# Insightful D-branes

Albion Lawrence Brandeis University

# Outline

- I. Introduction
- II. A singularity with a gauge theory dual
- III. Gauge theory vs. spacetime coordinate transformations
- IV. Gauge theory dynamics and hyperbolic black holesV. Conclusions
- Based on work with G. Horowitz and E. Silverstein

arxiv:0904.3922

### I. Introduction



Large black hole: curvature remains weak well inside the horizon.

1. Infalling observer (B) remains semiclassical until it reaches the singularity.

2. External observer (A) sees black hole evaporate via long-wavelength, thermal, Hawking radiation. Infalling observer is "cooked" near the horizon and re-emitted as Hawking radiation.

"Black hole complementarity":

't Hooft, Susskind

Unitarity of BH evaporation implies that these two pictures are equivalent (dual).

If so, what is the map?

# Black holes in AdS/CFT



AdS<sub>5</sub> black hole ~ 4d gauge theory at temperature T = T(M)

Gauge theory time  $\sim$  Schwarzschild time

(Time experienced by observer at fixed distance from BH).

Bulk: infalling objects approach horizon as  $t \to \infty$ Gauge theory: excitations spread and thermalize

Gauge theory description of semiclassical physics behind the horizon? Gauge theory description of singularity?

### II. A singularity with a gauge theory dual



Green, Lawrence, McGreevy, Morrison, and Silverstein HLS



 $(\ell \text{ is AdS radius})$ 



Final bulk metric:

$$ds_{5}^{2} = \frac{r_{p}^{2}}{\ell^{2}} \left( -dt_{p}^{2} + t_{p}^{2} d\sigma_{\Sigma}^{2} \right) + \ell^{2} \frac{dr_{p}^{2}}{r_{p}^{2}}$$

Dual gauge theory lives on "collapsing cone" metric:

$$ds_4^2 = -dt_p^2 + t_p^2 d\sigma_{\Sigma}^2$$

### 1. Similar in spirit to other time-dependent QFTs

Das et. al. Awad et. al. Craps, Sethi, et. al. Martinec et. al.

- 2. Distinct from example of unstable QFTs
  - D3 branes at constant  $r_p$  are solutions of e.o.m.
  - Stretched W bosons have mass  $m_W$  constant in time.
  - Momentum  $m_{KK}$  along  $\Sigma$  grows with  $t_p \to 0^-$ .
  - Dimensionless ratio  $m_W/m_{KK} \rightarrow 0$ .

### Singularity associated with IR of QFT

3. Unclear if QFT is well defined as  $t_p \to 0^-$ 

Horowitz and Hertog Craps, Hertog, and Turok Bernamonti and Craps

### Static coordinate system

$$r = -\frac{r_p t_p}{\ell} \quad t = -\frac{\ell}{2} \ln\left(\frac{t_p^2 r_p^2 - \ell^2}{\ell^2 r_p^2}\right)$$
$$ds_5^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\sigma_{\Sigma}^2$$
$$f(r) = \frac{r^2}{\ell^2} - 1$$

"M=0 topological black hole": 5d version of BTZ black hole

- Negatively curved horizon at  $r = \ell$ .
- Temperature  $T \sim 1/\ell$ .
- Horizon area ~  $\ell^3$ ; entropy ~  $N^2$ .

Dual: gauge theory on  $\Sigma \times \mathbb{R}$  at  $T = 1/R_{\Sigma}$ 

Emparan



# Conformal transformation:

$$t_p = -\ell e^{-t/\ell}$$
$$ds_{cone}^2 \to ds_{cyl}^2 = e^{2t/\ell} ds_{cone}^2$$



Seems to map QFT variables describing Scwharzschild observers to QFT variables describing infalling observers

- How does the map act on bulk probes?
- Can this be generalized to other BHs?

III. Gauge theory vs. spacetime coordinate transformations A.  $\mathcal{N} = 4$  SYM on  $\Sigma \times \mathbb{R}$ ,  $T = 1/R_{\Sigma}$ 

Consider D3-brane wrapping  $\Sigma$  and moving in r, t

String theory: D3-brane probe dynamics described by DBI action

$$S_{DBI} = \frac{1}{g_s(\alpha')^2} \int d\tau d^3\sigma \left( \sqrt{\det \partial_\alpha X^\mu \partial_\beta X^\nu G_{\mu\nu}(X)} - A_{RR}^{(4)} \right)$$
$$\begin{pmatrix} t &= \tau \\ r &= r(t) \\ \sqrt{\sigma^i} &: \Sigma \to \Sigma \text{ one} - \text{to} - \text{one} \end{cases}$$

$$S_{static} = -\frac{\hat{V}}{g_s(\alpha')^2} \int dt \left( r^3 \sqrt{f(r)} - \frac{\dot{r}^2}{f(r)} - \frac{r^4 - \ell^4}{\ell} \right)$$
$$f(r) = \frac{r^2}{\ell^2} - \frac{f(r)}{\ell} = \frac{r^2}{\ell^2} - \frac{r^2}{\ell} - \frac{r^2}{$$

Gauge theory:

- t =gauge theory time.
- Take adjoint scalar out on Coulomb branch,  $\phi = \alpha' r$ .
- Integrate out W-bosons charged under  $U(1) \times U(N-1)$ .



•  $S_{static}$  is resulting effective action for  $\phi$ 

$$S_{static} = -\frac{\hat{V}}{g_s(\alpha')^2} \int dt \left( r^3 \sqrt{f(r) - \frac{\dot{r}^2}{f(r)}} - \frac{r^4 - \ell^4}{\ell} \right)$$

$$f(r) = \frac{r^2}{\ell^2} - 1$$

1.  $\dot{r}^2 < f(r)^2$ : "scalar speed limit".

Silverstein and Tong

$$r \to \ell \text{ as } t \to \infty$$

- 2. Let  $r = r_0(t) + \delta r(t)$ :
  - $r_0(t)$  solves classical e.o.m.
  - Expand  $S_{static}$  in  $\delta r$

Expansion in  $\delta r$  breaks down as  $f \to 0$ .

Semiclassical physics in (t, r) breaks down at horizon



# B. $\mathcal{N} = 4$ SYM on collapsing cone

Consider D3-brane wrapping  $\Sigma$  and moving in  $r_p, t_p$ String theory:

$$S_{DBI} = \frac{1}{g_s(\alpha')^2} \int d\tau d^3\sigma \left( \sqrt{\det \partial_\alpha X^\mu \partial_\beta X^\nu G_{\mu\nu}(X)} - A_{RR}^{(4)} \right)$$

$$\int \int r_p = \tau$$

$$r_p = r_p(t_p)$$

$$\sigma^i : \Sigma \to \Sigma \text{ one - to - one}$$

$$S_{cosmo} = -\frac{\hat{V}}{g_s(\alpha')^2} \int dt_p \left( t_p^3 r_p^3 \sqrt{\frac{r_p^2}{\ell^2} - \ell^2 \frac{\dot{r_p}^2}{r_p^2}} - \frac{r_p^4 t_p^3}{\ell^4} \right)$$

Gauge theory:

- $t_p$  = gauge theory time.
- Take adjoint scalar out on Coulomb branch,  $\phi = \alpha' r_p$ .
- Integrate out W-bosons charged under  $U(1) \times U(N-1)$ .

$$S_{cosmo} = -\frac{\hat{V}}{g_s(\alpha')^2} \int dt_p \left( t_p^3 r_p^3 \sqrt{\frac{r_p^2}{\ell^2}} - \ell^2 \frac{\dot{r_p}^2}{r_p^2} - \frac{r_p^4 t_p^3}{\ell^4} \right)$$

1. Horizon at  $r_p t_p = \ell^2$ , singularity as  $t_p \to 0^-$ .

Horizon reached in finite time

- 2. Let  $r_p = r_{p,0}(t_p) + \delta r_p(t_p)$ :
  - $r_{p,0}(t_p)$  solves classical e.o.m.
  - Expand  $S_{static}$  in  $\delta r_p$

Expansion in  $\delta r_p$ 

- regular at horizon
- breaks down at singularity



# C. Transformation of QM variables of probes

1. Conformal transformation of QFT

 $t_p = -\ell e^{-rac{ ilde{t}}{\ell}}$ maps collapsing cone to  $\Sigma \times \mathbb{R}$  $ds_{cone}^2 o ds_{cyl}^2 = e^{2 ilde{t}/\ell} ds_{cone}^2$ 

 $\phi = r/\alpha'$  dimension-1 field:  $r_p = e^{\tilde{t}/\ell} \tilde{r}$ 

 $\tilde{t}, \tilde{r} \neq t, r$ 

Conformal transformation:  $S_{cosmo} \not\rightarrow S_{static}$ 

$$S_{cosmo} = \tilde{S} = -\frac{\hat{V}}{g_s(\alpha')^2} \int d\tilde{t} \left( \tilde{r}^3 \sqrt{\frac{\tilde{r}^2}{\ell^2} - \ell^2 \frac{(\dot{\tilde{r}} + \tilde{r}/\ell)^2}{\tilde{r}^2}} - \frac{\tilde{r}^4}{\ell} \right)$$

# This is not surprising:

(a) Coordinate transformations  $t_p = -\ell e^{-\tilde{t}/\ell}$   $r_p = \tilde{r} e^{\tilde{t}/\ell}$ 

do not change equal-time slices in bulk

(b) Bulk metric:



 $ds_{5}^{2} = -f(\tilde{r})d\tilde{t}^{2} + \tilde{r}^{2}d\sigma_{\Sigma}^{2} + \frac{2\ell}{\tilde{r}}d\tilde{t}d\tilde{r} + \frac{\ell^{2}}{\tilde{r}^{2}}d\tilde{r}^{2} \qquad f(\tilde{r}) = \frac{\tilde{r}^{2}}{\ell^{2}} - 1$   $S_{DBI} = \frac{1}{g_{s}(\alpha')^{2}}\int d\tau d^{3}\sigma \left(\sqrt{\det\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}G_{\mu\nu}(X)} - A_{RR}^{(4)}\right)$   $\downarrow \qquad \tilde{t} = \tau$   $\tilde{r} = \tilde{r}(\tilde{t})$   $\sigma^{i} : \Sigma \to \Sigma$   $\tilde{S} = -\frac{\hat{V}}{g_{s}(\alpha')^{2}}\int d\tilde{t} \left(\tilde{r}^{3}\sqrt{\frac{\tilde{r}^{2}}{\ell^{2}} - \ell^{2}\frac{(\dot{r} + \tilde{r}/\ell)^{2}}{\tilde{r}^{2}}} - \frac{\tilde{r}^{4}}{\ell}\right)$ 

### 2. Bulk coordinate transformations in dual QFT

$$r = -\frac{r_p t_p}{\ell}$$
$$t = -\frac{\ell}{2} \ln \left(\frac{t_p^2 r_p^2 - \ell^2}{\ell^2 r_p^2}\right)$$

map "cosmological" to "static" coordinates

In QFT:

- $t, t_p$  are QFT times
- $r, r_p$  are quantum fields

Map  $(r_p, t_p) \rightarrow (r, t)$  includes a fielddependent time reparametrization

Generic to any nontrivial change of bulk equal-time slicings

#### Seems exotic in QFT

(but remember gauge transformations for quantum inflaton fluctuations)



Solution: add gauge invariance

Let  $t_p = t_p(\tau), r_p = r_p(\tau).$ 

$$S_{cosmo} \to S_{DBI} = -\frac{\hat{V}}{g_s(\alpha')^2 \ell^3} \int d\tau \left( t_p^3 r_p^3 \sqrt{\frac{r_p^2 \dot{t}_p^2}{\ell^2}} - \ell^2 \frac{\dot{r}_p^2}{r_p^2} - \frac{\dot{t}_p t_p^3 r_p^4}{\ell} \right)$$

Invariant under reparametrizations of  $\tau$ 

Reduces to  $S_{cosmo}$  if we gauge fix  $t_p = \tau$ 

 $r = -\frac{r_p t_p}{\ell}$  $t = \frac{\ell}{2} \ln \left( \frac{r_p^2 t_p^2 - \ell^4}{\ell^2 r_p^2} \right)$ 

is now a simple field redefinition

Fix 
$$t = \tau$$
:  
 $S_{DBI} \to S_{static} = -\frac{\hat{V}}{g_s(\alpha')^2} \int dt \left( r^3 \sqrt{f(r) - \frac{\dot{r}^2}{f(r)}} - \frac{r^4 - \ell^4}{\ell} \right)$ 

(Up to boundary term/RR gauge transformation)

Conformal transformation to  $\Sigma \times \mathbb{R}$ 

$$ds_{5}^{2} = -f(\tilde{r})d\tilde{t}^{2} + \tilde{r}^{2}d\sigma_{\Sigma}^{2} + \frac{2\ell}{\tilde{r}}d\tilde{t}d\tilde{r} + \frac{\ell^{2}}{\tilde{r}^{2}}d\tilde{r}^{2}$$

$$\downarrow \qquad \tilde{r} \to \infty$$

$$ds_{5}^{2} \sim \frac{\tilde{r}^{2}}{\tilde{r}^{2}}\left(-d\tilde{t}^{2} + d\sigma^{2}\right) + \ell^{2}\frac{d\tilde{r}^{2}}{\tilde{r}^{2}}$$

 $us_5 \sim \frac{1}{\ell^2} \left( -u\ell + u\delta_{\Sigma} \right) + \ell \frac{1}{\tilde{r}^2}$ Field theory dual seems to live on  $\Sigma \times \mathbb{R}$ 

Nonsingular field theory on nonsingular space:  $t_p \to 0^-$  mapped to  $\tilde{t} \to \infty$ .

 $\tilde{t}, \tilde{r}$  extend behind horizon.

 $\tilde{S}[\tilde{r}]$  well behaved at horizon

Better variables to see behind horizon

Which action arises as QFT effective action?



Transformation of quantum observables

Conjugate momenta:

$$p_{\tilde{r}} = p_r - \frac{\ell}{rf(r)}p_t + \frac{r^4 - \ell^4}{\ell^4 r f(r)}\hat{V}N$$
$$p_{\tilde{t}} = p_t + \frac{\hat{V}N}{\ell}$$

Hamiltonians:

 $H_t = -p_t$ ;  $H_{\tilde{t}} = -p_{\tilde{t}}$ Equal up to a constant

 $r \to \infty: \ \widetilde{r} \to \infty$ 

Equal-t slices asymptotically identical to equal- $\tilde{t}$  slices



# D. Transformation of full QFT

# Puzzles:

Yang-Mills action invariant under conformal transformation
 S<sub>cosmo</sub> → S<sub>static</sub> under conformal transformation
 S<sub>cosmo</sub>, S<sub>static</sub> effective actions for SYM?
 Is S<sub>static</sub> or Š effective action for SYM on Σ × ℝ?

Gauge theory:

- t = gauge theory time.
- Take adjoint scalar out on Coulomb branch,  $\phi = \alpha' r$ .
- Integrate out W-bosons charged under  $U(1) \times U(N-1)$ .



•  $S_{static}$  is resulting effective action for  $\phi$ 

Hidden step: must fix gauge before integrating out W bosons. Functional form of effective action depends on gauge choice. Standard gauge for computing DBI actions:

Background field gauge: expand around

$$A_{\mu} = \bar{A}_{cl,\mu} + \delta A_{\mu}, \ \Phi = \bar{\phi}_{cl} + \delta$$
$$G = D_{\mu}^{\bar{A}} \delta A_{\mu} + i[\bar{\phi}, \delta\phi]$$

(This is the gauge implicit in string theory computations)

Under conformal transformation:

 $G \to \tilde{G} = \tilde{D}_{\tilde{\mu}}^{\bar{A}} \delta A_{\tilde{\mu}} + i[\bar{\phi}, \delta\phi] + \frac{2}{\ell} A_{\tilde{t}}$ 

- Background field gauge not conformally invariant
- $\tilde{G}$  breaks  $\tilde{t}$ -reversal invariance
- $\tilde{S} \propto \int d\tilde{t}\tilde{r}^3 \sqrt{\frac{\tilde{r}^2}{\ell^2} \frac{\ell^2}{\tilde{r}^2}} (\dot{r} + \frac{\tilde{r}}{\ell})^2 + S_{RR}$  is not  $\tilde{t}$ -reversal invariant

# Proposal:

- 1.  $S_{static}$  is effective action for SYM on  $\Sigma \times \mathbb{R}$  in background field gauge.
- 2.  $\tilde{S}$  is effective action for SYM on  $\Sigma \times \mathbb{R}$  in gauge  $\tilde{G} = 0$ .
- 3. Full 5d coordinate transformations  $\leftrightarrow$  Yang-Mills gauge transformations.

Related story: special conformal transformations in SYM vs. DBI

Jevicki, Kazama, and Yoneya

IV. Gauge theory dynamics and black hole formation

A. Phases of gauge theory dynamics

Lagrangian for adjoint scalars:

 $\mathcal{L} \sim \operatorname{Tr} \left[ |D\Phi^{I}|^{2} - ([\Phi^{I}, \Phi^{J}])^{2} - \mathcal{R}^{(4)}(\Phi^{I})^{2} + \ldots \right]$ 

Consider N D3-branes smeared over transverse  $S^5$ 

Coincident radial position: dual to scalar zero mode  $\phi(t)$ 

 $\Sigma\times\mathbb{R}$  has negative curvature

- Zero modes of  $\Phi$  are unstable
- Small number of momentum modes unstable

Cornish, Spergel, and Starkman

•  $\Sigma = \mathbb{H}/\Gamma$  exist such that only zero modes unstable

# Quantum mechanics of $\phi(t)$

Lagrangian for large  $\phi$  (no corrections from W loops):

 $L \sim (\partial_t \phi)^2 + \frac{1}{\ell^2} \phi^2$ 

### upside-down SHO



- Classically  $\phi \to \infty$  in *infinite* time.
- Continuous spectrum, no ground state.
- Quantum mechanics nonsingular.

Quantum corrections to SHO action

- 1. Loops of W bosons when  $\lambda \frac{\dot{\phi}}{\phi^2} \sim 1$ .
- 2. W bosons produced when  $\frac{\dot{\phi}}{\phi^2} \sim 1$ .
- 3. Loops and production of
  - KK modes
  - Wilson lines on  $\Sigma$
  - Flux tubes

• ...

As  $\phi$  evolves inwards, (1) becomes important first

# Quantum corrections



 $E_{ext} = \frac{\mu_{ext}}{G_N}$ 

(A) Scalar bounces before  $\lambda \dot{\phi} / \phi^2 \sim 1$ 

(B)  $\lambda \dot{\phi} / \phi^2 \sim 1$  before bounce

- $r = \alpha' \phi \sim r_{horizon}$  for M = E black hole
- Expect W loops to slow down evolution (as with probe)

(C)  $\lambda \dot{\phi} / \phi^2 \sim 1$  before  $r \to 0$  reached

- Uncorrected motion describes a "bounce"
- Expect W loops to slow evolution near  $r_{horizon} \sim \alpha' \phi$
- As  $\phi \to 0$ , production of QFT modes thermalizes system, traps branes

#### B. Topological black holes Emparan

Solutions to 5d SUGRA with negative c.c.:

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\sigma_{\Sigma_{k}}^{2}$$
$$f(r) = \frac{r^{2}}{\ell^{2}} + k - \frac{\mu}{r^{2}}; \ k = 0, \pm 1 \qquad \mu = G_{N}M$$

 $\Sigma_k$  3-manifold of constant curvature:

- $\Sigma_1 = S^3$ : AdS-Schwarzschild
- $\Sigma_0 = \mathbb{R}^3$ : near horizon limit of black D3-brane
- $\Sigma_{-1} = \mathbb{H}_3 / \Gamma$ : "topological" black hole

 $\mu \propto E_{gauge}$ 

### C. Gauge theory phases and spacetime causal structure



- Shell of D3-branes screens  $\Lambda$ .
- Outside of shell with energy E, spacetime is M = E black hole.
- Trajectory (A) removes singularity a la enhancon mechanism.
- Trajectory (B) unknown: recall instability of inner horizon.
- Trajectory (C) stalls near origin. Thermal effective potential traps D3-branes.

### D. Late time behavior

Shell with  $E\geq 0$  thermalizes gauge theory as  $\phi\rightarrow 0$ 

Thermal effects modify effective potential for  $\Phi^I$ :

- Eigenvalues trapped near origin by W-bosons
- W effects small for large  $\phi$ : instability dominates

### Nonperturbative instability to brane emission

DBI action  $S \sim cN$  for single brane  $t_{emission} \sim e^{cN}$ 



- Shorter than recurrence time for AdS-Schwarzschild  $\sim e^{N^{2}}$
- Longer than lifetime of "small" BHs in AdS:  $t_{evap} \sim M^{\alpha}$ .

Branes emitted incoherently over time scale  $\sim Ne^{cN}$ .

### Candidate spacetimes



- (a) Unitarity: should not continue past singularity
- (b) Not a simple bounce: branes re-emitted one by one quantum-mechanically

(Are (a) and (b) physically distinct?)

### V. Conclusions

### A. Lessons

- 1. Bulk coordinate transformations ~ boundary gauge transformations
- 2. Schwarzschild and infalling observers described by same Hamiltonian in different variables: dual descriptions
- 3. Singularity associated with origin of field space; physics well-defined



vs. Horowitz and Hertog; Craps, Hertog, and Turok

- 4. Singularity accessible in static QFT
- 5. No sign of cosmological bounce

vs. Das et. al. Awad et. al. Craps, Sethi, et. al. Martinec et. al.

### B. Future work

1. Relation to work using TFD correlators to probe singularity



Kraus, Ooguri, and Shenker; Fidkowski, Hubeny, Kleban, and Shenker Liu and Festuccia

- 2. Distinction between horizon in (t, r) and singularity in  $(\tilde{t}, \tilde{r})$
- 3. Understand transformation of full gauge theory (study other probes?)

Horowitz, AL, Shenker, Silverstein

- 4. Better understand M < 0 black holes
- 5. Source of  $\mathcal{O}(N^2)$  ground state entropy?
- 6. Coordinate transformation for other black holes:
  - $\mu \neq 0$
  - k = 0, 1

Use ingoing Eddington-Finkelstein coordinates?