger} \qquad W^{+----}$$



$$V_{PMNS}^{(lepton)} = V_l^L \cdot V_{\nu}^{L\dagger}$$



Quark Wishlist

Two Light Generations

Hierarchical CKM Matrix:

$$|V_{CKM}| \sim \begin{bmatrix} 1 & \varepsilon & \varepsilon^3 \\ \varepsilon & 1 & \varepsilon^2 \\ \varepsilon^3 & \varepsilon^2 & 1 \end{bmatrix} \sim \begin{bmatrix} 0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.04 \\ 0.008 & 0.04 & 0.99 \end{bmatrix}$$

Qualitative Ingredients

 $3 \ 10_M$'s on Σ_{10} curve(s)

 $3 \ \overline{5}_M$'s on $\Sigma_{\overline{5}}$ curve(s)

+ Flux

 $5_H \times 10_M \times 10_M$ point(s)

 $\overline{5}_H \times \overline{5}_M \times 10_M \text{ point(s)}$

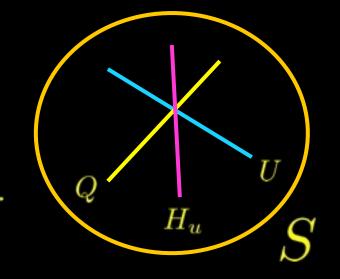
Simplest Case: 1 curve & point of each type

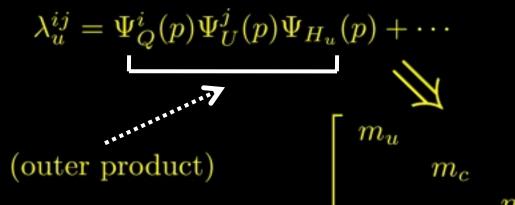
What Yukawas Do We Get?

Quark Yukawas:

$$R^{3,1}$$
: $W \supset \lambda_u^{ij} \cdot Q^i U^j H_u + \cdots$

$$\mathcal{M}_6$$
: $\overline{\mathcal{D}}\Psi = 0$: Ψ_Q^i , Ψ_U^i , Ψ_{H_u} , ...





See Beasley JJH Vafa II '08 And Hayashi et al. '09

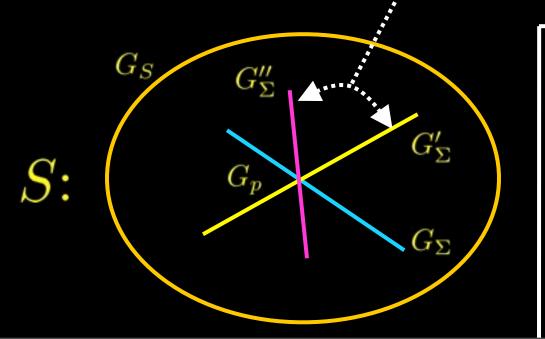
$$= \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & m & \end{bmatrix}$$

How Many Curves Are Touching?

Local Higgsing: $G_p \to G_S \times G_{def}$

Parameterized by $Cartan(G_{def}) \mod \mathfrak{S}_{mono} \subset Weyl(G_{def})$

"Monodromy Group" identifies curves in the geometry



Example:

$$y^2 = x^2 + z^2 + \alpha z + \beta$$

$$y^2 = x^2 + (z - t_+)(z - t_-)$$

 $Mono \Rightarrow less factorization$

More On Monodromy

Monodromy Important For Yukawas:

$$\lambda_{ij} \cdot 5_H \times 10_M^{(i)} \times 10_M^{(j)}$$

No Monodromy:
$$\lambda^{ij}=\left[\begin{array}{ccc} 0 & A & B\\ A' & 0 & C\\ B' & C' & 0 \end{array}\right]\Rightarrow \geq 2$$
 heavy gens

$$\Sigma_{(i)} \longrightarrow \Sigma_{(j)} \Rightarrow 1 \text{ heavy gen allowed}$$

Hayashi et al. '09

$$+\cdots$$
?

Cecotti, Cheng, JJH, Vafa To Appear

Geometry \Rightarrow Rank 1

$$+ \text{ H-flux} \Rightarrow \text{Rank } 3$$

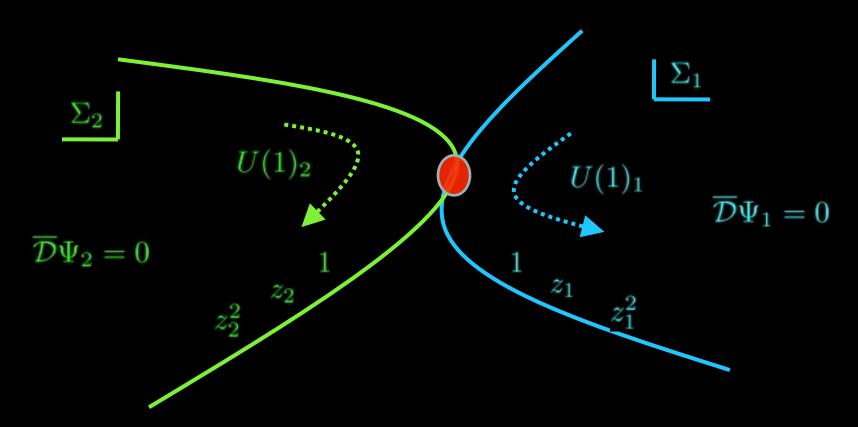
H-flux induces deformation in superpotential:

$$W = \int Tr(\overline{\partial}A^{0,1} + A^{0,1} * A^{0,1}) * \phi^{2,0}$$

Non-Comm. Deformation

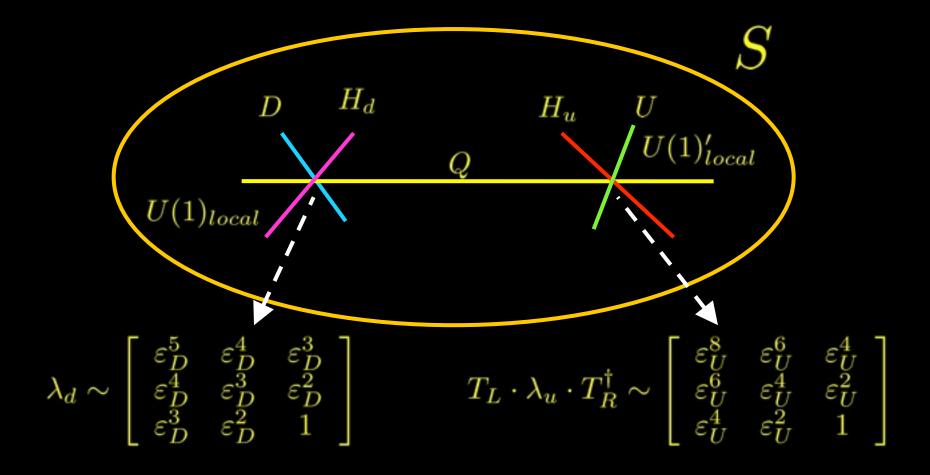
Main Idea

U(1) Froggatt-Nielsen Geometrized:



Fluxes violate U(1) selection rule \Rightarrow hierarchical corrections

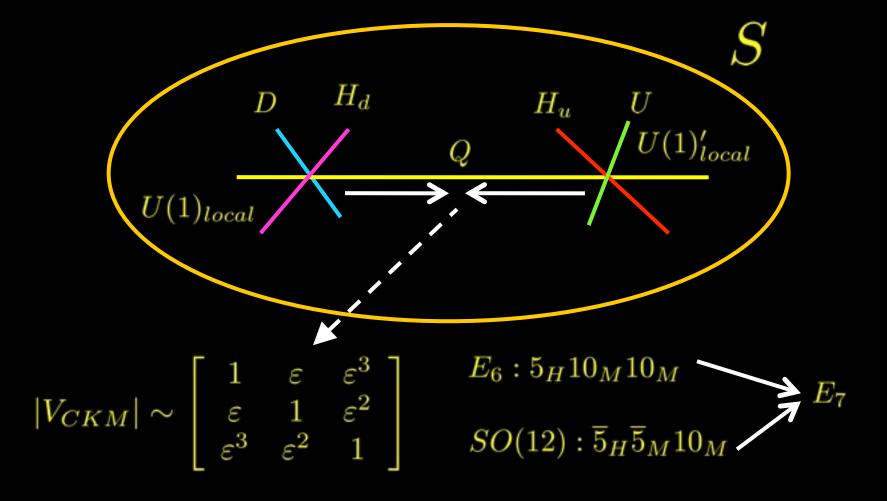
U(1) Selection Rules



IF $U(1)_{local} \neq U(1)'_{local}$: No CKM Hierarchy

$p_{down} \rightarrow p_{up}$

$$U(1)_{local} \to U(1)'_{local} \Rightarrow \text{CKM Hierarchy}$$



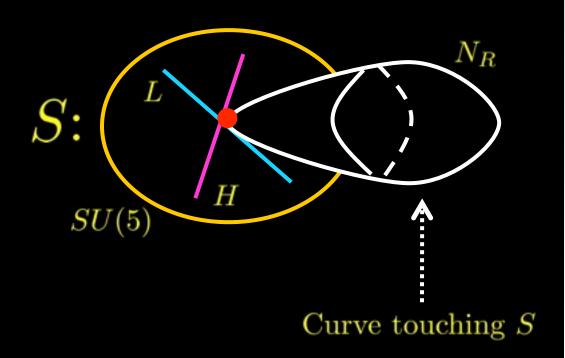
CKM Matrix

$$|V_{CKM}| \sim \begin{bmatrix} 1 & \varepsilon & \varepsilon^3 \\ \varepsilon & 1 & \varepsilon^2 \\ \varepsilon^3 & \varepsilon^2 & 1 \end{bmatrix} \qquad \begin{array}{c} \varepsilon^2 \sim Flux^2/M_*^4 \\ \sim Vol(S)^{-1}/M_*^4 \sim \alpha_{GUT} \end{array}$$

$$|V_{CKM}^{F-th}| \sim \begin{bmatrix} 1 & 0.2 & 0.008 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{bmatrix}$$

$$\left|V_{CKM}^{obs}\right| \sim \left[egin{array}{cccc} 0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.04 \\ 0.008 & 0.04 & 0.99 \end{array}
ight]$$

Neutrinos



$$H = 7_{GUT} \cap 7'_{\perp}$$

$$L = 7_{GUT} \cap 7''_{\perp}$$

$$N_R = 7'_{\perp} \cap 7''_{\perp}$$

Beasley, JJH, Vafa '09 Bouchard, JJH, Seo Vafa '09 (see also Tatar, Tsuchiya, Watari '09)

KK & Neutrinos

$$m_{\nu} \sim \frac{M_{weak}^2}{\Lambda_{UV}}$$
, Λ_{UV} Near GUT scale

Integrating out KK Modes Yields Seesaws:

Majorana:
$$\int d^2\theta \frac{(H_u L)^2}{\Lambda_{UV}}$$
 $m_{\nu}N_L N_L$

$$\langle H \rangle \sim M_w + M_w^2 \theta^2$$

Dirac:
$$\int d^4\theta \frac{H_d^{\dagger}LN_R}{\Lambda_{UV}}$$
 $m_{\nu}N_LN_R$

Heavy States & U(1)

Integrating out Heavy States ⇒ Neutrinos Light

Bouchard, JJH, Seo Vafa '09

 $\Psi_{HEAVY} \neq \text{Zero Mode} \Rightarrow z, \overline{z} \text{ both contribute}$

Bigger U(1) Violation \Rightarrow Less Hierarchy:

$$\lambda_{\nu} \sim \begin{bmatrix} \varepsilon_{N}^{2} & \varepsilon_{N}^{3/2} & \varepsilon_{N}^{1} & \varepsilon_{N}^{1} \\ \varepsilon_{N}^{3/2} & \varepsilon_{N}^{1} & \varepsilon_{N}^{1/2} \\ \varepsilon_{N}^{1} & \varepsilon_{N}^{1/2} & 1 \end{bmatrix} \qquad T_{L} \cdot \lambda_{l} \cdot T_{R}^{\dagger} \sim \begin{bmatrix} \varepsilon_{L}^{8} & \varepsilon_{L}^{6} & \varepsilon_{L}^{4} \\ \varepsilon_{L}^{6} & \varepsilon_{L}^{4} & \varepsilon_{L}^{2} \\ \varepsilon_{L}^{4} & \varepsilon_{L}^{2} & 1 \end{bmatrix}$$

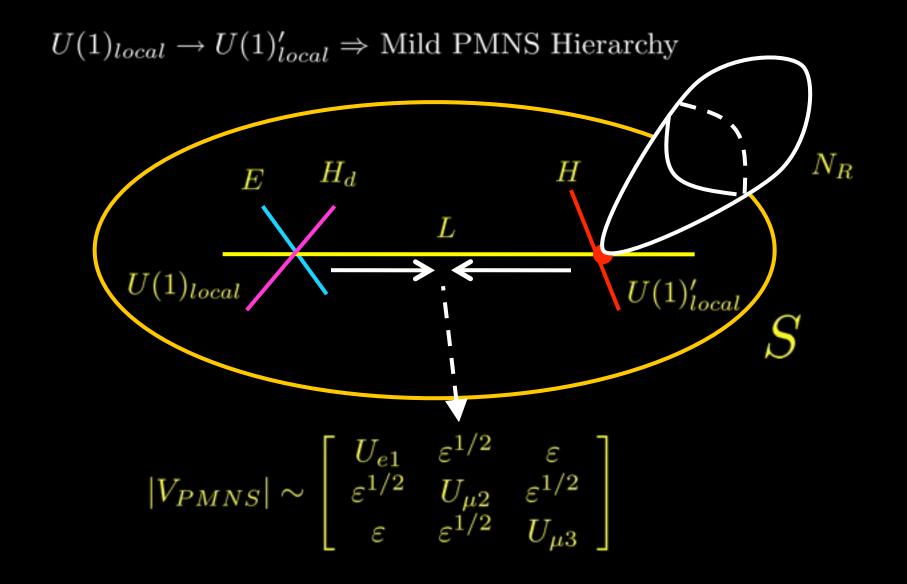
ν Masses

Predict:
$$\frac{m_{\nu_2}^2 - m_{\nu_1}^2}{m_{\nu_3}^2 - m_{\nu_2}^2} \sim \alpha_{GUT} \sim 0.04$$

Close!

Observe:
$$\frac{m_{\nu_2}^2 - m_{\nu_1}^2}{m_{\nu_3}^2 - m_{\nu_2}^2} = \frac{m_{sol}^2}{m_{atm}^2} \sim 0.03$$

ν Mixing Hierarchy



PMNS Matrix

Bouchard, JJH, Seo Vafa '09

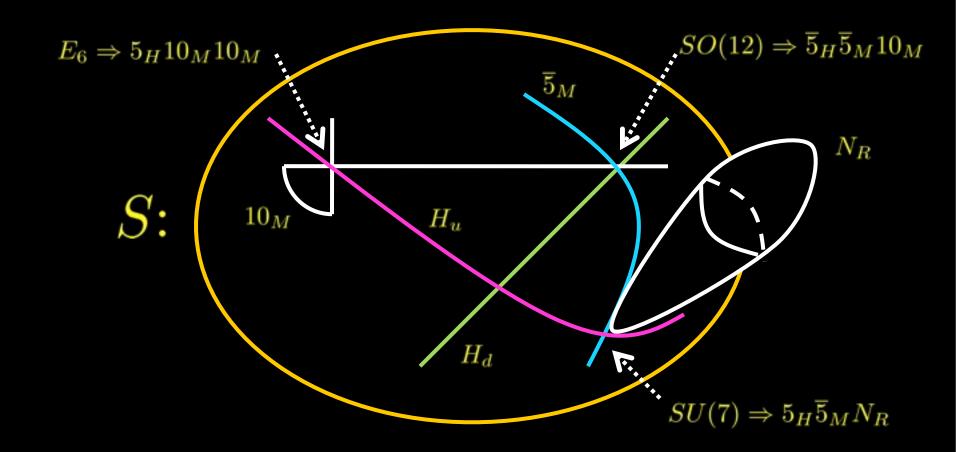
$$|V_{PMNS}^{F-th}| \sim \begin{bmatrix} 0.87 & 0.45 & 0.2 \\ 0.45 & 0.77 & 0.45 \\ 0.2 & 0.45 & 0.87 \end{bmatrix} \begin{array}{c} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix}$$

$$\begin{vmatrix} V_{PMNS}^{obs(3\sigma)} \end{vmatrix} \sim \begin{bmatrix} 0.77 - 0.86 & 0.50 - 0.63 & 0.00 - 0.22 \\ 0.22 - 0.56 & 0.44 - 0.73 & 0.57 - 0.80 \\ 0.21 - 0.55 & 0.40 - 0.71 & 0.59 - 0.82 \end{bmatrix}$$

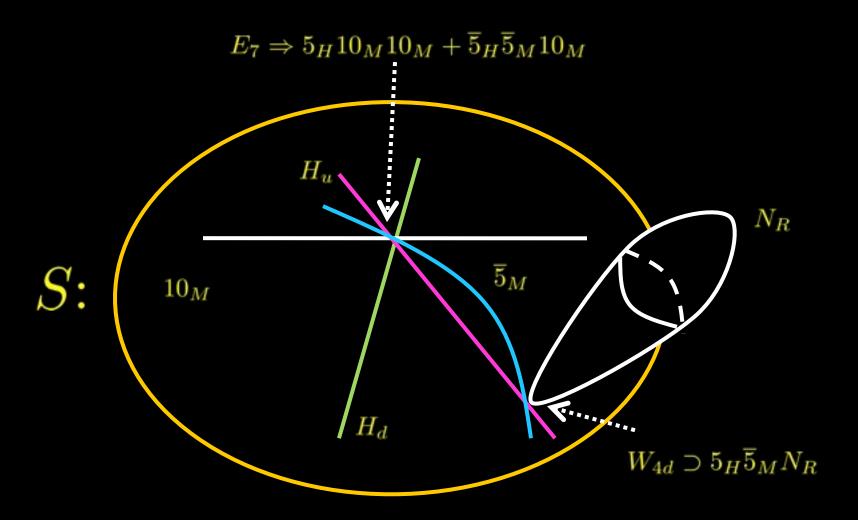
 \Rightarrow Predict $V_{PMNS}^{1,3}$ close to current bound

Point Unification

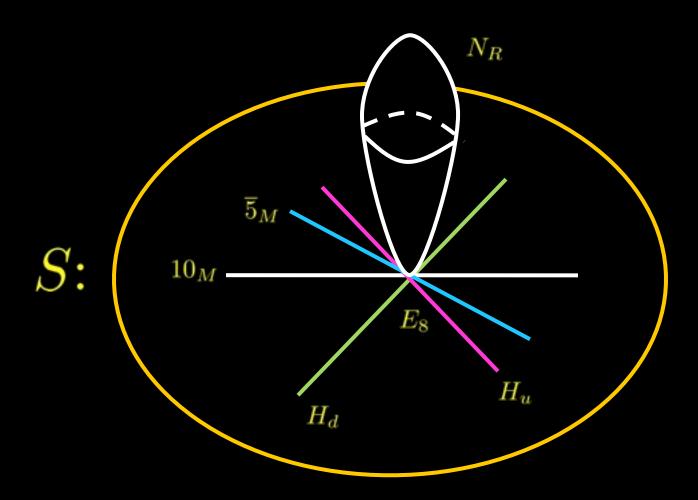
Beasley JJH Vafa II '08



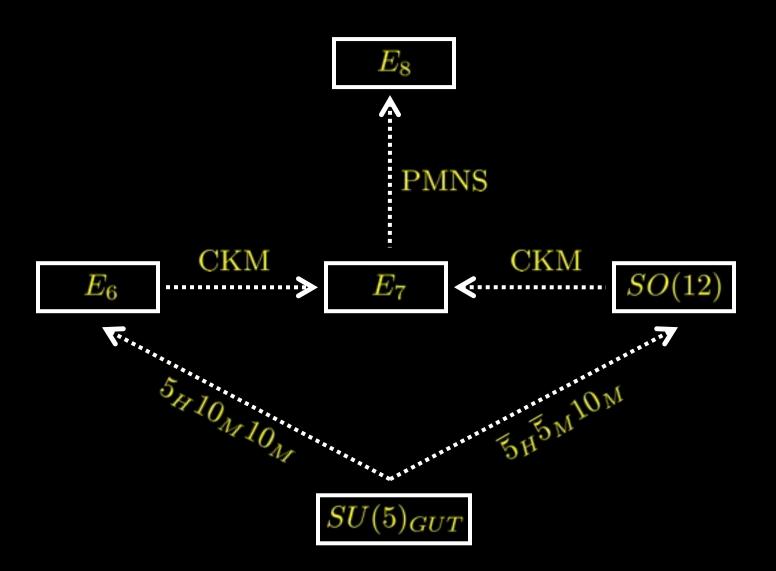
Point Unification



Point Unification



$CKM + PMNS \Rightarrow E_8$



Roadmap

Flavor

The Point of E_8

Left-Overs?

 E_8 is a BIG group:

$$E_8 \supset SU(5)_{GUT} \times SU(5)_{\perp}$$

$$248 \rightarrow (5_G, 10_{\perp}) + (\overline{5}_G, \overline{10}_{\perp}) + (10_G, \overline{5}_{\perp}) + (\overline{10}_G, 5_{\perp}) + adj$$

Monodromy identifies many states, leaving only a few:

Matter 5 & 10 curves

Extra U(1)'s such as $U(1)_{PQ}$ and $U(1)_{B-L}$

Classification

Assumptions:

- 1) Hierarchical CKM and PMNS
- 2) $\exists U(1)_{PQ}$ such that $\mu_{bare} \int d^2\theta H_u H_d$ excluded
- 3) μ_{eff} from either: $\int d^2\theta S H_u H_d$ or $\int d^4\theta \frac{X^{\dagger} H_u H_d}{\Lambda_{UV}}$

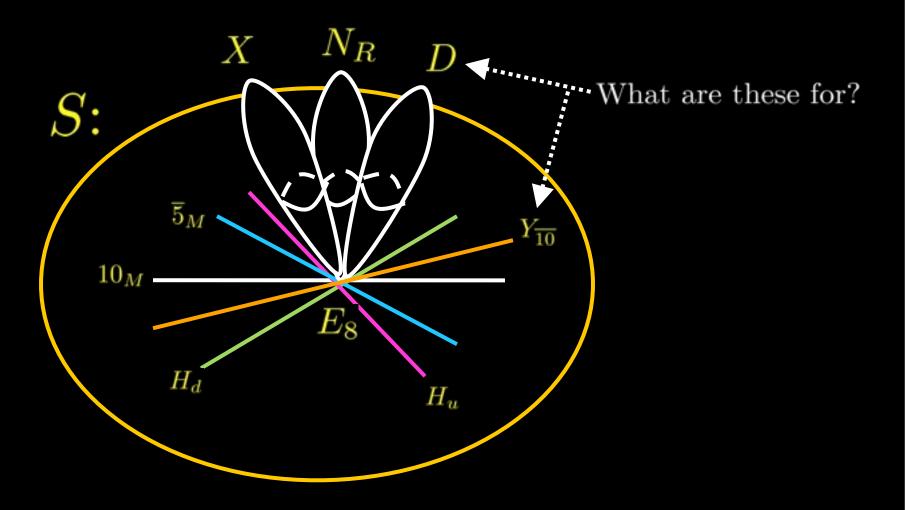
Then:

$$\mathfrak{S}_{mono} = \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_3, S_3 \text{ (Dirac } \nu \& U(1)_{PQ} \times U(1)_{B-L})$$

$$\mathfrak{S}_{mono} = \mathbb{Z}_2 \times \mathbb{Z}_2, Dih_4 \text{ (Majorana } \nu \& U(1)_{PQ})$$

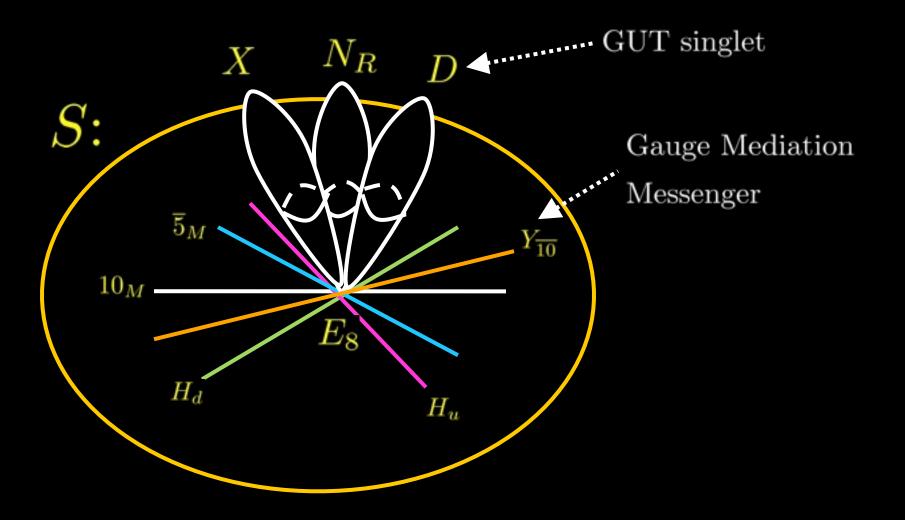
Dih_4 Curves

Two Extra Curves?



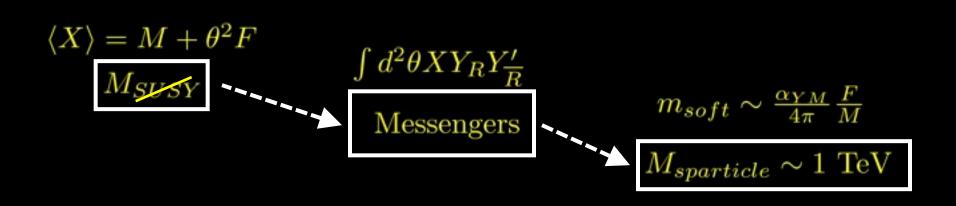
Dih_4 Curves

Two Extra Curves?



SUSY Mediation

min. gauge mediation review:



Messengers already part of the E_8 point

A Surprise: In nearly all cases messengers in $10 \oplus \overline{10}$

Energy Scales

$$\langle X \rangle = M + \theta^2 F$$

$$\sqrt{F} = \text{SUSY scale}$$

 $M = \text{Global } U(1)_{PQ} \text{ symm. breaking scale} = f_{axion}$

$$\mu$$
 term from: $\int d^4\theta \frac{X^{\dagger} H_u H_d}{\Lambda_{UV}}$ \longrightarrow $F \sim 10^{17} \text{ GeV}^2$

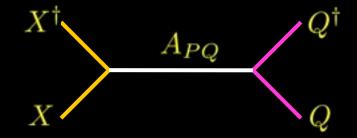
$$m_{soft} \sim \frac{\alpha_{YM}}{4\pi} \frac{F}{M} \sim 0.1 - 1 \text{ TeV} \longrightarrow M \sim 10^{12} \text{ GeV}$$

PQ Deformed GMSB

JJH, Vafa '08

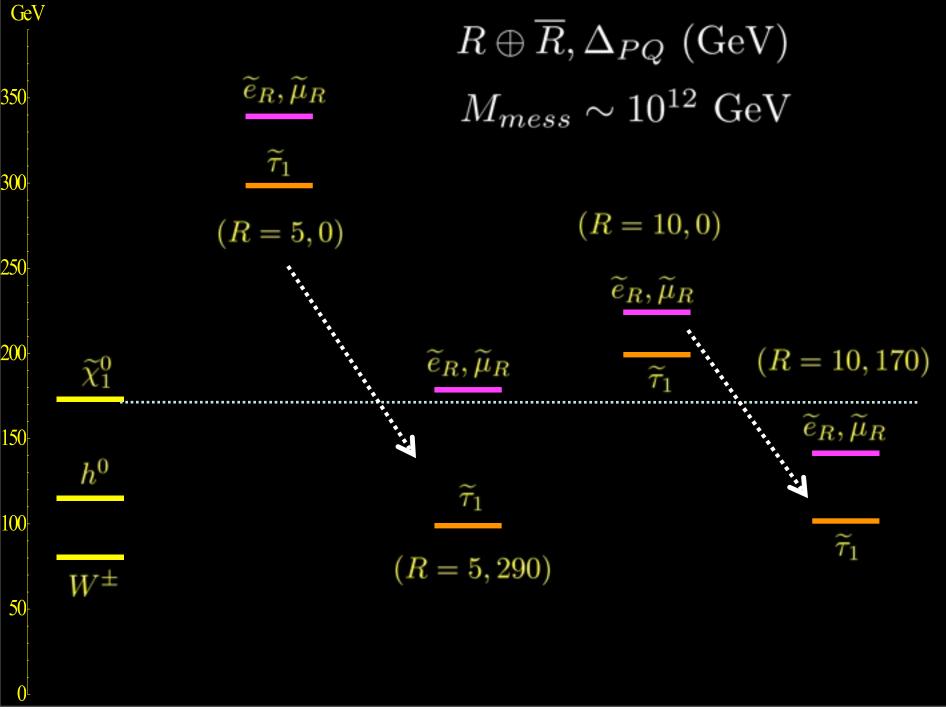
String Theory $\Rightarrow U(1)_{PQ}$ gauge boson

Heavy $U(1)_{PQ}$ exchange \Rightarrow (see e.g. Arkani-Hamed, Dine, Martin '97)



@ UV:
$$m_{soft}^2 = m_{mGMSB}^2 - q\Delta_{PQ}^2$$

For most common $10 \oplus \overline{10}$ scenario \Rightarrow charged track at LHC $\tilde{\tau}_1$ is typically the quasi-stable NLSP



Conclusions

Bottom Up GUTs and F-theory

• Flavor $\Rightarrow E_8$

 $10 \oplus \overline{10}$ Messengers Most Common

Global Models?