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I. Introduction

“Black hole complementarity”:
‘t Hooft, Susskind

Large black hole: curvature remains 
weak well inside the horizon.

1. Infalling observer (B) remains semiclassical 
until it reaches the singularity.

2. External observer (A) sees black hole 
evaporate via long-wavelength, thermal, 
Hawking radiation.  Infalling observer is 
“cooked” near the horizon and re-emitted as 
Hawking radiation.

Unitarity of BH evaporation implies 
that these two pictures are 
equivalent (dual).

If so, what is the map?
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Black holes in AdS/CFT

AdS5 black hole ∼ 4d gauge theory at
temperature T = T (M)

Gauge theory time ∼ Schwarzschild time

(Time experienced by observer at fixed
distance from BH).

Bulk: infalling objects approach horizon as t→∞
Gauge theory: excitations spread and thermalize
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Gauge theory description of semiclassical physics behind the horizon?

Gauge theory description of singularity?



II. A singularity with a gauge theory dual

constant rp

constant tp

singularity

patch covered by
cosmological coordinates

Green, Lawrence, McGreevy, Morrison, and Silverstein

HLS

Poincare coordinates:

constant t̃

tp →∞

constant tp
patch
covered
by tp, σ

ds2
4 = −dt2p + t2pdσ2

H3

Orbifold: Σ = H3/Γ

Patch of R3,1:

ds2
5 = r2

p

!2

(
−dt̃2 + d!x2

3

)
+ "2

dr2
p

r2
p

tp → 0− becomes singular

ds2
5 = r2

p

!2

(
−dt2p + t2pdσ2

Σ

)
+ "2

dr2
p

r2
p

(! is AdS radius)

Final bulk metric:

5
ds2

4 = −dt2p + t2pdσ2
Σ

Dual gauge theory lives on 
“collapsing cone” metric:



Das et. al.
Awad et. al.
Craps, Sethi, et. al.
Martinec et. al.

2. Distinct from example of unstable QFTs
Horowitz and Hertog
Craps, Hertog, and Turok
Bernamonti and Craps

• D3 branes at constant rp are solutions of e.o.m.

• Stretched W bosons have mass mW constant in time.

• Momentum mKK along Σ grows with tp → 0−.

• Dimensionless ratio mW /mKK → 0.

3. Unclear if QFT is well defined as tp → 0−

1. Similar in spirit to other time-dependent QFTs
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Singularity associated with IR of QFT



Static coordinate system

r = − rptp

!
t = − !

2 ln
(

t2pr2
p−!2

!2r2
p

)

ds2
5 = −f(r)dt2 + dr2

f(r) + r2dσ2
Σ

f(r) = r2

!2 − 1

Emparan

• Negatively curved horizon at r = !.

• Temperature T ∼ 1/!.

• Horizon area ∼ !3; entropy ∼ N2.

t→∞

constant t

constant tp

Shaded patch covered by tp, rp

constant r

r →∞

Dual: gauge theory on Σ× R at T = 1/RΣ
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“M=0 topological black hole”:
5d version of BTZ black hole



tp → 0− t→∞

conformal
transformation

Σ Σ

Conformal transformation:
tp = −!e−t/!

ds2
cone → ds2

cyl = e2t/!ds2
cone

Seems to map QFT variables describing Scwharzschild observers
to QFT variables describing infalling observers

• How does the map act on bulk probes?

• Can this be generalized to other BHs?

8



III. Gauge theory vs. spacetime coordinate transformations

Consider D3-brane wrapping Σ and moving in r, t

↓
SDBI = 1

gs(α′)2

∫
dτd3σ

(√
det ∂αXµ∂βXνGµν(X)−A(4)

RR

)

t = τ

r = r(t)
σi : Σ→ Σ one− to− one

Sstatic = − V̂
gs(α′)2

∫
dt

(
r3

√
f(r)− ṙ2

f(r) −
r4−"4

"

)

f(r) = r2

!2 − 1

A. N = 4 SYM on Σ× R, T = 1/RΣ

String theory: D3-brane probe dynamics described by DBI action
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Gauge theory:

• t = gauge theory time.

• Take adjoint scalar out on Coulomb branch, φ = α′r.

• Integrate out W-bosons charged under U(1)× U(N − 1).

• Sstatic is resulting effective action for φ
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Sstatic = − V̂
gs(α′)2

∫
dt

(
r3

√
f(r)− ṙ2

f(r) −
r4−"4

"

)

1. ṙ2 < f(r)2: ”scalar speed limit”.
f(r) = r2

!2 − 1

r → ! as t→∞
constant t

t→∞

Expansion in δr breaks down as f → 0.

Silverstein and Tong

2. Let r = r0(t) + δr(t):

• r0(t) solves classical e.o.m.

• Expand Sstatic in δr
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Semiclassical physics in (t, r) breaks down at horizon



Consider D3-brane wrapping Σ and moving in rp, tp

SDBI = 1
gs(α′)2

∫
dτd3σ

(√
det ∂αXµ∂βXνGµν(X)−A(4)

RR

)

↓ tp = τ

rp = rp(tp)
σi : Σ→ Σ one− to− one

Scosmo = − V̂
gs(α′)2

∫
dtp

(
t3pr

3
p

√
r2

p

"2 − !2 ṙp
2

r2
p
− r4

pt3p
"4

)

Gauge theory:

• tp = gauge theory time.

• Take adjoint scalar out on Coulomb branch, φ = α′rp.

• Integrate out W-bosons charged under U(1)× U(N − 1).

String theory:

B. N = 4 SYM on collapsing cone
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Scosmo = − V̂
gs(α′)2

∫
dtp

(
t3pr

3
p

√
r2

p

"2 − !2 ṙp
2

r2
p
− r4

pt3p
"4

)

1. Horizon at rptp = !2, singularity as tp → 0−.

2. Let rp = rp,0(tp) + δrp(tp):

• rp,0(tp) solves classical e.o.m.

• Expand Sstatic in δrp

Horizon reached in finite time

Expansion in δrp

• regular at horizon

• breaks down at singularity

tp → 0−

constant tp

Patch covered
by tp, rp
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C. Transformation of QM variables of probes
1. Conformal transformation of QFT

φ = r/α′ dimension-1 field:

ds2
cone → ds2

cyl = e2t̃/!ds2
cone

maps collapsing cone to Σ× R

t̃, r̃ != t, r

Conformal transformation: Scosmo !→ Sstatic

Scosmo = S̃ = − V̂
gs(α′)2

∫
dt̃

(
r̃3

√
r̃2

"2 − !2 ( ˙̃r+r̃/")2

r̃2 − r̃4

"

)

rp = et̃/!r̃

tp = −!e−
t̃
!
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This is not surprising:

do not change equal-time slices in bulk

tp → 0−

constant tp

Patch covered
by tp, rp

ds2
5 = −f(r̃)dt̃2 + r̃2dσ2

Σ + 2!
r̃ dt̃dr̃ + !2

r̃2 dr̃2

SDBI = 1
gs(α′)2

∫
dτd3σ

(√
det ∂αXµ∂βXνGµν(X)−A(4)

RR

)

↓ t̃ = τ

r̃ = r̃(t̃)
σi : Σ→ Σ

S̃ = − V̂
gs(α′)2

∫
dt̃

(
r̃3

√
r̃2

"2 − !2 ( ˙̃r+r̃/")2

r̃2 − r̃4

"

)

f(r̃) = r̃2

!2 − 1

(a) Coordinate transformations

(b) Bulk metric:

tp = −!e−t̃/!

rp = r̃et̃/!
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2. Bulk coordinate transformations in dual QFT

r = − rptp

!

t = − !
2 ln

(
t2pr2

p−!2

!2r2
p

) map ”cosmological” to ”static” coordinates

In QFT:

• t, tp are QFT times

• r, rp are quantum fields

Map (rp, tp)→ (r, t) includes a field-
dependent time reparametrization

Generic to any nontrivial change
of bulk equal-time slicings

constant t

constant r

constant tp

constant rp

(but remember gauge transformations
for quantum inflaton fluctuations)
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Seems exotic in QFT



Solution: add gauge invariance
Let tp = tp(τ), rp = rp(τ).

Scosmo → SDBI = − V̂
gs(α′)2"3

∫
dτ

(
t3pr

3
p

√
r2

p ṫ2p
"2 − "2

ṙ2
p

r2
p
− ṫpt3pr4

p

"

)

r = − rptp

!

t = !
2 ln

(
r2

pt2p−!4

!2r2
p

)
is now a simple field redefinition

SDBI → Sstatic = − V̂
gs(α′)2

∫
dt

(
r3

√
f(r)− ṙ2

f(r) −
r4−"4

"

)

(Up to boundary term/RR gauge transformation)

Invariant under reparametrizations of τ

Reduces to Scosmo if we gauge fix tp = τ

Fix t = τ :
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Conformal transformation to Σ× R

r̃ →∞

ds2
5 = −f(r̃)dt̃2 + r̃2dσ2

Σ + 2!
r̃ dt̃dr̃ + !2

r̃2 dr̃2

↓
ds2

5 ∼ r̃2

!2

(
−dt̃2 + dσ2

Σ

)
+ "2 dr̃2

r̃2

Field theory dual seems to live on Σ× R

constant t̃

constant t

Better variables to see behind horizon

t̃, r̃ extend behind horizon.

S̃[r̃] well behaved at horizon

Nonsingular field theory on nonsingular space: tp → 0− mapped to t̃→∞.

18

Which action arises as 
QFT effective action?



Transformation of quantum observables

pr̃ = pr −
!

rf(r)
pt +

r4 − !4

!4rf(r)
V̂ N

pt̃ = pt +
V̂ N

!

Conjugate momenta:

Hamiltonians:

Ht = −pt ; Ht̃ = −pt̃

Equal up to a constant

r →∞: r̃ →∞

19

Equal-t slices asymptotically
identical to equal-t̃ slices



D. Transformation of full QFT

1. Yang-Mills action invariant under conformal transformation

2. Scosmo !→ Sstatic under conformal transformation

3. Scosmo, Sstatic effective actions for SYM?

4. Is Sstatic or S̃ effective action for SYM on Σ× R?

Puzzles:
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Gauge theory:

• t = gauge theory time.

• Take adjoint scalar out on Coulomb branch, φ = α′r.

• Integrate out W-bosons charged under U(1)× U(N − 1).

• Sstatic is resulting effective action for φ

Hidden step: must fix gauge before integrating out W bosons.

Functional form of effective action depends on gauge choice.
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Standard gauge for computing DBI actions:

Background field gauge: expand around

Aµ = Ācl,µ + δAµ, Φ = φ̄cl + δφ

G = DĀ
µ δAµ + i[φ̄, δφ]

Under conformal transformation:

G→ G̃ = D̃Ā
µ̃ δAµ̃ + i[φ̄, δφ] + 2

! At̃

• Background field gauge not conformally invariant

• G̃ breaks t̃-reversal invariance

• S̃ ∝
∫

dt̃r̃3
√

r̃2

!2 −
!2

r̃2 (ṙ + r̃
! )2 + SRR is not t̃-reversal invariant

(This is the gauge implicit in
string theory computations)
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Proposal:

1. Sstatic is effective action for SYM on Σ× R in background field gauge.

2. S̃ is effective action for SYM on Σ× R in gauge G̃ = 0.

3. Full 5d coordinate transformations ↔ Yang-Mills gauge transformations.

Related story: special conformal 
transformations in SYM vs. DBI

Jevicki, Kazama, and Yoneya
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A. Phases of gauge theory dynamics

Lagrangian for adjoint scalars:

L ∼ Tr
[
|DΦI |2 − ([ΦI ,ΦJ ])2 −R(4)(ΦI)2 + . . .

]

Σ× R has negative curvature

• Zero modes of Φ are unstable

• Small number of momentum modes unstable

• Σ = H/Γ exist such that only zero modes unstable

Consider N D3-branes smeared over transverse S5

Cornish, Spergel, and Starkman

Coincident radial position: dual to scalar zero mode φ(t)

24

IV. Gauge theory dynamics and black hole formation



Quantum mechanics of φ(t)

Lagrangian for large φ (no corrections from W loops):

L ∼ (∂tφ)2 + 1
!2 φ2

upside-down SHO

φ

V (φ)

• Classically φ→∞ in infinite time.

• Continuous spectrum, no ground state.

• Quantum mechanics nonsingular.
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Quantum corrections to SHO action

1. Loops of W bosons when λ φ̇
φ2 ∼ 1.

2. W bosons produced when φ̇
φ2 ∼ 1.

3. Loops and production of

• KK modes
• Wilson lines on Σ
• Flux tubes
• ...

As φ evolves inwards, (1) becomes important first
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(C)

V( !!

!

Eext

0

?

?

(A)

(B)

Eext = µext

GN

(A) Scalar bounces before λφ̇/φ2 ∼ 1

(B) λφ̇/φ2 ∼ 1 before bounce

(C) λφ̇/φ2 ∼ 1 before r → 0 reached

• Uncorrected motion describes a ”bounce”

• Expect W loops to slow evolution near rhorizon ∼ α′φ

• As φ→ 0, production of QFT modes thermalizes system, traps branes

• r = α′φ ∼ rhorizon for M = E black hole

• Expect W loops to slow down evolution (as with probe)

Quantum corrections
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B. Topological black holes Emparan

Solutions to 5d SUGRA with negative c.c.:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dσ2

Σk

f(r) =
r2

!2
+ k − µ

r2
; k = 0,±1

Σk 3-manifold of constant curvature:

• Σ1 = S3: AdS-Schwarzschild

• Σ0 = R3: near horizon limit of black D3-brane

• Σ−1 = H3/Γ: ”topological” black hole

µ = GNM

µ ∝ Egauge
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C. Gauge theory phases and spacetime causal structure

(C)

V( !!

!

Eext

0

?

?

(A)

(B)

(C)

!!"!#

!!$!#

Timelike

boundary

origin

!!"!#

!!$!#

(B)(A)

• Shell of D3-branes screens Λ.

• Outside of shell with energy E, spacetime is M = E black hole.

• Trajectory (A) removes singularity a la enhancon mechanism.

• Trajectory (B) unknown: recall instability of inner horizon.

• Trajectory (C) stalls near origin.
Thermal effective potential traps D3-branes.
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D. Late time behavior

Shell with E ≥ 0 thermalizes gauge theory as φ→ 0

Thermal effects modify effective potential for ΦI :

• Eigenvalues trapped near origin by W-bosons

• W effects small for large φ: instability dominates

Nonperturbative instability to brane emission

DBI action S ∼ cN for single brane

temission ∼ ecN

V (φ)

φ

Branes emitted incoherently over time scale ∼ NecN .

• Shorter than recurrence time for AdS-Schwarzschild ∼ eN2

• Longer than lifetime of ”small” BHs in AdS: tevap ∼Mα.
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Candidate spacetimes

(ptui)Λ = 0 Λ = 0

nongeometric
region

(a) (b)

(a) Unitarity: should not continue past singularity

(b) Not a simple bounce: branes re-emitted one by one quantum-mechanically

(Are (a) and (b) physically distinct?)
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V. Conclusions

A. Lessons

32

1. Bulk coordinate transformations ~ boundary gauge transformations

2. Schwarzschild and infalling observers described by same  
      Hamiltonian in different variables: dual descriptions

3. Singularity associated with origin of field space; physics well-defined

vs. Horowitz and Hertog; Craps, Hertog, and Turok

5. No sign of cosmological bounce

4. Singularity accessible in static QFT
Das et. al.
Awad et. al.
Craps, Sethi, et. al.
Martinec et. al.

vs.



B. Future work

1. Relation to work using TFD correlators to probe singularity

Kraus, Ooguri, and Shenker; 
Fidkowski, Hubeny, Kleban,  and Shenker
Liu and Festuccia

QFT1QFT2

O1O2

2. Distinction between horizon in (t, r) and singularity in (t̃, r̃)
3. Understand transformation of full gauge theory (study other probes?)

4. Better understand M < 0 black holes
5. Source of O(N2) ground state entropy?
6. Coordinate transformation for other black holes:

• µ != 0

• k = 0, 1

Use ingoing Eddington-Finkelstein coordinates?
33

Horowitz, AL, Shenker, Silverstein


