A New Class of $\mathcal{N}=2$ Topological Amplitudes

Stefan Hohenegger

ETH Zürich
Institute for Theoretical Physics

10th September 2009

work in collaboration with I. Antoniadis (CERN), K.S. Narain (ICTP Trieste) and E. Sokatchev (LAPTH Annecy)

AHN hep-th/0610258, AHNS 0708.0482 [hep-th], AHNS 0905.3629 [hep-th]

Introduction: $\mathcal{N}=2$ Topological Amplitudes

A well known example of $\mathcal{N}=2$ topological amplitudes is the following equivalence between correlators of two quite different theories:

Antoniadis, Gava, Narain, Taylor, 1993

$$
\left.F_{g}=\left\langle R_{(+)}^{2} T_{(+)}^{2 g-2}\right\rangle_{g-\text { loop }}=\left.\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{3 g-3}\right| G^{-}\left(\mu_{a}\right)\right|^{2}\right\rangle_{\text {top }}
$$

genus g partition function of the $\mathcal{N}=2$ (closed) topological string

Introduction: $\mathcal{N}=2$ Topological Amplitudes

Some more details

$$
\left.F_{g}=\left\langle R_{(+)}^{2} T_{(+)}^{2 g-2}\right\rangle_{g-\text { loop }}=\left.\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{3 g-3}\right| G^{-}\left(\mu_{a}\right)\right|^{2}\right\rangle_{\mathrm{top}}
$$

The corresponding effective action terms on the string side can be written in a manifestly $\mathcal{N}=(2,2)$ supersymmetric manner Antoniadis, Gava, Narain, Taylor, 1993

$$
S=\int d^{4} x \int d^{4} \theta\left(\epsilon_{i j} \epsilon_{k l} \mathcal{W}_{\mu \nu}^{i j} \mathcal{W}_{\mu \nu}^{k l}\right)^{g} F_{g}\left(X^{\prime}\right)
$$

with the Weyl multiplet

$$
\mathcal{W}_{\mu \nu}^{i j}=T_{(+), \mu \nu}^{i j}-\left(\theta^{i} \sigma^{\lambda \rho} \theta^{j}\right) R_{(+), \mu \nu \rho \tau}
$$

- To be compatible with the superspace measure, $F_{g}\left(X^{\prime}\right)$ can only depend on the chiral vector multiplets X^{\prime} (holomorphicity condition)
- These couplings are exact to all orders receiving neither additional higher order nor non-perturbative corrections.

Introduction: $\mathcal{N}=2$ Topological Amplitudes

Some more details

$$
\left.F_{g}=\left\langle R_{(+)}^{2} T_{(+)}^{2 g-2}\right\rangle_{g-\text { loop }}=\left.\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{3 g-3}\right| G^{-}\left(\mu_{a}\right)\right|^{2}\right\rangle_{\text {top }}
$$

To understand the G^{-}on the topological side we start with an $\mathcal{N}=(2,2)$ SCFT spanned by the operators

$$
\left\{T, G^{ \pm}, J \mid \bar{T}, \bar{G}^{ \pm}, J\right\}
$$

Introduction: $\mathcal{N}=2$ Topological Amplitudes

Some more details

$$
\left.F_{g}=\left\langle R_{(+)}^{2} T_{(+)}^{2 g-2}\right\rangle_{g-\text { loop }}=\left.\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{3 g-3}\right| G^{-}\left(\mu_{a}\right)\right|^{2}\right\rangle_{\text {top }}
$$

To understand the G^{-}on the topological side we start with an $\mathcal{N}=(2,2)$ SCFT spanned by the operators

$$
\left\{T, G^{ \pm}, J \mid \bar{T}, \bar{G}^{ \pm}, \bar{J}\right\}
$$

The twist is performed in the following manner
Witten, 1992
Bershadsky, Cecotti, Ooguri, Vafa, 1993 Cecotti, Vafa, 1993

$$
T \rightarrow T-\frac{1}{2} \partial J,
$$

$$
\bar{T} \rightarrow \bar{T}-\frac{1}{2} \overline{\partial J}
$$

In this way G^{-}acquires conformal dimension 2 and can be sewed with the Beltrami differentials μ_{a} to form the topological integral measure.

Introduction: Uses of Topological Amplitudes

Besides being interesting in their own right, topological amplitudes (in general) have attracted a lot of interest in many instances

- They provide us a window to study certain aspects of (special) string amplitudes to all orders in perturbation theory (e.g. tests of dualities)

Bershadsky, Cecotti, Ooguri, Vafa, 1993
Antoniadis, Gava, Narain, Taylor 1995

Introduction: Uses of Topological Amplitudes

Besides being interesting in their own right, topological amplitudes (in general) have attracted a lot of interest in many instances

- They provide us a window to study certain aspects of (special) string amplitudes to all orders in perturbation theory (e.g. tests of dualities)

Bershadsky, Cecotti, Ooguri, Vafa, 1993
Antoniadis, Gava, Narain, Taylor 1995

- Calculation of topological invariants in mathematics

Introduction: Uses of Topological Amplitudes

Besides being interesting in their own right, topological amplitudes (in general) have attracted a lot of interest in many instances

- They provide us a window to study certain aspects of (special) string amplitudes to all orders in perturbation theory (e.g. tests of dualities)

Bershadsky, Cecotti, Ooguri, Vafa, 1993
Antoniadis, Gava, Narain, Taylor 1995

- Calculation of topological invariants in mathematics
- The corresponding effective couplings on the string side have some interesting properties on their own. They e.g. play an important role for the entropy of $\mathcal{N}=2$ supersymmetric black holes

Ooguri, Strominger, Vafa 2004
Dabholkar 2004
Dabholkar, Denef, Moore, Pioline 2005

Introduction: Uses of Topological Amplitudes

Besides being interesting in their own right, topological amplitudes (in general) have attracted a lot of interest in many instances

- They provide us a window to study certain aspects of (special) string amplitudes to all orders in perturbation theory (e.g. tests of dualities)

Bershadsky, Cecotti, Ooguri, Vafa, 1993
Antoniadis, Gava, Narain, Taylor 1995

- Calculation of topological invariants in mathematics
- The corresponding effective couplings on the string side have some interesting properties on their own. They e.g. play an important role for the entropy of $\mathcal{N}=2$ supersymmetric black holes

Ooguri, Strominger, Vafa 2004
Dabholkar 2004
Dabholkar, Denef, Moore, Pioline 2005

Introduction: Uses of Topological Amplitudes

Besides being interesting in their own right, topological amplitudes (in general) have attracted a lot of interest in many instances

- They provide us a window to study certain aspects of (special) string amplitudes to all orders in perturbation theory (e.g. tests of dualities)

Bershadsky, Cecotti, Ooguri, Vafa, 1993
Antoniadis, Gava, Narain, Taylor 1995

- Calculation of topological invariants in mathematics
- The corresponding effective couplings on the string side have some interesting properties on their own. They e.g. play an important role for the entropy of $\mathcal{N}=2$ supersymmetric black holes

Ooguri, Strominger, Vafa 2004
Dabholkar 2004
Dabholkar, Denef, Moore, Pioline 2005
These are also good reasons to find new classes of topological amplitudes!

Type I Type II

Heterotic

$-\mathbb{Z}_{2}$ world-sheet involution string-string duality

Outline of the Remainder of the Seminar

(1) New Topological Amplitudes in String Theory

- New Topological Amplitudes in Heterotic String Theory $/ K 3 \times T^{2}$
- Manifestly Supersymmetric Effective Action Couplings
(2) Differential Equations
- Holomorphicity Relation
- Harmonicity Relation and Second Order Constraint

New Topological Amplitudes in Heterotic $/ K 3 \times T^{2}$

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)} & =\left\langle F_{(+)}^{2}(\partial \Phi)^{2}\left(\lambda_{\alpha} \lambda^{\alpha}\right)^{g-2}\right\rangle_{g}^{\text {het }}= \\
& =\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{g} G_{T^{2}}^{-}\left(\mu_{a}\right) \prod_{b=g+1}^{3 g-4} G_{K 3}^{-}\left(\mu_{b}\right) J_{K 3}^{--}\left(\mu_{3 g-3}\right) \psi_{3}\left(\operatorname{det} Q_{i}\right)\left(\operatorname{det} Q_{j}\right)\right\rangle
\end{aligned}
$$

New Topological Amplitudes in Heterotic $/ K 3 \times T^{2}$

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)} & =\left\langle F_{(+)}^{2}(\partial \Phi)^{2}\left(\lambda_{\alpha} \lambda^{\alpha}\right)^{g-2}\right\rangle_{g}^{\text {het }}= \\
& =\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{g} G_{T^{2}}^{-}\left(\mu_{a}\right) \prod_{b=g+1}^{3 g-4} G_{K 3}^{-}\left(\mu_{b}\right) J_{K_{3}}^{--}\left(\mu_{3 g-3}\right) \psi_{3}\left(\operatorname{det} Q_{i}\right)\left(\operatorname{det} Q_{j}\right)\right\rangle
\end{aligned}
$$

Antoniadis, SH, Narain, Sokatchev, 2009
The world-sheet theory on $K 3 \times T^{2}$ is a product theory

$$
\left\{T_{T^{2}}, G_{T^{2}}^{ \pm}, J_{T^{2}}\right\} \times\left\{T_{K 3}, G_{K 3}^{ \pm}, \tilde{G}_{K 3}^{ \pm}, J_{K 3}, J_{K 3}^{ \pm} \pm\right.
$$

Banks, Dixon 1988
Berkovits, Vafa 1994, 1998

New Topological Amplitudes in Heterotic $/ K 3 \times T^{2}$

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)} & =\left\langle F_{(+)}^{2}(\partial \Phi)^{2}\left(\lambda_{\alpha} \lambda^{\alpha}\right)^{g-2}\right\rangle_{g}^{\text {het }}= \\
& =\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{g} G_{T^{2}}^{-}\left(\mu_{a}\right) \prod_{b=g+1}^{3 g-4} G_{K 3}^{-}\left(\mu_{b}\right) J_{K_{3}}^{--}\left(\mu_{3 g-3}\right) \psi_{3}\left(\operatorname{det} Q_{i}\right)\left(\operatorname{det} Q_{j}\right)\right\rangle
\end{aligned}
$$

Antoniadis, SH, Narain, Sokatchev, 2009
The world-sheet theory on $K 3 \times T^{2}$ is a product theory

$$
\left\{T_{T^{2}}, G_{T^{2}}^{ \pm}, J_{T^{2}}\right\} \times\left\{T_{K 3}, G_{K 3}^{ \pm}, \tilde{G}_{K_{3}}^{ \pm}, J_{K 3}, J_{K_{3}}^{ \pm \pm}\right\}
$$

Banks, Dixon 1988
Berkovits, Vafa 1994, 1998

Twisting of this theory is done by picking an $\mathcal{N}=2$ subalgebra

$$
T_{T^{2}}+T_{K 3} \rightarrow T_{T^{2}}+T_{K 3}-\frac{1}{2} \partial\left(J_{T^{2}}+J_{K 3}\right)
$$

This is a semi-topological correlator (twisting only in the SUSY sector)

New Topological Amplitudes in Heterotic $/ K 3 \times T^{2}$

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)} & =\left\langle F_{(+)}^{2}(\partial \Phi)^{2}\left(\lambda_{\alpha} \lambda^{\alpha}\right)^{g-2}\right\rangle_{g}^{\text {het }}= \\
& =\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{g} G_{T^{2}}^{-}\left(\mu_{a}\right) \prod_{b=g+1}^{3 g-4} G_{K 3}^{-}\left(\mu_{b}\right) J_{K 3}^{--}\left(\mu_{3 g-3}\right) \psi_{3}\left(\operatorname{det} Q_{i}\right)\left(\operatorname{det} Q_{j}\right)\right\rangle
\end{aligned}
$$

Antoniadis, SH, Narain, Sokatchev, 2009

- ψ_{3} is a free fermion on the torus (necessary to soak zero modes)

New Topological Amplitudes in Heterotic $/ K 3 \times T^{2}$

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)} & =\left\langle F_{(+)}^{2}(\partial \Phi)^{2}\left(\lambda_{\alpha} \lambda^{\alpha}\right)^{g-2}\right\rangle_{g}^{\text {het }}= \\
& =\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{g} G_{T^{2}}^{-}\left(\mu_{a}\right) \prod_{b=g+1}^{3 g-4} G_{K 3}^{-}\left(\mu_{b}\right) J_{K 3}^{--}\left(\mu_{3 g-3}\right) \psi_{3}\left(\operatorname{det} Q_{i}\right)\left(\operatorname{det} Q_{j}\right)\right\rangle
\end{aligned}
$$

Antoniadis, SH, Narain, Sokatchev, 2009

- ψ_{3} is a free fermion on the torus (necessary to soak zero modes)
- Q_{i} are the zero modes of the right moving (bosonic) currents in the heterotic theory

New Topological Amplitudes in Heterotic $/ K 3 \times T^{2}$

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)} & =\left\langle F_{(+)}^{2}(\partial \Phi)^{2}\left(\lambda_{\alpha} \lambda^{\alpha}\right)^{g-2}\right\rangle_{g}^{\text {het }}= \\
& =\int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{g} G_{T^{2}}^{-}\left(\mu_{a}\right) \prod_{b=g+1}^{3 g-4} G_{K 3}^{-}\left(\mu_{b}\right) J_{K 3}^{--}\left(\mu_{3 g-3}\right) \psi_{3}\left(\operatorname{det} Q_{i}\right)\left(\operatorname{det} Q_{j}\right)\right\rangle
\end{aligned}
$$

Antoniadis, SH, Narain, Sokatchev, 2009

- g-loop amplitude in heterotic string theory on $K 3 \times T^{2}$
- Component correlator with insertions from $\mathcal{N}=2$ vector multiplet:
- $F_{(+), \mu \nu}$ gauge field strength
- Φ vector multiplet scalars
- λ_{α} gaugino
- Supersymmetrization involves hypermultiplets

Manifest Supersymmetric Effective Action Couplings

Since these BPS couplings mix hypermultiplets and vector multiplets they must be supersymmetrized using harmonic superspace

Manifest Supersymmetric Effective Action Couplings

Since these BPS couplings mix hypermultiplets and vector multiplets they must be supersymmetrized using harmonic superspace To this end, we extend the standard $\mathcal{N}=2$ superspace to

$$
\mathbb{R}^{(4+4 \mid 2,2)}=\mathbb{R}^{(4 \mid 2,2)} \times \frac{S U(2)}{U(1)}=\left\{x^{\mu}, \theta_{\alpha}^{ \pm}, \bar{\theta}_{ \pm}^{\dot{\alpha}}, u_{i}^{ \pm}\right\}
$$

with the harmonic variables

$$
\frac{S U(2)}{U(1)}=\left\{u_{i}^{+}, u_{i}^{-}\right\} \quad \text { with } \quad\left\{\begin{array}{lll}
i=1,2 & \in & S U(2) \\
\pm & \ldots & U(1)
\end{array}\right.
$$

Manifest Supersymmetric Effective Action Couplings

Since these BPS couplings mix hypermultiplets and vector multiplets they must be supersymmetrized using harmonic superspace To this end, we extend the standard $\mathcal{N}=2$ superspace to

$$
\mathbb{R}^{(4+4 \mid 2,2)}=\mathbb{R}^{(4 \mid 2,2)} \times \frac{S U(2)}{U(1)}=\left\{x^{\mu}, \theta_{\alpha}^{ \pm}, \bar{\theta}_{ \pm}^{\dot{\alpha}}, u_{i}^{ \pm}\right\}
$$

with the harmonic variables

$$
\frac{S U(2)}{U(1)}=\left\{u_{i}^{+}, u_{i}^{-}\right\} \quad \text { with } \quad\left\{\begin{array}{lll}
i=1,2 & \in & S U(2) \\
\pm & \ldots & U(1)
\end{array}\right.
$$

The Grassmann variables are $S U(2)$-projected

$$
\theta_{\alpha}^{ \pm}=\theta_{\alpha}^{i} u_{i}^{ \pm}, \quad \text { and } \quad \bar{\theta}_{ \pm}^{\dot{\alpha}}=\bar{\theta}_{i}^{\dot{\alpha}} \bar{u}_{ \pm}^{i}
$$

leading to the measure on the harmonic superspace

$$
\int d \zeta^{(-2,-2)}=\int d^{4} x d u d^{2} \theta^{+} d^{2} \bar{\theta}_{-}
$$

Hypermultiplets in Harmonic Superspace

We first introduce N doublets of hypermultiplets transforming as fundamentals under $S O(N)$

$$
\begin{aligned}
& q_{\hat{A}}^{+}=f_{\hat{A}}^{+}+\theta_{\alpha}^{+} \chi_{\hat{A}}^{\alpha}+\bar{\psi}_{\hat{A} \dot{\alpha}} \bar{\theta}_{-}^{\dot{\alpha}}+\ldots \\
& \tilde{q}_{\hat{A}-}=\bar{f}_{\hat{A}-}+\bar{\theta}_{-}^{\dot{\alpha}} \bar{\chi}_{\hat{A} \dot{\alpha}}+\psi_{\hat{A}}^{\alpha} \theta_{\alpha}^{+}+\ldots
\end{aligned} \quad \text { with } \quad \hat{A} \in S O(N)
$$

These can be combined into $S U(2)$ doublets in the following manner

$$
\left(q_{\hat{A}}^{+}, \tilde{q}_{\hat{A}-}\right)=q_{\hat{A}_{a}}^{+}=q_{A}^{+}, \quad\left\{\begin{array}{l}
a \in S U(2) \\
A \in S p(2 N)
\end{array}\right.
$$

These superfields satisfy particular analyticity relations

$$
D_{-}^{\alpha} q_{A}^{+}=\bar{D}_{\dot{\alpha}}^{+} q_{A}^{+}=0
$$

Vector multiplets in Harmonic Superspace

The vector multiplets have the expansion

$$
\begin{array}{ccc}
W_{I}=\varphi_{I} \\
\swarrow & \theta_{\alpha}^{i} \lambda_{i I}^{\alpha}+\theta_{\alpha}^{i} \theta_{\beta}^{j} & \left(\epsilon_{i j} F_{(+), I}^{(\alpha \beta)}+\epsilon^{\alpha \beta} S_{(i j), I}\right) \\
\text { scalar } & \text { gauginos } & \text { gauge field }
\end{array}
$$

Vector multiplets in Harmonic Superspace

The vector multiplets have the expansion

$$
\left.\begin{array}{ccc}
W_{I}=\varphi_{I} \\
\swarrow & \downarrow & \theta_{\alpha}^{i} \lambda_{i l}^{\alpha}+\theta_{\alpha}^{i} \theta_{\beta}^{j} \\
\text { scalar } & \text { gauginos } & \text { gauge field }
\end{array} \underset{(+), l}{(\alpha \beta)}+\epsilon^{\alpha \beta} S_{(i j), l}\right)
$$

We will also consider the superdescendant

$$
K_{-, I}^{\alpha}=\bar{u}_{-}^{i} D_{i}^{\alpha} W_{I}=\lambda_{i l}^{\alpha} \bar{u}_{-}^{i}+i\left(\sigma^{\mu}\right)^{\alpha \dot{\alpha}} \bar{\theta}_{\dot{\alpha}}^{+} \partial_{\mu} \varphi_{I}+\theta_{\beta}^{+} F_{(+), I}^{\alpha \beta}
$$

Vector multiplets in Harmonic Superspace

The vector multiplets have the expansion

$$
\begin{array}{ccc}
W_{I}=\varphi_{I} \\
\swarrow & \downarrow & \theta_{\alpha}^{i} \lambda_{i l}^{\alpha}+\theta_{\alpha}^{i} \theta_{\beta}^{j} \\
\text { scalar } & \text { gauginos } & \text { gauge field } \\
\epsilon_{i j} F_{(+), l}^{(\alpha \beta)}+\epsilon^{\alpha \beta} & \text { auxiliary }
\end{array}
$$

We will also consider the superdescendant

$$
K_{-, I}^{\alpha}=\bar{u}_{-}^{i} D_{i}^{\alpha} W_{I}=\lambda_{i I}^{\alpha} \bar{u}_{-}^{i}+i\left(\sigma^{\mu}\right)^{\alpha \dot{\alpha}} \bar{\theta}_{\dot{\alpha}}^{+} \partial_{\mu} \varphi_{I}+\theta_{\beta}^{+} F_{(+), I}^{\alpha \beta}
$$

On shell (for $S_{(i j)}=0$), both superfields satisfy analyticity conditions

$$
\epsilon_{\alpha \beta} D_{i}^{\alpha} D_{j}^{\beta} W_{I}=0 \quad \text { and } \quad D_{-}^{\beta} K_{-, I}^{\alpha}=\bar{D}_{\dot{\alpha}}^{+} K_{-, I}^{\alpha}=0
$$

In the following we will mostly suppress the vector index l.

Higher-Derivative Couplings

The coupling corresponding to the topological amplitude is then given by
Antoniadis, SH, Narain, Sokatchev, 2009

$$
S_{2}=\int d \zeta^{(-2,-2)}\left(D_{-}^{\alpha} \epsilon_{\alpha \beta} D_{-}^{\beta}\right)\left[\left(K_{-}^{\alpha} \epsilon_{\alpha \beta} K_{-}^{\beta}\right)^{g-1} \tilde{\mathcal{F}}_{g}^{(2)}\left(W, q_{A}^{+}, u\right)\right]
$$

Higher-Derivative Couplings

The coupling corresponding to the topological amplitude is then given by
Antoniadis, SH, Narain, Sokatchev, 2009

$$
S_{2}=\int d \zeta^{(-2,-2)}\left(D_{-}^{\alpha} \epsilon_{\alpha \beta} D_{-}^{\beta}\right)\left[\left(K_{-}^{\alpha} \epsilon_{\alpha \beta} K_{-}^{\beta}\right)^{g-1} \tilde{\mathcal{F}}_{g}^{(2)}\left(W, q_{A}^{+}, u\right)\right]
$$

This term is (off-shell) supersymmetric since it is annihilated by $\left(D^{ \pm}, \bar{D}_{ \pm}\right)$

- Acting with D_{+}^{α} and $\bar{D}_{\dot{\alpha}}^{-}$vanishes due to the measure factor
- Acting with D_{-}^{α} vanishes because of the presence of $\left(D_{-}^{\alpha} \epsilon_{\alpha \beta} D_{-}^{\beta}\right)$
- Acting with $\bar{D}_{\dot{\alpha}}^{+}$annihilates all fields of the integrand

Higher-Derivative Couplings

The coupling corresponding to the topological amplitude is then given by
Antoniadis, SH, Narain, Sokatchev, 2009

$$
S_{2}=\int d \zeta^{(-2,-2)}\left(D_{-}^{\alpha} \epsilon_{\alpha \beta} D_{-}^{\beta}\right)\left[\left(K_{-}^{\alpha} \epsilon_{\alpha \beta} K_{-}^{\beta}\right)^{g-1} \tilde{\mathcal{F}}_{g}^{(2)}\left(W, q_{A}^{+}, u\right)\right]
$$

This term is (off-shell) supersymmetric since it is annihilated by $\left(D^{ \pm}, \bar{D}_{ \pm}\right)$

- Acting with D_{+}^{α} and $\bar{D}_{\dot{\alpha}}^{-}$vanishes due to the measure factor
- Acting with D_{-}^{α} vanishes because of the presence of $\left(D_{-}^{\alpha} \epsilon_{\alpha \beta} D_{-}^{\beta}\right)$
- Acting with $\bar{D}_{\dot{\alpha}}^{+}$annihilates all fields of the integrand

Notice, that the coupling function $\tilde{\mathcal{F}}_{g}^{(2)}\left(W, q_{A}^{+}, u\right)$ does not depend on the superfields in an arbitrary way but satisfies certain analyticity properties.

Analyticity Properties of the Topological Amplitudes

To see these properties more clearly let us write the amplitude in an on-shell formulation $\left(S_{(i j)}=0\right)$

$$
\int d \zeta^{(-2,-2)}\left(K_{-}^{\alpha} \epsilon_{\alpha \beta} K_{-}^{\beta}\right)^{g} \mathcal{F}_{g}^{(2)}\left(W_{l}, q_{A}^{+}, u\right)
$$

- It is crucial to notice that $\mathcal{F}_{g}^{(2)}$ does not depend on the moduli in a random way
- Particularly, it just depends on
- the holomorphic vector multiplets
- These analyticities suggest differential equations for $\mathcal{F}_{g}^{(2)}$
- holomorphic anomaly equation with respect to $\bar{\varphi}^{\bar{T}}$

Analyticity Properties of the Topological Amplitudes

To see these properties more clearly let us write the amplitude in an on-shell formulation $\left(S_{(i j)}=0\right)$

$$
\int d \zeta^{(-2,-2)}\left(K_{-}^{\alpha} \epsilon_{\alpha \beta} K_{-}^{\beta}\right)^{g} \mathcal{F}_{g}^{(2)}\left(W_{l}, q_{A}^{+}, u\right)
$$

- It is crucial to notice that $\mathcal{F}_{g}^{(2)}$ does not depend on the moduli in a random way
- Particularly, it just depends on
- the holomorphic vector multiplets
- a particular projection of the hypermultiples q_{A}^{+}
- These analyticities suggest differential equations for $\mathcal{F}_{g}^{(2)}$
- holomorphic anomaly equation with respect to $\bar{\varphi}$
- harmonicity relation and second order equation for the hyper multiplets

Holomorphicity Relation

Naive reasoning would suggest a relation of the form

$$
\frac{\partial}{\partial \bar{\varphi}^{\bar{l}}} \mathcal{F}_{g}^{(2)}=0
$$

Holomorphicity Relation

Naive reasoning would suggest a relation of the form

$$
\frac{\partial}{\partial \bar{\varphi}^{\bar{I}}} \int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{g} G_{T^{2}}^{-}\left(\mu_{a}\right) \prod_{b=g+1}^{3 g-4} G_{K 3}^{-}\left(\mu_{b}\right) J_{K 3}^{--}\left(\mu_{3 g-3}\right) \psi_{3}\left(\operatorname{det} Q_{i}\right)\left(\operatorname{det} Q_{j}\right)\right\rangle \neq 0
$$

In fact, however, the anti-holomorphic derivative just leads to a total derivative in the moduli space of Riemann surfaces \mathcal{M}_{g} we are integrating over. Since the latter is non-compact we obtain a boundary contribution.

Holomorphicity Relation

Naive reasoning would suggest a relation of the form

$$
\frac{\partial}{\partial \bar{\varphi}^{\bar{I}}} \int_{\mathcal{M}_{g}}\left\langle\prod_{a=1}^{g} G_{T^{2}}^{-}\left(\mu_{a}\right) \prod_{b=g+1}^{3 g-4} G_{K 3}^{-}\left(\mu_{b}\right) J_{K 3}^{--}\left(\mu_{3 g-3}\right) \psi_{3}\left(\operatorname{det} Q_{i}\right)\left(\operatorname{det} Q_{j}\right)\right\rangle \neq 0
$$

In fact, however, the anti-holomorphic derivative just leads to a total derivative in the moduli space of Riemann surfaces \mathcal{M}_{g} we are integrating over. Since the latter is non-compact we obtain a boundary contribution.

In general there are two types of degenerations

- Degeneration of a handle

- Degeneration of a dividing geodesic

Holomorphic Anomaly

For computing the violation of the holomorphicity, we need to consider the states propagating on the thin long tubes

Holomorphic Anomaly

For computing the violation of the holomorphicity, we need to consider the states propagating on the thin long tubes

- Pinching a handle Due to $\left(\operatorname{det} Q_{I}\right)\left(\operatorname{det} Q_{J}\right)$ only charged states can propagate. These are absent at a generic point in the vector multiplet moduli-space \Rightarrow No contribution

Holomorphic Anomaly

For computing the violation of the holomorphicity, we need to consider the states propagating on the thin long tubes

- Pinching a handle Due to $\left(\operatorname{det} Q_{I}\right)\left(\operatorname{det} Q_{J}\right)$ only charged states can propagate. These are absent at a generic point in the vector multiplet moduli-space \Rightarrow No contribution

- Pinching a dividing geodesic Uncharged vector multiplet states can contribute. Due to the necessity to soak up torus zero-modes the contribution vanishes unless one of the two surfaces happens to be a torus \Rightarrow Only contribution
 for $g \rightarrow(g-1)+1$

Holomorphic Anomaly

The contribution of the torus can be calculated explicitly yielding the result

$$
\frac{\partial}{\partial \bar{\varphi}_{\bar{l}}^{I}} \mathcal{F}_{g}^{(2)}=\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1} G^{\bar{K} L} \partial_{L} h^{(1)}
$$

Antoniadis, SH, Narain, Sokatchev, 2009

Holomorphic Anomaly

The contribution of the torus can be calculated explicitly yielding the result

$$
\frac{\partial}{\partial \bar{\varphi}^{F}} \mathcal{F}_{g}^{(2)}=\mathcal{F}_{\bar{I}, \bar{K}}^{\mathcal{G}-1,1} G^{\bar{K} L} \partial_{L} h^{(1)}
$$

Antoniadis, SH, Narain, Sokatchev, 2009

- $h^{(1)}$ is the one-loop threshold correction to the gauge-couplings

Holomorphic Anomaly

The contribution of the torus can be calculated explicitly yielding the result

$$
\frac{\partial}{\partial \bar{\varphi}_{\bar{l}}} \mathcal{F}_{g}^{(2)}=\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1} G^{\bar{K} L} \partial_{L} h^{(1)}
$$

Antoniadis, SH, Narain, Sokatchev, 2009

- $h^{(1)}$ is the one-loop threshold correction to the gauge-couplings
- $\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1}$ is a new topological object. It is a non-holomorphic coupling in the effective action

Holomorphic Anomaly

The contribution of the torus can be calculated explicitly yielding the result

$$
\frac{\partial}{\partial \bar{\varphi}_{\bar{l}}} \mathcal{F}_{g}^{(2)}=\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1} G^{\bar{K} L} \partial_{L} h^{(1)}
$$

Antoniadis, SH, Narain, Sokatchev, 2009

- $h^{(1)}$ is the one-loop threshold correction to the gauge-couplings
- $\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1}$ is a new topological object. It is a non-holomorphic coupling in the effective action
- The superspace couplings for $\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1}$ can be interpreted as an anomaly to the holomorphicity condition, generalizing the well-known holomorphic anomaly equation. Bershadsky, Cecotti, Ooguri, Vafa, 1993

Holomorphic Anomaly

The contribution of the torus can be calculated explicitly yielding the result

$$
\frac{\partial}{\partial \bar{\varphi}_{\bar{l}}} \mathcal{F}_{g}^{(2)}=\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1} G^{\bar{K} L} \partial_{L} h^{(1)}
$$

Antoniadis, SH, Narain, Sokatchev, 2009

- $h^{(1)}$ is the one-loop threshold correction to the gauge-couplings
- $\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1}$ is a new topological object. It is a non-holomorphic coupling in the effective action
- The superspace couplings for $\mathcal{F}_{\bar{I}, \bar{K}}^{g-1,1}$ can be interpreted as an anomaly to the holomorphicity condition, generalizing the well-known holomorphic anomaly equation. Bershadsky, Cecotti, Ooguri, Vafa, 1993
- The phenomenon of the holomorphicity relation not closing on $\mathcal{F}_{g}^{(2)}$ is not new. A similar observation was already made for semi-topological $\mathcal{N}=1$ amplitudes in the heterotic theory compactified on CY Antoniadis, Gava, Narain, Taylor, 1996

Harmonic Dependence of the Topological Amplitudes

Let us consider the harmonic dependence of $\mathcal{F}_{g}^{(2)}$ by the generic expansion (I drop the W-dependence, $m=2 g-2$)

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)}\left(q_{A}^{+}, u\right) & =\sum_{n=0}^{\infty} \xi_{\left(i_{1} \ldots i_{m+n}\right)}^{A_{1} \ldots A_{n}} \bar{u}_{+}^{i_{1}} \ldots \bar{u}_{+}^{i_{m+n}} f_{A_{1}}^{\left(k_{1}\right.} \ldots f_{A_{n}}^{\left.k_{n}\right)} u_{k_{1}}^{+} \ldots u_{k_{n}}^{+}= \\
& =\sum_{n=0}^{\infty} \xi_{\left(i_{1} \ldots i_{m+n}\right)}^{A_{1} \ldots A_{n}} \bar{u}_{+}^{i_{1}} \ldots \bar{u}_{+}^{i_{m}} f_{A_{1}}^{i_{m+1}} \ldots f_{A_{n}}^{i_{m+n}}
\end{aligned}
$$

Harmonic Dependence of the Topological Amplitudes

Let us consider the harmonic dependence of $\mathcal{F}_{g}^{(2)}$ by the generic expansion (I drop the W-dependence, $m=2 g-2$)

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)}\left(q_{A}^{+}, u\right) & =\sum_{n=0}^{\infty} \xi_{\left(i_{1} \ldots i_{m+n}\right)}^{A_{1} \ldots A_{n}} \bar{u}_{+}^{i_{1}} \ldots \bar{u}_{+}^{i_{m+n}} f_{A_{1}}^{\left(k_{1}\right.} \ldots f_{A_{n}}^{\left.k_{n}\right)} u_{k_{1}}^{+} \ldots u_{k_{n}}^{+}= \\
& =\sum_{n=0}^{\infty} \xi_{\left(i_{1} \ldots i_{m+n}\right)}^{A_{1} \ldots A_{n}} \bar{u}_{+}^{i_{1}} \ldots \bar{u}_{+}^{i_{m}} f_{A_{1}}^{i_{m+1}} \ldots f_{A_{n}}^{i_{m+n}}
\end{aligned}
$$

The symmetries of this expansion suggests the following two relations

- harmonicity relation

$$
\epsilon^{i j} \frac{\partial}{\partial \bar{u}_{+}^{i}} D_{j, \hat{A}_{a}} \mathcal{F}_{g}^{(2)}=0
$$

Harmonic Dependence of the Topological Amplitudes

Let us consider the harmonic dependence of $\mathcal{F}_{g}^{(2)}$ by the generic expansion (I drop the W-dependence, $m=2 g-2$)

$$
\begin{aligned}
\mathcal{F}_{g}^{(2)}\left(q_{A}^{+}, u\right) & =\sum_{n=0}^{\infty} \xi_{\left(i_{1} \ldots i_{m+n}\right)}^{A_{1} \ldots A_{n}} \bar{u}_{+}^{i_{1}} \ldots \bar{u}_{+}^{i_{m+n}} f_{A_{1}}^{\left(k_{1}\right.} \ldots f_{A_{n}}^{\left.k_{n}\right)} u_{k_{1}}^{+} \ldots u_{k_{n}}^{+}= \\
& =\sum_{n=0}^{\infty} \xi_{\left(i_{1} \ldots i_{m+n}\right)}^{A_{1} \ldots A_{n}} \bar{u}_{+}^{i_{1}} \ldots \bar{u}_{+}^{i_{m}} f_{A_{1}}^{i_{m+1}} \ldots f_{A_{n}}^{i_{m+n}}
\end{aligned}
$$

The symmetries of this expansion suggests the following two relations

- harmonicity relation

$$
\epsilon^{i j} \frac{\partial}{\partial \bar{u}_{+}^{i}} D_{j, \hat{A}_{a}} \mathcal{F}_{g}^{(2)}=0
$$

- second order constraint

$$
\epsilon^{i j} D_{i, A} D_{j, B} \mathcal{F}_{g}^{(2)}=0
$$

Anomalies for the Harmonicity Relation

Also the harmonicity relation is modified by boundary corrections similar to the holomorphic anomaly equation. Explicit string computations at a generic point in the moduli space show Antoniadis, SH, Narain, Sokatchev 2009

$$
\begin{aligned}
\epsilon^{i j} \frac{\partial}{\partial \bar{u}_{+}^{i}} D_{j, A} \mathcal{F}_{g}^{(2)}= & \sum_{g_{1}=2}^{g-2} D_{A+} D_{B+} \mathcal{F}_{g_{1}}^{(2)} \Omega^{B C} D_{C+} \mathcal{F}_{g-g_{1}}^{(2)}+ \\
& +\mathcal{F}_{1, A B}^{(2)} \Omega^{B C} D_{C+} \mathcal{F}_{g-1}^{(2)}+ \\
& +\mathcal{F}_{A, \bar{K}}^{g-1,1} G^{\bar{K} L} D_{L} h^{(1)}
\end{aligned}
$$

Anomalies for the Harmonicity Relation

Also the harmonicity relation is modified by boundary corrections similar to the holomorphic anomaly equation. Explicit string computations at a generic point in the moduli space show Antoniadis, SH, Narain, Sokatchev 2009

$$
\begin{aligned}
\epsilon^{i j} \frac{\partial}{\partial \bar{u}_{+}^{i}} D_{j, A} \mathcal{F}_{g}^{(2)}= & \sum_{g_{1}=2}^{g-2} D_{A+} D_{B+} \mathcal{F}_{g_{1}}^{(2)} \Omega^{B C} D_{C+} \mathcal{F}_{g-g_{1}}^{(2)}+ \\
& +\mathcal{F}_{1, A B}^{(2)} \Omega^{B C} D_{C+} \mathcal{F}_{g-1}^{(2)}+ \\
& +\mathcal{F}_{A, \bar{K}}^{g-1,1} G^{\bar{K} L} D_{L} h^{(1)}
\end{aligned}
$$

Here $\mathcal{F}_{A, \bar{K}}^{g-1,1}$ is again a new non-holomorphic coupling in the effective action, which contributes to this amplitude via the elimination of the auxiliary fields $S_{(i j)} . \Omega^{A B}$ is the symplectic form of $\operatorname{Sp}(2 N)$.

Anomalies for the Second Order Relation

Finally, also the second order relation is modified. Besides the usual boundary contributions we find Antoniadis, SH, Narain, Sokatchev 2009

$$
\epsilon^{i j} D_{i, \hat{A}_{a}} D_{j, \hat{B} b} \mathcal{F}_{g}^{(2)}=(g-1) \delta_{\hat{A} \hat{B}} \epsilon_{a b} \mathcal{F}_{g}^{(2)}+\text { boundary terms }
$$

Anomalies for the Second Order Relation

Finally, also the second order relation is modified. Besides the usual boundary contributions we find Antoniadis, SH, Narain, Sokatchev 2009

$$
\epsilon^{i j} D_{i, \hat{A}_{a}} D_{j, \hat{B} b} \mathcal{F}_{g}^{(2)}=(g-1) \delta_{\hat{A} \hat{B}} \epsilon_{a b} \mathcal{F}_{g}^{(2)}+\text { boundary terms }
$$

- The term on the right hand side is not an anomaly in the strict sense since it depends on the same $\mathcal{F}_{g}^{(2)}$ from which we started on the left hand side.

Anomalies for the Second Order Relation

Finally, also the second order relation is modified. Besides the usual boundary contributions we find Antoniadis, SH, Narain, Sokatchev 2009

$$
\epsilon^{i j} D_{i, \hat{A}_{a}} D_{j, \hat{B} b} \mathcal{F}_{g}^{(2)}=(g-1) \delta_{\hat{A} \hat{B}} \epsilon_{a b} \mathcal{F}_{g}^{(2)}+\text { boundary terms }
$$

- The term on the right hand side is not an anomaly in the strict sense since it depends on the same $\mathcal{F}_{g}^{(2)}$ from which we started on the left hand side.
- It plays the role of a connection term owing to the fact that the space of the f_{i} is not flat.

Anomalies for the Second Order Relation

Finally, also the second order relation is modified. Besides the usual boundary contributions we find Antoniadis, SH, Narain, Sokatchev 2009

$$
\epsilon^{i j} D_{i, \hat{A}_{a}} D_{j, \hat{B} b} \mathcal{F}_{g}^{(2)}=(g-1) \delta_{\hat{A} \hat{B}} \epsilon_{a b} \mathcal{F}_{g}^{(2)}+\text { boundary terms }
$$

- The term on the right hand side is not an anomaly in the strict sense since it depends on the same $\mathcal{F}_{g}^{(2)}$ from which we started on the left hand side.
- It plays the role of a connection term owing to the fact that the space of the f_{i} is not flat.
- The presence of this term can also be understood from the field theoretic/superspace point of view.

Conclusions

In this talk I have presented a new class of $\mathcal{N}=2$ topological amplitudes.

- I determined the corresponding effective action couplings in harmonic superspace and found that these topological couplings depend on both vector- and hypermultiplet moduli
- I showed that these couplings satisfy certain differential equations with respect to the moduli, namely
- holomorphicity relation with respect to vector moduli
- harmonicity and second-order relation with respect to hyper moduli
- Open questions still include
- What do these amplitudes compute mathematically?
- Are there any physical applications?

