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4d             supergravity with vector multiplets
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• with arbitrary charges [Denef]
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where a multicenter can

N = 2

[Gibbons, Hull]
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• generate solutions (both susy and non-susy) 
as geodesics on augmented scalar manifold 
[Breitenlohner, Maison, Gibbons]

‣ almost-susy [Goldstein, Katmadas]

• reverse orientation of base space 
in 5D susy solutions

‣ here: superpotential approach
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Black holes in 4d              supergravity
‣ bosonic action with      vector multiplets

‣ static, spherically symmetric ansatz (1 center)

‣ charged solution
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Black hole potential (single-center)
‣ action with effective potential [Ferrara, Gibbons, Kallosh]

‣ rewriting not unique [Ceresole, Dall’Agata] 

‣ ‘superpotential’      not necessarily equal to 

+ gab̄ża ˙̄zb̄

VBH = |Z|2 + 4gab̄ ∂a|Z|∂b̄|Z|
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(∂τ + i Im(∂aKża) + iα̇) (e−Ue−iαΩ)

)
+ Γ

∣∣∣
2

α = arg Z



Integration of flow equations
‣ yet another rewriting (susy case) [Denef]

‣ equations can be directly integrated

L ∝ e2U
∣∣∣2 Im

(
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(∂τ + i Im(∂aKża) + iα̇) (e−Ue−iαΩ)

)
+ Γ

∣∣∣
2

2∂τ Im(e−Ue−iαΩ) = −Γ
2 Im

(
e−Ue−iαΩ

)
= −H

H = Γτ − 2 Im[e−iαΩ]τ=0

α = arg Z



Integration of flow equations
‣ yet another rewriting (susy case) [Denef]

‣ equations can be directly integrated

‣ solutions for scalars implicit, but can be 
inverted explicitly, also for multiple centers 
                                                                                         [Bates & Denef]
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Multicenter generalization
‣ metric

‣ multicenter harmonic function

‣ constraints on positions

‣ angular momentum

J =
1
2 ∑

m<n
〈Γm, Γn〉

xm − xn
|xm − xn|

τn = 1
|x−xn |

[Denef]

ds2 = −e2U(dt + ωidxi)2 + e−2Uδijdxidxj

H =
N

∑
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Γnτn − 2 Im[e−iαΩ]τ=0

N

∑
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〈Γn, Γm〉
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[
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]

Γ = 2 Im
[
Z̄(Γ)Ω− gābD̄ā Z̄(Γ)DbΩ

]

W = |Z(Γ̃)| = |〈Γ̃, Ω〉| = |〈Γ(SQ), Ω〉|
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N

∑
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2 Im(e−Ue−iα̃Ω) = −H̃ α̃ = arg Z(Γ̃)
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Properties of solutions
‣ formalism works unchanged for constant

(a subclass of superpotentials)

• mutually local (                    ) 
electric or magnetic configurations

‣ constraints on charges (rather than positions)

‣ static, marginally bound

‣ stu: solution agrees with known/conjectured

S

Q =
N

∑
n=1

Qn SQ =
N

∑
n=1

SnQn

〈Γm, Γn〉 = 0

[Kallosh, Sivanandam, Soroush]
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BPS constituent model of non-susy bh
‣ ADM mass formula for a non-susy stu bh:

suggests 4 primitive susy constituents 
[Gimon, Larsen, Simón]

‣ in our context: supersymmetry of each center 
unaffected by the nontrivial matrices
(nontrivial     necessary for consistency with 
nontrivial    of a non-supersymmetric single-
center black hole)  

mnon-BPS ∝ p0 + q1 + q2 + q3

Si
Si
S
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Conclusions
‣ merger of Denef’s and superpotential approach

‣ limitations compared to the original formulation

‣ constraints on charges rather than positions

‣ solutions static and marginally bound

‣ natural questions:

• can the restrictions be relaxed?

• what is the relationship between methods?

• can they yield all possible solutions?


