

Luca Martucci

On moduli and effective theory of $\mathrm{N}=\mathrm{I}$ warped compactifications

Based on: arXiv:0902.403I

15-th European Workshop on String Theory Zürich, 7-11 September 2009

Motivation: fluxes and 4D physics

\& In type II flux compactifications the internal space is not CY

Motivation: fluxes and 4D physics

\& In type II flux compactifications the internal space is not CY
what is the 40 effective physics?

Motivation: fluxes and 4D physics

\& In type II flux compactifications the internal space is not CY
what is the 40 effective physics?

\& Furthermore fluxes generically generate a non-trivial warping:

$$
\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+\mathrm{d} s_{6}^{2} \quad \text { with } \quad \nabla^{2} A \simeq(\text { fluxes })^{2}+\sum \tau_{i} \delta_{i}^{\text {(loc) }}
$$

Motivation: fluxes and 4D physics

\& In type II flux compactifications the internal space is not CY
what is the 40 effective physics?

\& Furthermore fluxes generically generate a non-trivial warping:

$$
\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+\mathrm{d} s_{6}^{2} \quad \text { with } \quad \nabla^{2} A \simeq(\text { fluxes })^{2}+\sum \tau_{i} \delta_{i}^{\text {(loc) }}
$$

\neq Neglecting back-reaction: $\quad M \simeq \mathrm{CY}_{3}, \quad e^{A} \simeq 1$

$$
\begin{aligned}
\text { 4D effective theory: } & * \text { (fluxless) CY spectrum } \\
& * \text { flux induced potential }
\end{aligned}
$$

Motivation: fluxes and 4D physics

\& In type II flux compactifications the internal space is not CY
what is the 40 effective physics?

\& Furthermore fluxes generically generate a non-trivial warping:

$$
\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+\mathrm{d} s_{6}^{2} \quad \text { with } \quad \nabla^{2} A \simeq(\text { fluxes })^{2}+\sum \tau_{i} \delta_{i}^{(\text {loc })}
$$

What can we say about 40 effective theory of fully back-reacted vacua?

Plan of the talk

* Type II (generalized complex) flux vacua * Moduli, twisted cohomologies and 4D fields
* Kähler potential

Type II (generalized complex) flux vacua

Fluxes and $\mathcal{N}=1$ SUSY

Fluxes and $\mathcal{N}=1$ SUSY

© NS sector:

* metric $\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+\mathrm{d} s_{6}^{2}$

$\mathbb{R}^{1,3}$

* dilator ϕ
* 3-form $H \quad(H=\mathrm{d} B \quad$ locally)

Fluxes and $\mathcal{N}=1$ SUSY

\& NS sector:

* metric $\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+\mathrm{d} s_{6}^{2}$

$\mathbb{R}^{1,3}$

* dilator ϕ
* 3-form $H \quad(H=\mathrm{d} B \quad$ locally $)$
$\oplus R R$ sector:

$$
F=\sum F_{k} \quad \mathrm{~d}_{H} F=-j
$$

$$
\sim \delta^{\mathrm{loc}} \wedge e^{-\mathcal{F}}
$$

Fluxes and $\mathcal{N}=1$ SUSY

\& NS sector:

* metric $\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+\mathrm{d} s_{6}^{2}$

$\mathbb{R}^{1,3}$

* dilaton ϕ
* 3-form $H \quad(H=\mathrm{d} B \quad$ locally)

$$
\mathrm{d}_{H}:=\mathrm{d}+H \wedge \quad\left(\mathrm{~d}_{H}^{2}=0\right)
$$

\& RR sector:

$$
F=\sum F_{k} \quad \mathrm{~d}_{H} F=-j
$$

$$
\sim \delta^{\mathrm{loc}} \wedge e^{-\mathcal{F}}
$$

Fluxes and $\mathcal{N}=1$ SUSY

\notin NS sector:

* metric $\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+\mathrm{d} s_{6}^{2}$

$\mathbb{R}^{1,3}$

* dilaton ϕ
* 3-form $H \quad(H=\mathrm{d} B \quad$ locally)

$$
\mathrm{d}_{H}:=\mathrm{d}+H \wedge \quad\left(\mathrm{~d}_{H}^{2}=0\right)
$$

\& RR sector:

$$
\begin{gathered}
F=\sum F_{k} \quad \mathrm{~d}_{H} F=-j \\
F=\mathrm{d}_{H} C \quad \text { with } \quad C=\sum_{k} C_{k-1}
\end{gathered}
$$

Fluxes and $\mathcal{N}=1$ SUSY

Killing spinors: $\quad \epsilon_{1}=\zeta \otimes \eta_{1}+$ c.c.

$$
\epsilon_{2}=\zeta \otimes \eta_{2}+\text { c.c. }
$$

Fluxes and $\mathcal{N}=1$ SUSY

Killing spinors: $\quad \epsilon_{1}=\zeta \otimes \eta_{1}+$ c.c.

$$
\epsilon_{2}=\zeta \otimes \eta_{2}+\text { c.c. }
$$

© Polyforms: $\quad \mathcal{Z} \simeq e^{B} e^{3 A-\phi} \eta_{1} \otimes \eta_{2}^{T} \quad, \quad T \simeq e^{B} e^{-\phi} \eta_{1} \otimes \eta_{2}^{\dagger}$

Fluxes and $\mathcal{N}=1$ SUSY

Killing spinors: $\quad \epsilon_{1}=\zeta \otimes \eta_{1}+$ c.c.

$$
\epsilon_{2}=\zeta \otimes \eta_{2}+\text { c.c. }
$$

£ Polyforms: $\quad \mathcal{Z} \simeq e^{B} e^{3 A-\phi} \eta_{1} \otimes \eta_{2}^{T} \quad, \quad T \simeq e^{B} e^{-\phi} \eta_{1} \otimes \eta_{2}^{\dagger}$

IIA

$$
\mathcal{Z}=\mathcal{Z}_{0}+\mathcal{Z}_{2}+\mathcal{Z}_{4}+\mathcal{Z}_{6} \quad, \quad T=T_{1}+T_{3}+T_{5}
$$

Fluxes and $\mathcal{N}=1$ SUSY

Killing spinors: $\quad \epsilon_{1}=\zeta \otimes \eta_{1}+$ c.c.

$$
\epsilon_{2}=\zeta \otimes \eta_{2}+\text { c.c. }
$$

£ Polyforms: $\quad \mathcal{Z} \simeq e^{B} e^{3 A-\phi} \eta_{1} \otimes \eta_{2}^{T} \quad, \quad T \simeq e^{B} e^{-\phi} \eta_{1} \otimes \eta_{2}^{\dagger}$

$$
\begin{array}{lll}
\| \mathrm{A} & \mathcal{Z}=\mathcal{Z}_{0}+\mathcal{Z}_{2}+\mathcal{Z}_{4}+\mathcal{Z}_{6}, & T=T_{1}+T_{3}+T_{5} \\
\| \mathrm{B} & \mathcal{Z}=\mathcal{Z}_{1}+\mathcal{Z}_{3}+\mathcal{Z}_{5}, & T=T_{0}+T_{2}+T_{4}+T_{6}
\end{array}
$$

Fluxes and $\mathcal{N}=1$ SUSY

\otimes Killing spinors: $\quad \epsilon_{1}=\zeta \otimes \eta_{1}+$ c.c.

$$
\epsilon_{2}=\zeta \otimes \eta_{2}+\text { c.c. }
$$

Polyforms: $\quad \mathcal{Z} \simeq e^{B} e^{3 A-\phi} \eta_{1} \otimes \eta_{2}^{T} \quad, \quad T \simeq e^{B} e^{-\phi} \eta_{1} \otimes \eta_{2}^{\dagger}$

$$
\begin{array}{lll}
\| \mathrm{A} & \mathcal{Z}=\mathcal{Z}_{0}+\mathcal{Z}_{2}+\mathcal{Z}_{4}+\mathcal{Z}_{6}, & T=T_{1}+T_{3}+T_{5} \\
\| \mathrm{B} & \mathcal{Z}=\mathcal{Z}_{1}+\mathcal{Z}_{3}+\mathcal{Z}_{5}, & T=T_{0}+T_{2}+T_{4}+T_{6}
\end{array}
$$

\mathcal{Z} and T are $0(6,6)$ pure spinors!

Fluxes and $\mathcal{N}=1$ SUSY

Killing spinors: $\quad \epsilon_{1}=\zeta \otimes \eta_{1}+$ c.c.

$$
\epsilon_{2}=\zeta \otimes \eta_{2}+\text { c.c. }
$$

$\mathbb{R}^{1,3}$

Polyforms: $\quad \mathcal{Z} \simeq e^{B} e^{3 A-\phi} \eta_{1} \otimes \eta_{2}^{T} \quad, \quad T \simeq e^{B} e^{-\phi} \eta_{1} \otimes \eta_{2}^{\dagger}$
$\rightarrow \quad$ they contain complete information about

Fluxes and $\mathcal{N}=1$ SUSY

Killing spinors: $\quad \epsilon_{1}=\zeta \otimes \eta_{1}+$ c.c.

$$
\epsilon_{2}=\zeta \otimes \eta_{2}+\text { c.c. }
$$

$\mathbb{R}^{1,3}$

P Polyforms: $\quad \mathcal{Z} \simeq e^{B} e^{3 A-\phi} \eta_{1} \otimes \eta_{2}^{T} \quad, \quad T \simeq e^{B} e^{-\phi} \eta_{1} \otimes \eta_{2}^{\dagger}$

they contain complete information about NS sector and SUSY

\& SUSY conditions Graña, Minasian, Petrini \& Tomasiello `05

$$
\mathrm{d}_{H} \mathcal{Z}=0 \quad, \quad \mathrm{~d}_{H}\left(e^{2 A} \operatorname{Im} T\right)=0 \quad, \quad \mathrm{~d}_{H}\left(e^{4 A} \operatorname{Re} T\right)=e^{4 A} * F
$$

Fluxes and $\mathcal{N}=1$ SUSY

© Killing spinors: $\quad \epsilon_{1}=\zeta \otimes \eta_{1}+$ c.c.

$$
\epsilon_{2}=\zeta \otimes \eta_{2}+\text { c.c. }
$$

$\mathbb{R}^{1,3}$

P Polyforms: $\quad \mathcal{Z} \simeq e^{B} e^{3 A-\phi} \eta_{1} \otimes \eta_{2}^{T} \quad, \quad T \simeq e^{B} e^{-\phi} \eta_{1} \otimes \eta_{2}^{\dagger}$
\rightarrow they contain complete information about NS sector and SUSY
\& SUSY conditions Graña, Minasian, Petrini \& Tomasiello `05

$$
\mathrm{d}_{H} \mathcal{Z}=0 \quad, \quad \mathrm{~d}_{H}\left(e^{2 A} \operatorname{Im} T\right)=0 \quad, \quad \mathrm{~d}_{H}\left(e^{4 A} \operatorname{Re} T\right)=e^{4 A} * F
$$

precise interpretation in terms of: * generalized calibrations

SUSY and GC geometry

$\mathrm{d}_{H} \mathcal{Z}=0$

(F-flatness)

SUSY and GC geometry

$$
\mathrm{d}_{H} \mathcal{Z}=0
$$

(f-flatness)

integrable
generalized complex
structure

SUSY and GC geometry

$\mathrm{d}_{H} \mathcal{Z}=0$

(f-flatness)
integrable
generalized complex
structure
Hitchin `O2

$$
\begin{array}{lll}
\text { e.g. } & \mathcal{Z} \sim e^{i \omega} & \\
& \text { symplectic }(\text { IIA }) \\
& \mathcal{Z} \sim \Omega & \text { complex }(\text { IIB })
\end{array}
$$

SUSY and GC geometry

$$
\mathrm{d}_{H} \mathcal{Z}=0
$$

(f-flatness)
integrable
generalized complex
structure
\& Induced polyform decomposition Guattieri '04

$$
\bigoplus_{n=0}^{6} \Lambda^{n} T_{M}^{*}=\bigoplus_{k=-3}^{3} U_{k}
$$

SUSY and GC geometry

$$
\begin{gathered}
\mathrm{d}_{H} \mathcal{Z}=0 \\
\text { (F-flatness) }
\end{gathered}
$$

\& Induced polyform decomposition Guattieri '04

$$
\bigoplus_{n=0}^{6} \Lambda^{n} T_{M}^{*}=\bigoplus_{k=-3}^{3} U_{k}
$$

$\mathcal{Z} \in U_{3}$
U_{2}
U_{1}
$T \in U_{0}$
U_{-1}
${ }^{U_{-2}}$
$\overline{\mathcal{Z}} \in U_{-3}$

SUSY and GC geometry

$$
\mathrm{d}_{H} \mathcal{Z}=0
$$

(F-flatness)
integrable
generalized complex
structure
© Induced polyform decomposition Guatteri '04

$$
\bigoplus_{n=0}^{6} \Lambda^{n} T_{M}^{*}=\bigoplus_{k=-3}^{3} U_{k}
$$

SUSY and GC geometry

$$
\mathrm{d}_{H} \mathcal{Z}=0
$$

(f-flatness)
integrable
generalized complex
structure
\& Induced polyform decomposition Guattieri '04

$$
\bigoplus_{n=0}^{6} \Lambda^{n} T_{M}^{*}=\bigoplus_{k=-3}^{3} U_{k}
$$

Integrability GC structure

$$
\mathrm{d}_{H}=\partial_{H}+\bar{\partial}_{H} \quad \text { with } \quad \begin{aligned}
& \bar{\partial}_{H}: U_{k} \rightarrow U_{k-1} \\
& \partial_{H}: U_{k} \rightarrow U_{k+1}
\end{aligned}
$$

SUSY and GC geometry

$\mathrm{d}_{H} \mathcal{Z}=0$

(f-flatness)
integrable
generalized complex
structure
\& Induced polyform decomposition Guatteri' 04

$$
\bigoplus_{n=0}^{6} \Lambda^{n} T_{M}^{*}=\bigoplus_{k=-3}^{3} U_{k}
$$

Integrability GC structure

$$
\mathrm{d}_{H}=\partial_{H}+\bar{\partial}_{H} \quad \text { with } \quad \begin{gathered}
\bar{\partial}_{H}: U_{k} \rightarrow U_{k-1} \\
\partial_{H}: U_{k} \rightarrow U_{k+1}
\end{gathered}
$$

\oplus Generalized Hodge decomposition (assuming $\partial_{H} \bar{\partial}_{H}$-lemma)

$$
\mathrm{H}_{\mathrm{d}_{H}}^{\bullet}(M) \simeq \mathrm{H}_{\bar{\partial}_{H}}^{3}(M) \oplus \mathrm{H}_{\bar{\partial}_{H}}^{2}(M) \oplus \ldots \oplus \mathrm{H}_{\bar{\partial}_{H}}^{-3}(M)
$$

Moduli, twisted cohomologies and 4 D fields

Moduli and polyforms

Moduli and polyforms

IThe full closed string information is stored in

\mathcal{Z}

$$
\mathcal{T}:=\operatorname{Re} T-i C
$$

Moduli and polyforms

© The full closed string information is stored in

Z $\mathcal{T}:=\operatorname{Re} T-i C$

'half' of NS degrees of freedom

Moduli and polyforms

© The full closed string information is stored in

half' of NS degrees of freedom

$\mathcal{T}:=\operatorname{Re} T-i C$

information encoded in T
lsecond 'half' of NS degrees of freedom)

Moduli and polyforms

IThe full closed string information is stored in

Moduli and polyforms

© The full closed string information is stored in

© The \mathcal{Z} and \mathcal{T} moduli are associated to twisted cohomology classes of:

$$
\mathrm{d}_{H}, \bar{\partial}_{H}
$$

Moduli and 4D fields

$\mathcal{M}_{\mathcal{Z}} \simeq\left\{z^{I} \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{ev} / / \mathrm{d}}(M ; \mathbb{R}): \mathrm{d} \mathcal{W}(z)=0\right\}$

Moduli and 4D fields

$\mathcal{M}_{\mathcal{Z}} \simeq\left\{z^{I} \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{ev} / \mathrm{od}}(M ; \mathbb{R}): \mathrm{d} \mathcal{W}(z)=0\right\}$

moduli space of

$$
\mathrm{d}_{H} \mathcal{Z}=0 \quad \text { Hitchin '02; }
$$

Moduli and 4D fields

$\mathcal{M}_{\mathcal{Z}} \simeq\left\{z^{I} \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{ev} / \mathrm{od}}(M ; \mathbb{R}): \mathrm{d} \mathcal{W}(z)=0\right\}$

moduli space of

$$
\mathrm{d}_{H} \mathcal{Z}=0 \quad \text { Hitchin } 02 ;
$$

$$
\mathcal{W}=\int_{M}\langle\mathcal{Z}, F\rangle
$$

Moduli and 4D fields

$\mathcal{M}_{\mathcal{Z}} \simeq\left\{z^{I} \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{ev} / \mathrm{od}}(M ; \mathbb{R}): \mathrm{d} \mathcal{W}(z)=0\right\}$

In princiiple, all \mathcal{Z}-moduli can be lifted (up to rescaling)
moduli space of

$$
\mathrm{d}_{H} \mathcal{Z}=0 \quad \text { Hitchin '02; }
$$

$$
\mathcal{W}=\int_{M}\langle\mathcal{Z}, F\rangle
$$

Moduli and 4D fields

$\mathcal{M}_{\mathcal{Z}} \simeq\left\{z^{I} \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{ev} / \mathrm{od}}(M ; \mathbb{R}): \mathrm{d} \mathcal{W}(z)=0\right\}$

In princiiple, all \mathcal{Z}-moduli can be lifted (up to rescaling)
moduli space of

$$
\mathrm{d}_{H} \mathcal{Z}=0 \quad \text { Hitchin }{ }^{02 ;}
$$

$$
\mathcal{W}=\int_{M}\langle\mathcal{Z}, F\rangle
$$

ఱ $\mathcal{M}_{\mathcal{T}} \simeq \mathrm{H}_{\bar{\partial}_{H}}^{0}(M) \simeq \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{od} / \mathrm{ev}}(M)$
$\binom{$ assuming $\mathrm{H}_{\bar{\partial}_{H}}^{-2}(M)=0}{$ for $N=1$ minimal SUSY }

Moduli and 4D fields

$\mathcal{M}_{\mathcal{Z}} \simeq\left\{z^{I} \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{ev} / \mathrm{od}}(M ; \mathbb{R}): \mathrm{d} \mathcal{W}(z)=0\right\}$

 can be lifted (up to rescaling)moduli space of

$$
\mathrm{d}_{H} \mathcal{Z}=0 \quad \text { Hitchin } 02 ;
$$

$$
\mathcal{W}=\int_{M}\langle\mathcal{Z}, F\rangle
$$

$\% \quad \mathcal{M}_{\mathcal{T}} \simeq \mathrm{H}_{\bar{\partial}_{H}}^{0}(M) \simeq \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{od} / \mathrm{ev}}(M)$ $\binom{$ assuming $\mathrm{H}_{\bar{\sigma}_{F}}^{-2}(M)=0}{$ for $N=1$ minimal SUSY }

$$
[\delta \mathcal{T}]=t^{a} \omega_{a} \quad, \quad t^{a}=s^{a}+i c^{a}
$$

Moduli and 4D fields

$\mathcal{M}_{\mathcal{Z}} \simeq\left\{z^{I} \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{ev} / o \mathrm{~d}}(M ; \mathbb{R}): \mathrm{d} \mathcal{W}(z)=0\right\}$ can be lifted (up to rescaling)
moduli space of

$$
\mathrm{d}_{H} \mathcal{Z}=0 \quad \text { Hitchin } 02 ;
$$

$$
\mathcal{W}=\int_{M}\langle\mathcal{Z}, F\rangle
$$

甲 $\quad \mathcal{M}_{\mathcal{T}} \simeq \mathrm{H}_{\bar{\partial}_{H}}^{0}(M) \simeq \mathrm{H}_{\mathrm{d}_{H}}^{\text {od/ev }}(M)$
$\binom{$ assuming $H_{\bar{\delta}_{H}}^{-2}(M)=0}{$ for $N=1$ minimal SUSY }

$$
[\delta \mathcal{T}]=t^{a} \omega_{a} \quad, \quad t^{a}=s^{a}+i c^{a}
$$

\otimes
 z^{I} and t^{a} will be $4 D$ chiral fields of $4 D$ superconformal theory

$(3,1)_{\leftarrow}(0,0)^{\ldots}$ Weyl-chiral

Dual picture: linear multiplets

Dual picture: linear multiplets

\& D-flatness condition

$$
\mathrm{d}_{H}\left(e^{2 A} \operatorname{Im} T\right)=0
$$

Dual picture: linear multiplets

\& D-flatness condition

$$
\mathrm{d}_{H}\left(e^{2 A} \operatorname{Im} T\right)=0
$$

$\left[e^{2 A} \operatorname{Im} T\right] \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{od} / \mathrm{ev}}(M ; \mathbb{R})$

Dual picture: linear multiplets

\& D-flatness condition

$$
\mathrm{d}_{H}\left(e^{2 A} \operatorname{Im} T\right)=0
$$

$$
\left[e^{2 A} \operatorname{Im} T\right] \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{od} / \mathrm{ev}}(M ; \mathbb{R})
$$

Expand:

$$
\left[e^{2 A} \operatorname{Im} T\right]=l_{a} \tilde{\omega}^{a} \quad,\left[C_{\mu \nu \ldots}\right]=\left(B_{a}\right)_{\mu \nu} \tilde{\omega}^{a}
$$

$\left(l_{a}, B_{a}\right)$
bosonic components of
linear multiplets dual to t^{a}

Dual picture: linear multiplets

\& D-flatness condition

$$
\mathrm{d}_{H}\left(e^{2 A} \operatorname{Im} T\right)=0 \quad \longrightarrow \quad\left[e^{2 A} \operatorname{Im} T\right] \in \mathrm{H}_{\mathrm{d}_{H}}^{\mathrm{od} / \mathrm{ev}}(M ; \mathbb{R})
$$

Expand:

$$
\left[e^{2 A} \operatorname{Im} T\right]=l_{a} \tilde{\omega}^{a} \quad,\left[C_{\mu \nu \ldots}\right]=\left(B_{a}\right)_{\mu \nu} \tilde{\omega}^{a}
$$

$\left(l_{a}, B_{a}\right)$
bosonic components of
linear multiplets dual to
t^{a}

Linear-chiral functional dependence $l_{a}=l_{a}(z, \bar{z} ; t+\bar{t})$

Example: IIB warped CY

\& $\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+g_{s} e^{-2 A} \mathrm{~d} s_{\mathrm{CY}}^{2}$

Example: IIB warped CY

$$
\begin{aligned}
& \mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+g_{s} e^{-2 A} \mathrm{~d} s_{\mathrm{CY}}^{2} \\
& \mathcal{Z}=\Omega_{\mathrm{CY}}
\end{aligned}
$$

Example: IIB warped CY

\% $\quad \mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+g_{s} e^{-2 A} \mathrm{~d} s_{\mathrm{CY}}^{2}$
$\mathcal{Z}=\Omega_{\mathrm{CY}} \quad \Rightarrow \quad z^{I} \sim \begin{aligned} & \text { complex structure modulit, } \\ & \text { lifted up to conformal compensator }\end{aligned} Y$

Example: IIB warped CY

$$
\begin{aligned}
& \mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+g_{s} e^{-2 A} \mathrm{~d} s_{\mathrm{CY}}^{2} \\
& \mathcal{Z}=\Omega_{\mathrm{CY}} \quad \Rightarrow \quad z^{I} \sim \begin{array}{c}
\text { complex structure moduli, } \\
\text { lifted up to conformal compensator } Y
\end{array} \\
& \mathcal{T}=-i \tau+\left(\frac{1}{g_{s}} B-i C_{2}\right)-\left(\frac{1}{2 g_{s}} e^{-4 A} J_{\mathrm{CY}} \wedge J_{\mathrm{CY}}+i C_{4}\right)+\ldots
\end{aligned}
$$

Example: IIB warped CY

$$
\begin{aligned}
& \mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+g_{s} e^{-2 A} \mathrm{~d} s_{\mathrm{CY}}^{2} \\
& \mathcal{Z}=\Omega_{\mathrm{CY}} \quad \Rightarrow \quad z^{I} \sim \begin{array}{l}
\text { complex structure moduli, } \\
\text { lifted up to contormal compensator } Y \\
\mathcal{T}
\end{array}=-i \tau+\left(\frac{1}{g_{s}} B-i C_{2}\right)-\left(\frac{1}{2 g_{s}} e^{-4 A} J_{\mathrm{CY}} \wedge J_{\mathrm{CY}}+i C_{4}\right)+\ldots
\end{aligned}
$$

$$
e^{2 A} \operatorname{Im} T=J_{\mathrm{CY}}+B \wedge J_{\mathrm{CY}}+\ldots
$$

Example: IIB warped CY

$$
\begin{aligned}
& \mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+g_{s} e^{-2 A} \mathrm{~d} s_{\mathrm{CY}}^{2} \\
& \mathcal{Z}=\Omega_{\mathrm{CY}} \quad \Rightarrow \quad z^{I} \sim \begin{array}{l}
\text { complex structure moduli, } \\
\text { lifted up to contormal compensator } Y \\
\mathcal{T}
\end{array}=-i \tau+\left(\frac{1}{g_{s}} B-i C_{2}\right)-\left(\frac{1}{2 g_{s}} e^{-4 A} J_{\mathrm{CY}} \wedge J_{\mathrm{CY}}+i C_{4}\right)+\ldots
\end{aligned}
$$

$$
e^{2 A} \operatorname{Im} T=J_{\mathrm{CY}}+B \wedge J_{\mathrm{CY}}+\ldots
$$

\& Chiral fields: $\quad[\delta \mathcal{T}] \in\left(\mathrm{H}_{+}^{0,0} \oplus \mathrm{H}_{-}^{1,1} \oplus \mathrm{H}_{+}^{2,2}\right)_{H} \simeq \mathrm{H}_{-}^{1,1} \oplus \mathrm{H}_{+}^{2,2}$

Example: IIB warped CY

\& $\mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+g_{s} e^{-2 A} \mathrm{~d} s_{\mathrm{CY}}^{2}$
$\mathcal{Z}=\Omega_{\mathrm{CY}} \quad \Rightarrow \quad z^{I} \sim \begin{aligned} & \text { complex structure modulit, } \\ & \text { lifted up to contormal compensator }\end{aligned} Y$

$$
\mathcal{T}=-i \tau+\left(\frac{1}{g_{s}} B-i C_{2}\right)-\left(\frac{1}{2 g_{s}} e^{-4 A} J_{\mathrm{CY}} \wedge J_{\mathrm{CY}}+i C_{4}\right)+\ldots
$$

$e^{2 A} \operatorname{Im} T=J_{\mathrm{CY}}+B \wedge J_{\mathrm{CY}}+\ldots$
© Chiral fields: $\quad[\delta \mathcal{T}] \in\left(\mathrm{H}_{+}^{0,0} \oplus \mathrm{H}_{-}^{1,1} \oplus \mathrm{H}_{+}^{2,2}\right)_{H} \simeq \mathrm{H}_{-}^{1,1} \oplus \mathrm{H}_{+}^{2,2}$
removed axion-dilaton

Example: IIB warped CY

$\otimes \quad \mathrm{d} s_{10}^{2}=e^{2 A} \mathrm{~d} s_{4}^{2}+g_{s} e^{-2 A} \mathrm{~d} s_{\mathrm{CY}}^{2}$
$\mathcal{Z}=\Omega_{\mathrm{CY}} \quad \Rightarrow \quad z^{I} \sim \begin{aligned} & \text { complex structure moduli, } \\ & \text { lifted up to conformal compensator }\end{aligned} Y$
$\mathcal{T}=-i \tau+\left(\frac{1}{g_{s}} B-i C_{2}\right)-\left(\frac{1}{2 g_{s}} e^{-4 A} J_{\mathrm{CY}} \wedge J_{\mathrm{CY}}+i C_{4}\right)+\ldots$
$e^{2 A} \operatorname{Im} T=J_{\mathrm{CY}}+B \wedge J_{\mathrm{CY}}+\ldots$
\& Chiral fields: $\quad[\delta \mathcal{T}] \in\left(\mathrm{H}_{+}^{0,0} \oplus \mathrm{H}_{-}^{1,1} \oplus \mathrm{H}_{+}^{2,2}\right)_{H} \simeq \mathrm{H}_{-}^{1,1} \oplus \mathrm{H}_{+}^{2,2}$
removed axion-dilaton
\notin Dual linear multiplets: $\left[e^{2 A} \operatorname{Im} T\right] \in\left(\mathrm{H}_{+}^{1,1} \oplus \mathrm{H}_{-}^{2,2} \oplus \mathrm{H}_{+}^{3,3}\right)_{H} \simeq \mathrm{H}_{+}^{1,1} \oplus \mathrm{H}_{-}^{2,2}$

$$
v_{A} \quad l_{a}
$$

Kähler potential

Kähler potential

Kähler potential

© Going to the Einstein frame, one gets the Kähler potential

$$
\mathcal{K}=-3 \log \left(i \int_{M}\langle\mathcal{Z}, \overline{\mathcal{Z}}\rangle^{1 / 3}\langle T, \bar{T}\rangle^{2 / 3}\right)=\mathcal{K}(z, \bar{z}, t+\bar{t})
$$

Kähler potential

© Going to the Einstein frame, one gets the Kähler potential

$$
\mathcal{K}=-3 \log \left(i \int_{M}\langle\mathcal{Z}, \overline{\mathcal{Z}}\rangle^{1 / 3}\langle T, \bar{T}\rangle^{2 / 3}\right)=\mathcal{K}(z, \bar{z}, t+\bar{t})
$$

for $e^{2 A} \simeq 1$, it reduces to
Kähler potential of Graña, Louis \& Waldram '05, '06 Benmachiche and Grimm `06

Kähler potential

© Going to the Einstein frame, one gets the Kähler potential

$$
\mathcal{K}=-3 \log \left(i \int_{M}\langle\mathcal{Z}, \overline{\mathcal{Z}}\rangle^{1 / 3}\langle T, \bar{T}\rangle^{2 / 3}\right)=\mathcal{K}(z, \bar{z}, t+\bar{t})
$$

what is its explicit form?
for $e^{2 A} \simeq 1$, it reduces to
Kähler potential of Graña, Louis \& Waldram ’05, '06 Benmachiche and Grimm `06

Kähler potential

© Going to the Einstein frame, one gets the Kähler potential

$$
\mathcal{K}=-3 \log \left(i \int_{M}\langle\mathcal{Z}, \overline{\mathcal{Z}}\rangle^{1 / 3}\langle T, \bar{T}\rangle^{2 / 3}\right)=\mathcal{K}(z, \bar{z}, t+\bar{t})
$$

what is its
explicit form?
\& \mathcal{K} does not seem topological! However

$$
\frac{\partial \exp (-\mathcal{K} / 3)}{\partial(t+\bar{t})^{a}} \simeq \int_{M}\left\langle\frac{\partial \operatorname{Re} T}{\partial(t+\bar{t})^{a}}, e^{2 A} \operatorname{Im} T\right\rangle=l_{a}(z, \bar{z}, t+\bar{t})
$$

topologically well defined $\&$ in agreement with 40 interpretation

Lindstrøm \& Rocek, Ferrara, Gírardello, Kugo \& Van Proeyen

Kähler potential

\& Going to the Einstein frame, one gets the Kähler potential

$$
\mathcal{K}=-3 \log \left(i \int_{M}\langle\mathcal{Z}, \overline{\mathcal{Z}}\rangle^{1 / 3}\langle T, \bar{T}\rangle^{2 / 3}\right)=\mathcal{K}(z, \bar{z}, t+\bar{t})
$$

what is its
explicit form?
\& \mathcal{K} does not seem topological! However

$$
\frac{\partial \exp (-\mathcal{K} / 3)}{\partial(t+\bar{t})^{a}} \simeq \int_{M}\left\langle\frac{\partial \operatorname{Re} T}{\partial(t+\bar{t})^{a}}, e^{2 A} \operatorname{Im} T\right\rangle=l_{a}(z, \bar{z}, t+\bar{t})
$$

topologically well defined $\&$ in agreement with 40 interpretation

Lindstrom \& Rocek; Ferrara, Gírardello,
Kugo \& Van Proeyen ` 83
\& Freezing the $z \underline{I}$-moduli, knowing $l_{a}(t+\bar{t})$ one can obtain
by integration $\mathcal{K}(t+\bar{t})$

* In general, dependence of linear multiplets on chiral multiplets cumbersome!

Example: IIB warped CY

* In general, dependence of linear multiplets on chiral multiplets cumbersome!
\& However, if $h_{+}^{2,2}=1$ (universal modulus $e^{-4 A} \rightarrow e^{-4 A}+$ const.)

$$
v \simeq 1=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \rho}, \quad l_{a} \simeq \mathcal{I}_{a b} \operatorname{Re} \phi^{b}=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \phi^{a}}
$$

Example: IIB warped CY

- In general, dependence of linear multiplets on chiral multiplets cumbersome!
\& However, if $h_{+}^{2,2}=1$ (universal modulus $e^{-4 A} \rightarrow e^{-4 A}+$ const.)

$$
v \simeq 1=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \rho}, \quad l_{a} \simeq \mathcal{I}_{a b} \operatorname{Re} \phi^{b}=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \phi^{a}}
$$

Example: IIB warped CY

* In general, dependence of linear multiplets on chiral multiplets cumbersome!
\& However, if $h_{+}^{2,2}=1$ (universal modulus $e^{-4 A} \rightarrow e^{-4 A}+$ const.)

$$
v \simeq 1=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \rho}, \quad l_{a} \simeq \mathcal{I}_{a b} \operatorname{Re} \phi^{b}=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \phi^{a}}
$$

* These equations can be integrated

$$
\mathcal{K}=-3 \log \left[\rho+\bar{\rho}+\frac{1}{2} \mathcal{I}_{a b}\left(\phi^{a}+\bar{\phi}^{a}\right)\left(\phi^{b}+\bar{\phi}^{b}\right)+\mathrm{Vol}_{0}^{\mathrm{w}}\right]
$$

Example: IIB warped CY

* In general, dependence of linear multiplets on chiral multiplets cumbersome!
\& However, if $h_{+}^{2,2}=1$ (universal modulus $e^{-4 A} \rightarrow e^{-4 A}+$ const.)

$$
v \simeq 1=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \rho}, \quad l_{a} \simeq \mathcal{I}_{a b} \operatorname{Re} \phi^{b}=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \phi^{a}}
$$

\% These equations can be integrated

$$
\mathcal{F}^{\sim} \int_{M} e^{-4 A_{0}}\left(J_{\mathrm{CY}}^{0}\right)^{3}
$$

$$
\mathcal{K}=-3 \log \left[\rho+\bar{\rho}+\frac{1}{2} \mathcal{I}_{a b}\left(\phi^{a}+\bar{\phi}^{a}\right)\left(\phi^{b}+\bar{\phi}^{b}\right)+\operatorname{Vol}_{0}^{\mathrm{w}}\right]
$$

Example: IIB warped CY

* In general, dependence of linear multiplets on chiral multiplets cumbersome!
\& However, if $h_{+}^{2,2}=1$ (universal modulus $e^{-4 A} \rightarrow e^{-4 A}+$ const.)

$$
v \simeq 1=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \rho}, \quad l_{a} \simeq \mathcal{I}_{a b} \operatorname{Re} \phi^{b}=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \phi^{a}}
$$

* These equations can be integrated

$$
\Gamma^{\sim} \int_{M} e^{-4 A_{0}}\left(J_{\mathrm{CY}}^{0}\right)^{3}
$$

$$
\mathcal{K}=-3 \log \left[\rho+\bar{\rho}+\frac{1}{2} \mathcal{I}_{a b}\left(\phi^{a}+\bar{\phi}^{a}\right)\left(\phi^{b}+\bar{\phi}^{b}\right)+\operatorname{Vol}_{0}^{\mathrm{w}}\right]
$$

* if $\phi^{a}=0$, in agreement with

Example: IIB warped CY

* In general, dependence of linear multiplets on chiral multiplets cumbersome!
\& However, if $h_{+}^{2,2}=1$ (universal modulus $e^{-4 A} \rightarrow e^{-4 A}+$ const.)

$$
v \simeq 1=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \rho}, \quad l_{a} \simeq \mathcal{I}_{a b} \operatorname{Re} \phi^{b}=\frac{\partial \exp (-\mathcal{K} / 3)}{\partial \operatorname{Re} \phi^{a}}
$$

* These equations can be integrated

$$
\digamma \sim \int_{M} e^{-4 A_{0}}\left(J_{\mathrm{CY}}^{0}\right)^{3}
$$

$$
\mathcal{K}=-3 \log \left[\rho+\bar{\rho}+\frac{1}{2} \mathcal{I}_{a b}\left(\phi^{a}+\bar{\phi}^{a}\right)\left(\phi^{b}+\bar{\phi}^{b}\right)+\operatorname{Vol}_{0}^{\mathrm{w}}\right]
$$

* if $\phi^{a}=0$, in agreement with Frey, Torroba, underwood \& Dougtas '08
* redefining $\rho \rightarrow \rho+\mathrm{Vol}_{0}^{\mathrm{W}} / 2 \rightarrow$ unwarped Kähler potential

Conclusions

© Under some assumptions (e.g. $\partial_{H} \bar{\partial}_{H}$ lemma), the 4D spectrum has been identified with H-twisted cohomologies
\% The 4 D couplings of probe D-branes (space-filling, instantons, DW's and strings) depend only on the cohomology classes
\& The Kähler potential determined only implicitly. However, 4D chiral-linear duality can help in reconstructing it.

