Non-supersymmetric extremal multicenter black holes with superpotentials

Jan Perz
Katholieke Universiteit Leuven

Non-supersymmetric extremal multicenter black holes with superpotentials

Jan Perz
Katholieke Universiteit Leuven

Based on: P. Galli, J. Perz arXiv:0909.???? [hep-th]

Single-center vs multicenter solutions

〉 superposition holds for linear systems

- typically not possiole for black holes in GR
- but: (Wey')-Majumdar-Papapetrousolutions in Eingtein-Maxwel tieoy
zarbitrary distrib)
ot extremally charg d dust
- static (as in Newtorian approximation)
- described by harmonic functions

Single-center vs multicenter solutions

〉 superposition holds for linear systems

- typically not possiole for black holes in GR
- but: (Wey') Maiun Tor Rapapetrou solutions in Einstein Haxwell

- static (as in serwionian Eporoximation) - described by harmonic functions

Single-center vs multicenter solutions

- superposition holds for linear systems
> typically not possible for black holes in GR
- but: (Weyl)-Majumdar-Papapetrou solutions in Einstein-Maxwell theory
- arbitrary distribution of extremally charged dust
- static (as in Newtonian approximation)
- described by harmonic functions

Supersymmetric black hole composites

- extremal multi-RN solutions are susy [Gibons, tul]
- susy (hence extremal) multicenter solutions in $4 \mathrm{~d} \mathcal{N}=2$ supergravity with vector multiplets
- with identical charges [Behrnod, Lusis, Sabra]

Supersymmetric black hole composites

- extremal multi-RN solutions are susy [ibibons, tul]
- susy (hence extremal) multicenter solutions in $4 \mathrm{~d} \mathcal{N}=2$ supergravity with vector multiplets
- with identical charges [Bennot, Lusit, Sabra]
- with arbitrary charges [Denen

Supersymmetric black hole composites

- extremal multi-RN solutions are susy [ciboons, tul]
- susy (hence extremal) multicenter solutions in $4 \mathrm{~d} \mathcal{N}=2$ supergravity with vector multiplets
- with identical charges [Bennot, Lusit, Sabra]
- with arbitrary charges [Denen -relative positions of centers constrained

Supersymmetric black hole composites

- extremal multi-RN solutions are susy [Gibbons, Hul]
- susy (hence extremal) multicenter solutions in $4 \mathrm{~d} \mathcal{N}=2$ supergravity with vector multiplets
- with identical charges [Bennot, Lusit, Sabra]
- with arbitrary charges [Denen
-relative positions of centers constrained - single-center solution may not exist, where a multicenter can

Non-susy extremal composites

Non-susy extremal composites

- via timelike dimensional reduction [Gaioto, Li, Pad]
- generate solutions (both susy and non-susy) as geodesics on augmented scalar manifold [Breitenlohner, Maison, Gibbons]

Non-susy extremal composites

- via timelike dimensional reduction [Gaiotio, Li, Padi]
- generate solutions (both susy and non-susy) as geodesics on augmented scalar manifold [Breitenlohner, Maison, Gibbons]

〉 almost-Susy [Goldstein, Katmadas]

- reverse orientation of base space in 5D susy solutions

Non-susy extremal composites

- via timelike dimensional reduction [Gaiotio, Li, Padi]
- generate solutions (both susy and non-susy) as geodesics on augmented scalar manifold [Breitenlohner, Maison, Gibbons]
> almost-Susy [Goldstein, Katmadas]
- reverse orientation of base space in 5D susy solutions
> here: superpotential approach

$\mathcal{N}=2$ supergravity in 4 dimensions

- bosonic action with n_{v} vector multiplets

$$
\begin{aligned}
I_{4 \mathrm{D}} & \propto \int\left(R \star 1-2 g_{a b}(z) \mathrm{d} z^{a} \wedge \star \mathrm{~d} \bar{z}^{\bar{b}}\right. \\
& \left.+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{aligned}
$$

target space geometry: (very) special

$\mathcal{N}=2$ supergravity in 4 dimensions

- bosonic action with n_{v} vector multiplets

$$
\begin{array}{rlr}
I_{4 \mathrm{D}} & \propto \int\left(R \star 1-2 g_{a \bar{b}}(z) \mathrm{d} z^{a} \wedge \star \mathrm{~d} \bar{z}^{\bar{b}}\right. & a=1, \ldots, n_{\mathrm{v}} \\
& \left.+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{array}
$$

target space geometry: (very) special

$\mathcal{N}=2$ supergravity in 4 dimensions

- bosonic action with n_{v} vector multiplets

$$
\begin{array}{rlr}
I_{4 \mathrm{D}} & \propto \int\left(R \star 1-2 g_{a \bar{b}}(z) \mathrm{d} z^{a} \wedge \star \mathrm{~d} \bar{z}^{\bar{b}}\right. & a=1, \ldots, n_{\mathrm{v}} \\
& \left.+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{array}
$$

target space geometry: (very) special

$$
F=-\frac{1}{6} D_{a b c} \frac{X^{a} X^{b} X^{c}}{X^{0}} \quad z^{a}=\frac{X^{a}}{X^{0}}
$$

$\mathcal{N}=2$ supergravity in 4 dimensions

- bosonic action with n_{v} vector multiplets

$$
\begin{array}{rlr}
I_{4 \mathrm{D}} & \propto \int\left(R \star 1-2 g_{a \bar{b}}(z) \mathrm{d} z^{a} \wedge \star \mathrm{~d} \bar{z}^{\bar{b}}\right. & a=1, \ldots, n_{\mathrm{v}} \\
& \left.+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{array}
$$

target space geometry: (very) special
$F=-\frac{1}{6} D_{a b c} \frac{X^{a} X^{b} X^{c}}{X^{0}} \quad z^{a}=\frac{X^{a}}{X^{0}}$
$g_{a \bar{b}}=\partial_{z^{a}} \partial_{\bar{z}_{\bar{b}}} K$

$\mathcal{N}=2$ supergravity in 4 dimensions

- bosonic action with n_{v} vector multiplets

$$
I=(0, a)
$$

$$
\begin{aligned}
& I_{4 \mathrm{D}} \propto \int\left(R \star 1-2 g_{a \bar{b}}(z) \mathrm{d} z^{a} \wedge \star \mathrm{~d} \bar{z}^{\bar{b}} \quad a=1, \ldots, n_{\mathrm{v}}\right. \\
&\left.+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{aligned}
$$

target space geometry: (very) special

$$
F=-\frac{1}{6} D_{a b c} \frac{X^{a} X^{b} X^{c}}{X^{0}} \quad z^{a}=\frac{X^{a}}{X^{0}}
$$

$$
g_{a \bar{b}}=\partial_{z^{a}} \partial_{\bar{z}_{\bar{b}}} K
$$

$$
K=-\ln \left[i\left(\begin{array}{ll}
X^{I} & \partial_{I} F
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \overline{\binom{X^{I}}{\partial_{I} F}}\right]
$$

Black holes in $4 \mathrm{~d} \mathcal{N}=2$ supergravity

- bosonic action with n_{v} vector multiplets

$$
\begin{aligned}
& I_{4 \mathrm{D}} \propto \int\left(R \star 1-2 g_{a \bar{b}}(z) \mathrm{d} z^{a} \wedge \star \mathrm{~d} \bar{z}^{\bar{b}}\right. \\
&\left.+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{aligned}
$$

〉 static, spherically symmetric ansatz (1 center)

$$
\mathrm{d} s^{2}=-\mathrm{e}^{2 U(\tau)} \mathrm{d} t^{2}+\mathrm{e}^{-2 U(\tau)} \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

$$
\tau=\frac{1}{|\mathbf{x}|}
$$

, charged solution

$$
p^{I} \propto \int_{S_{\infty}^{2}} \mathcal{F}^{I} \quad q_{I} \propto \int_{S_{\infty}^{2}} \frac{\partial \mathcal{L}}{\partial \mathcal{F}^{I}} \quad\binom{p^{I}}{q_{I}}=: Q
$$

Black hole potential (single-center)

$$
\begin{aligned}
& I_{4 \mathrm{D}} \propto \int\left(R \star 1-2 g_{a \bar{b}}(z) \mathrm{d} z^{a} \wedge \star \mathrm{~d} \bar{z}^{\bar{b}}\right. \\
& \left.\quad+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{aligned}
$$

Black hole potential (single-center)

$$
\begin{aligned}
& I_{\text {eff }} \propto \int \mathrm{d} \tau\left(\dot{U}^{2}-2 g_{a b}(z) \mathrm{d} z^{a} \wedge \star \mathrm{~d} \bar{z}^{\bar{b}} \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau}\right. \\
& \left.\quad+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{aligned}
$$

Black hole potential (single-center)

$$
\begin{aligned}
I_{\text {eff }} \propto \int \mathrm{d} \tau\left(\dot{U}^{2}+g_{a \bar{b}^{a} \dot{z}^{a} \overline{\bar{z}}^{\bar{b}}}\right. & =\frac{\mathrm{d}}{\mathrm{~d} \tau} \\
& \left.+\operatorname{Im} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \star \mathcal{F}^{J}+\operatorname{Re} \mathcal{N}_{I J}(z) \mathcal{F}^{I} \wedge \mathcal{F}^{J}\right)
\end{aligned}
$$

Black hole potential (single-center)

- action with effective potential [Ferrara, Gibbons, Kallosh]
$I_{\text {eff }} \propto \int \mathrm{d} \tau\left(\dot{U}^{2}+g_{a \dot{b}^{2}} \dot{z}^{a} \dot{z}^{\bar{b}}+\mathrm{e}^{2 U} V_{\mathrm{BH}}\right) \quad \cdot=\frac{\mathrm{d}}{\mathrm{d} \tau}$
$V_{\mathrm{BH}}=|Z|^{2}+4 g^{a \bar{b}} \partial_{a}|Z| \partial_{\bar{b}}|Z|$

Black hole potential (single-center)

- action with effective potential [Ferrara, Gibbons, Kallosh]

$$
\begin{aligned}
& I_{\mathrm{eff}} \propto \int \mathrm{~d} \tau\left(\dot{U}^{2}+g_{a \bar{b}} \dot{z}^{a} \bar{z}^{\bar{b}}+\mathrm{e}^{2 U} V_{\mathrm{BH}}\right) \quad=\frac{\mathrm{d}}{\mathrm{~d} \tau} \\
& V_{\mathrm{BH}}=|Z|^{2}+4 g^{a \bar{b}} \partial_{a}|Z| \partial_{\bar{b}}|Z| \\
& \mathrm{Z}=\mathrm{e}^{K / 2}\left(\begin{array}{ll}
p^{I} & q_{I}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{X^{I}}{\partial_{I} F}
\end{aligned}
$$

Black hole potential (single-center)

- action with effective potential [Ferrara, Gibbons, Kallosh]
$I_{\mathrm{eff}} \propto \int \mathrm{d} \tau\left(\dot{U}^{2}+g_{a \bar{b}^{2}} \dot{z}^{a} \dot{\bar{z}}^{\bar{b}}+\mathrm{e}^{2 U} V_{\mathrm{BH}}\right) \quad \cdot=\frac{\mathrm{d}}{\mathrm{d} \tau}$
$V_{\mathrm{BH}}=|Z|^{2}+4 g^{a \bar{b}} \partial_{a}|Z| \partial_{\bar{b}}|Z|$
- rewriting not unique [Ceresole, Dall'Agata]

$$
V_{B H}=Q^{T} \mathcal{M} Q=Q^{T} S^{T} \mathcal{M} S Q \quad S^{T} \mathcal{M} S=\mathcal{M}
$$

Black hole potential (single-center)

- action with effective potential [Ferrara, Gibbons, Kallosh]
$I_{\mathrm{eff}} \propto \int \mathrm{d} \tau\left(\dot{U}^{2}+g_{a \dot{b}^{2}} \dot{z}^{\dot{z}} \dot{\bar{b}}+\mathrm{e}^{2 U} V_{\mathrm{BH}}\right) \quad \cdot=\frac{\mathrm{d}}{\mathrm{d} \tau}$
$V_{\mathrm{BH}}=|Z|^{2}+4 g^{a \bar{b}} \partial_{a}|Z| \partial_{\bar{b}}|Z|$
- rewriting not unique [Ceresole, Dall'Agata]

$$
V_{\mathrm{BH}}=Q^{\mathrm{T}} \mathcal{M} Q=Q^{\mathrm{T}} S^{\mathrm{T}} \mathcal{M S Q} \quad S^{\mathrm{T}} \mathcal{M S}=\mathcal{M}
$$

'superpotential' W not necessarily equal to $|Z|$
$V_{\mathrm{BH}}=W^{2}+4 g^{a \bar{b}} \partial_{a} W \partial_{\bar{b}} W$

Flow equations

- effective Lagrangian as a sum of squares

$$
\mathcal{L}_{\text {eff }} \propto \dot{U}^{2}+g_{a \bar{b}} \dot{\bar{z}}^{a} \dot{\bar{z}}^{\bar{b}}+\mathrm{e}^{2 U}\left(W^{2}+4 g^{a \bar{b}} \partial_{a} W \partial_{\bar{b}} W\right)
$$

- first-order gradient flow, equivalent to EOM
- when
: non-supersymmetric

Flow equations

- effective Lagrangian as a sum of squares

$$
\mathcal{L}_{\text {eff }} \propto \dot{U}^{2}+g_{a \bar{b}} \dot{z}^{a} \dot{z}^{\dot{b}}+\mathrm{e}^{2 U}\left(W^{2}+4 g^{a \bar{b}} \partial_{a} W \partial_{\bar{b}} W\right)
$$

$$
\propto\left(\dot{U}+\mathrm{e}^{u} W\right)^{2}+\left|\dot{z}^{a}+2 \mathrm{e}^{u} g^{a \bar{b}} \partial_{\bar{b}} W\right|^{2}
$$

- first-order gradient flow, equivalent to EOM
- when
: non-supersymmetric

Flow equations

> effective Lagrangian as a sum of squares
$\mathcal{L}_{\text {eff }} \propto \dot{U}^{2}+g_{a \bar{b}} \dot{z}^{a} \dot{z}^{\bar{b}}+\mathrm{e}^{2 U}\left(W^{2}+4 g^{a \bar{b}} \partial_{a} W \partial_{\bar{b}} W\right)$

$$
\propto\left(\dot{U}+\mathrm{e}^{U} W\right)^{2}+\left|\dot{z}^{a}+2 \mathrm{e}^{U_{g}}{ }^{a \bar{b}} \partial_{\bar{b}} W\right|^{2}
$$

- first-order gradient flow, equivalent to EOM
$\dot{U}=-\mathrm{e}^{U} W$
$\dot{z}^{a}=-2 \mathrm{e}^{U_{g}}{ }^{a \bar{b}} \partial_{\bar{b}} W$

Flow equations

> effective Lagrangian as a sum of squares

$$
\mathcal{L}_{\mathrm{eff}} \propto \dot{U}^{2}+g_{a \bar{b}} \dot{z}^{a} \dot{\bar{z}}^{\bar{b}}+\mathrm{e}^{2 U}\left(W^{2}+4 g^{a \bar{b}} \partial_{a} W \partial_{\bar{b}} W\right)
$$

$$
\propto\left(\dot{U}+\mathrm{e}^{U} W\right)^{2}+\left|\dot{z}^{a}+2 \mathrm{e}^{U_{g} a \bar{b}} \partial_{\bar{b}} W\right|^{2}
$$

- first-order gradient flow, equivalent to EOM
$\dot{U}=-\mathrm{e}^{U} W$
$\dot{z}^{a}=-2 \mathrm{e}^{U_{g}}{ }^{a \bar{b}} \partial_{\bar{b}} W$
v when $W \neq|Z|$: non-supersymmetric

Geometrical perspective

- IIA string theory compactified on a CY 3-fold X

$$
D_{a b c}=\int_{X} D_{a} \wedge D_{b} \wedge D_{c} \quad D_{a}: \text { basis of } H^{2}(X, \mathbb{Z})
$$

, scalars: in the normalized period vector
> charges: branes wrapping even cycles of

〉 central charge

Geometrical perspective

- IIA string theory compactified on a CY 3-fold X $D_{a b c}=\int_{X} D_{a} \wedge D_{b} \wedge D_{c} \quad D_{a}$: basis of $H^{2}(X, \mathbb{Z})$
- sctalars: in the normalized period vector F
- charges: branes wrapping even cycles of
- central charge

Geometrical perspective

- IIA string theory compactified on a CY 3-fold X

$$
D_{a b c}=\int_{X} D_{a} \wedge D_{b} \wedge D_{c} \quad D_{a}: \text { basis of } H^{2}(X, \mathbb{Z})
$$

- scalars: in the normalized period vector

$$
\Omega=\mathrm{e}^{K / 2}\left(-1-z^{a} D_{a}-\frac{z_{a}^{2} D^{a}}{2}-\frac{z^{3}}{6} \mathrm{~d} V\right)
$$

$$
D^{a} \text { : dual basis of } H^{4}(X, \mathbb{Z})
$$

$$
z_{a}^{2}=D_{a b c} z^{b} z^{c}
$$

$$
z^{3}=D_{a b c} z^{a} z^{b} z^{c}
$$

Geometrical perspective

- IIA string theory compactified on a CY 3-fold X

$$
D_{a b c}=\int_{X} D_{a} \wedge D_{b} \wedge D_{c} \quad D_{a}: \text { basis of } H^{2}(X, \mathbb{Z})
$$

- scalars: in the normalized period vector

$$
\Omega=\mathrm{e}^{K / 2}\left(-1-z^{a} D_{a}-\frac{z_{a}^{2} D^{a}}{2}-\frac{z^{3}}{6} \mathrm{~d} V\right)
$$

$$
\mathrm{e}^{K / 2}\binom{X^{I}}{\partial_{I} F} \quad \begin{aligned}
& D^{a}: \text { dual basis o } \\
& z_{a}^{2}=D_{a b c} z^{b} z^{c} \\
& z^{3}=D_{a b c} z^{a} z^{b} z^{c}
\end{aligned}
$$

Geometrical perspective

- IIA string theory compactified on a CY 3-fold X

$$
D_{a b c}=\int_{X} D_{a} \wedge D_{b} \wedge D_{c} \quad D_{a}: \text { basis of } H^{2}(X, \mathbb{Z})
$$

- scalars: in the normalized period vector
$\Omega=\mathrm{e}^{K / 2}\left(-1-z^{a} D_{a}-\frac{z_{a}^{2} D^{a}}{2}-\frac{z^{3}}{6} \mathrm{~d} V\right)$
- charges: branes wrapping even cycles of X

$$
\Gamma=p^{0}+p^{a} D_{a}+q_{a} D^{a}+q_{0} \mathrm{~d} V \in H^{2 *}(X, \mathbb{Z})
$$

Geometrical perspective

- IIA string theory compactified on a CY 3-fold X

$$
D_{a b c}=\int_{X} D_{a} \wedge D_{b} \wedge D_{c} \quad D_{a}: \text { basis of } H^{2}(X, \mathbb{Z})
$$

- scalars: in the normalized period vector

$$
\Omega=\mathrm{e}^{K / 2}\left(-1-z^{a} D_{a}-\frac{z_{a}^{2} D^{a}}{2}-\frac{z^{3}}{6} \mathrm{~d} V\right)
$$

- charges: branes wrapping even cycles of X

$$
\Gamma=p^{0}+p^{a} D_{a}+q_{a} D^{a}+q_{0} \mathrm{~d} V \in H^{2 *}(X, \mathbb{Z})
$$

Geometrical perspective

- IIA string theory compactified on a CY 3-fold X

$$
D_{a b c}=\int_{X} D_{a} \wedge D_{b} \wedge D_{c} \quad D_{a}: \text { basis of } H^{2}(X, \mathbb{Z})
$$

- scalars: in the normalized period vector

$$
\Omega=\mathrm{e}^{K / 2}\left(-1-z^{a} D_{a}-\frac{z_{a}^{2} D^{a}}{2}-\frac{z^{3}}{6} \mathrm{~d} V\right)
$$

> charges: branes wrapping even cycles of X

$$
\Gamma=p^{0}+p^{a} D_{a}+q_{a} D^{a}+q_{0} \mathrm{~d} V \in H^{2 *}(X, \mathbb{Z})
$$

- central charge

$$
Z(\Gamma)=\langle\Gamma, \Omega\rangle
$$

Geometrical perspective

- IIA string theory compactified on a CY 3-fold X

$$
D_{a b c}=\int_{X} D_{a} \wedge D_{b} \wedge D_{c} \quad D_{a}: \text { basis of } H^{2}(X, \mathbb{Z})
$$

- scalars: in the normalized period vector

$$
\Omega=\mathrm{e}^{K / 2}\left(-1-z^{a} D_{a}-\frac{z_{a}^{2} D^{a}}{2}-\frac{z^{3}}{6} \mathrm{~d} V\right)
$$

> charges: branes wrapping even cycles of X

$$
\Gamma=p^{0}+p^{a} D_{a}+q_{a} D^{a}+q_{0} \mathrm{~d} V \in H^{2 *}(X, \mathbb{Z})
$$

- central charge

$$
Z(\Gamma)=\langle\Gamma, \Omega\rangle \quad Z=e^{K / 2}\left(\begin{array}{ll}
p^{I} & q_{I}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{X^{I}}{\partial_{I} F}
$$

Integration of flow equations

> yet another rewriting (susy case) [Denei]
$\mathcal{L} \propto \mathrm{e}^{2 U}\left|2 \operatorname{Im}\left(\left(\partial_{\tau}+\mathrm{i} \operatorname{Im}\left(\partial_{a} K \dot{z}^{a}\right)+\mathrm{i} \dot{\alpha}\right)\left(\mathrm{e}^{-U} \mathrm{e}^{-\mathrm{i} \alpha} \Omega\right)\right)+\Gamma\right|^{2}$
$\alpha=\arg \mathrm{Z}$

Integration of flow equations

- yet another rewriting (susy case) [Dene
$\mathcal{L} \propto \mathrm{e}^{2 U}\left|2 \operatorname{Im}\left(\left(\partial_{\tau}+\mathrm{i} \operatorname{Im}\left(\partial_{a} K \dot{z}^{a}\right)+\mathrm{i} \dot{\alpha}\right)\left(\mathrm{e}^{-U} \mathrm{e}^{-\mathrm{i} \alpha} \Omega\right)\right)+\Gamma\right|^{2}$
- equations can be directly integrated $\alpha=\arg Z$ $2 \partial_{\tau} \operatorname{Im}\left(\mathrm{e}^{-U} \mathrm{e}^{-\mathrm{i} \alpha} \Omega\right)=-\Gamma$

Integration of flow equations

- yet another rewriting (susy case) Denen
$\mathcal{L} \propto \mathrm{e}^{2 U}\left|2 \operatorname{Im}\left(\left(\partial_{\tau}+\mathrm{i} \operatorname{Im}\left(\partial_{a} K \dot{z}^{a}\right)+\mathrm{i} \dot{\alpha}\right)\left(\mathrm{e}^{-U} \mathrm{e}^{-\mathrm{i} \alpha} \Omega\right)\right)+\Gamma\right|^{2}$
- equations can be directly integrated $\quad \alpha=\arg \mathrm{Z}$

$$
\begin{aligned}
2 \partial_{\tau} \operatorname{Im}\left(\mathrm{e}^{-U_{e}} \mathrm{e}^{-\mathrm{i} \alpha} \Omega\right) & =-\Gamma \operatorname{Im}\left(\mathrm{e}^{-U} \mathrm{e}^{-\mathrm{i} \alpha} \Omega\right)
\end{aligned}
$$

$$
H=\Gamma \tau-2 \operatorname{Im}\left[\mathrm{e}^{-\mathrm{i} \alpha} \Omega\right]_{\tau=0}
$$

Integration of flow equations

- yet another rewriting (susy case) Denen
$\mathcal{L} \propto \mathrm{e}^{2 U}\left|2 \operatorname{Im}\left(\left(\partial_{\tau}+\mathrm{i} \operatorname{Im}\left(\partial_{a} K \dot{z}^{a}\right)+\mathrm{i} \dot{\alpha}\right)\left(\mathrm{e}^{-U_{\mathrm{e}}-\mathrm{i} \alpha} \Omega\right)\right)+\Gamma\right|^{2}$
- equations can be directly integrated $\alpha=\arg Z$

$$
\begin{aligned}
2 \partial_{\tau} \operatorname{Im}\left(\mathrm{e}^{-U} \mathrm{e}^{-\mathrm{i} \alpha} \Omega\right) & =-\Gamma \\
2 \operatorname{Im}\left(\mathrm{e}^{-U} \mathrm{e}^{-\mathrm{i} \alpha} \Omega\right) & =-H
\end{aligned}
$$

$$
H=\Gamma \tau-2 \operatorname{Im}\left[\mathrm{e}^{-\mathrm{i} \alpha} \Omega\right]_{\tau=0}
$$

- solutions for scalars implicit, but can be inverted explicitly, also for multiple centers

Multicenter generalization Denen

- metric $\mathrm{d} s^{2}=-\mathrm{e}^{2 U}\left(\mathrm{~d} t+\omega_{i} \mathrm{~d} x^{i}\right)^{2}+\mathrm{e}^{-2 U} \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$
- multicenter harmonic function

$$
H=\sum_{n=1}^{N} \Gamma_{n} \tau_{n}-2 \operatorname{Im}\left[\mathrm{e}^{-\mathrm{i} \alpha} \Omega\right]_{\tau=0} \quad \tau_{n}=\frac{1}{\left|\mathbf{x}-x_{n}\right|}
$$

Multicenter generalization Denen

metric $\mathrm{d} s^{2}=-\mathrm{e}^{2 U}\left(\mathrm{~d} t+\omega_{i} \mathrm{~d} x^{i}\right)^{2}+\mathrm{e}^{-2 U} \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$

- multicenter harmonic function

$$
H=\sum_{n=1}^{N} \Gamma_{n} \tau_{n}-2 \operatorname{Im}\left[\mathrm{e}^{-\mathrm{i} \alpha} \Omega\right]_{\tau=0} \quad \tau_{n}=\frac{1}{\left|\mathbf{x}-\mathbf{x}_{n}\right|}
$$

constraints on positions

$$
\sum_{m=1}^{N} \frac{\left\langle\Gamma_{n}, \Gamma_{m}\right\rangle}{\left|\mathbf{x}_{n}-\mathbf{x}_{m}\right|}=2 \operatorname{Im}\left[\mathrm{e}^{-\mathrm{i} \alpha} Z\left(\Gamma_{n}\right)\right]_{\tau=0}
$$

Multicenter generalization Denen

- metric $\mathrm{ds}{ }^{2}=-\mathrm{e}^{2 U}\left(\mathrm{~d} t+\omega_{i} \mathrm{~d} x^{i}\right)^{2}+\mathrm{e}^{-2 U} \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$
- multicenter harmonic function

$$
H=\sum_{n=1}^{N} \Gamma_{n} \tau_{n}-2 \operatorname{Im}\left[e^{-\mathrm{i} \alpha} \Omega\right]_{\tau=0}
$$

$$
\tau_{n}=\frac{1}{\left|\boldsymbol{x}-x_{n}\right|}
$$

- constraints on positions

$$
\sum_{m=1}^{N} \frac{\left\langle\Gamma_{n}, \Gamma_{m}\right\rangle}{\left|\mathbf{x}_{n}-\mathbf{x}_{m}\right|}=2 \operatorname{Im}\left[\mathrm{e}^{-\mathrm{i} \alpha} Z\left(\Gamma_{n}\right)\right]_{\tau=0}
$$

> angular momentum

$$
\mathbf{J}=\frac{1}{2} \sum_{m<n}\left\langle\Gamma_{m}, \Gamma_{n}\right\rangle \frac{\mathbf{x}_{m}-\mathbf{x}_{n}}{\left|\mathbf{x}_{m}-\mathbf{x}_{n}\right|}
$$

Extension to non-susy solutions

- Denef's formalism involves a change of basis
$\Gamma=p^{0} \cdot 1+p^{a} D_{a}+q_{a} D^{a}+q_{0} \mathrm{~d} V$
- analogously, in our generalization:
- non-susy solutions

Extension to non-susy solutions

- Denef's formalism involves a change of basis $\Gamma=\mathrm{i} \bar{Z} \Omega-\mathrm{i} g^{\bar{a} b} \overline{\mathcal{D}}_{\bar{a}} \overline{\mathrm{Z}} \mathcal{D}_{b} \Omega+\mathrm{i} \mathrm{g}^{a \bar{b}} \mathcal{D}_{a} \mathrm{Z} \overline{\mathcal{D}}_{\bar{b}} \Omega-\mathrm{i} \bar{Z} \Omega$
- analogously, in our generalization: $\partial_{a} \Omega+\frac{1}{2} \partial_{a} K \Omega$
- non-susy solutions

Extension to non-susy solutions

- Denef's formalism involves a change of basis
$\Gamma=2 \operatorname{Im}\left[\bar{Z}(\Gamma) \Omega-g^{\bar{a} b} \overline{\mathcal{D}}_{\bar{a}} \bar{Z}(\Gamma) \mathcal{D}_{b} \Omega\right]$
- analogously, in our generalization: $\partial_{a} \Omega+\frac{1}{2} \partial_{a} K \Omega$
- non-susy solutions

Extension to non-susy solutions

- Denef's formalism involves a change of basis
$\Gamma=2 \operatorname{Im}\left[\bar{Z}(\Gamma) \Omega-g^{\bar{a} b} \overline{\mathcal{D}}_{\bar{a}} \bar{Z}(\Gamma) \mathcal{D}_{b} \Omega\right]$
- analogously, in our generalization: $\tilde{\Gamma}=2 \operatorname{Im}\left[\bar{Z}(\tilde{\Gamma}) \Omega-g^{\bar{a} b} \overline{\mathcal{D}}_{\bar{a}} \bar{Z}(\tilde{\Gamma}) \mathcal{D}_{b} \Omega\right]$
$W=|Z(\tilde{\Gamma})|=|\langle\tilde{\Gamma}, \Omega\rangle|=|\langle\Gamma(S Q), \Omega\rangle|$

Extension to non-susy solutions

- Denef's formalism involves a change of basis
$\Gamma=2 \operatorname{Im}\left[\bar{Z}(\Gamma) \Omega-g^{\bar{a} b} \overline{\mathcal{D}}_{\bar{a}} \bar{Z}(\Gamma) \mathcal{D}_{b} \Omega\right]$
- analogously, in our generalization: $\tilde{\Gamma}=2 \operatorname{Im}\left[\bar{Z}(\tilde{\Gamma}) \Omega-g^{\bar{a} b} \overline{\mathcal{D}}_{\bar{a}} \bar{Z}(\tilde{\Gamma}) \mathcal{D}_{b} \Omega\right]$
$W=|Z(\tilde{\Gamma})|=|\langle\tilde{\Gamma}, \Omega\rangle|=|\langle\Gamma(S Q), \Omega\rangle|$
- non-susy solutions

$$
\begin{array}{lr}
2 \operatorname{Im}\left(\mathrm{e}^{-U} \mathrm{e}^{-\mathrm{i} \tilde{\alpha}} \Omega\right)=-\tilde{H} & \tilde{\alpha}=\arg Z(\tilde{\Gamma}) \\
\tilde{H}(\mathbf{x})=\sum_{n=1}^{N} \tilde{\Gamma}_{n} \tau_{n}-2 \operatorname{Im}\left[\mathrm{e}^{-\mathrm{i} \tilde{\alpha}} \Omega\right]_{\tau=0} & \tilde{\Gamma}_{n}=\Gamma\left(S_{n} Q_{n}\right)
\end{array}
$$

Properties of solutions

- formalism works unchanged for constant S (a subclass of superpotentials)
- mutually local $\left(\left\langle\Gamma_{m}, \Gamma_{n}\right\rangle=0\right)$ electric or magnetic configurations
- constraints on charges (rather than positions)

$$
Q=\sum_{n=1}^{N} Q_{n}
$$

$$
S Q=\sum_{n=1}^{N} S_{n} Q_{n}
$$

, static, marginally bound

Properties of solutions

- formalism works unchanged for constant S (a subclass of superpotentials)
- mutually local $\left(\left\langle\Gamma_{m}, \Gamma_{n}\right\rangle=0\right)$ electric or magnetic configurations
- constraints on charges (rather than positions)

$$
Q=\sum_{n=1}^{N} Q_{n}
$$

$$
S Q=\sum_{n=1}^{N} S_{n} Q_{n}
$$

, static, marginally bound
, stu: solution agrees with known/conjectured
[Kallosh, Sivanandam, Soroush]

BPS constituent model of non-susy bh

- ADM mass formula for a non-susy stu bh:
$m_{\text {non-BPS }} \propto p^{0}+q_{1}+q_{2}+q_{3}$
suggests 4 primitive susy constituents
[Gimon, Larsen, Simón]

BPS constituent model of non-susy bh

- ADM mass formula for a non-susy stu bh:
$m_{\text {non-BPS }} \propto p^{0}+q_{1}+q_{2}+q_{3}$
suggests 4 primitive susy constituents [Gimon, Larsen, Simón]
- in our context: supersymmetry of each center unaffected by the nontrivial matrices S_{i} (nontrivial S_{i} necessary for consistency with nontrivial S of a non-supersymmetric singlecenter black hole)

Conclusions

- merger of Denef's and superpotential approach

Conclusions

- merger of Denef's and superpotential approach
- limitations compared to the original formulation

Conclusions

- merger of Denef's and superpotential approach
- limitations compared to the original formulation
- constraints on charges rather than positions

Conclusions

- merger of Denef's and superpotential approach
- limitations compared to the original formulation
- constraints on charges rather than positions

〉 solutions static and marginally bound

Conclusions

- merger of Denef's and superpotential approach
- limitations compared to the original formulation
- constraints on charges rather than positions

〉 solutions static and marginally bound

- natural questions:

Conclusions

- merger of Denef's and superpotential approach
- limitations compared to the original formulation
- constraints on charges rather than positions

〉 solutions static and marginally bound

- natural questions:
- can the restrictions be relaxed?

Conclusions

- merger of Denef's and superpotential approach
- limitations compared to the original formulation
- constraints on charges rather than positions

〉 solutions static and marginally bound

- natural questions:
- can the restrictions be relaxed?
- what is the relationship between methods?

Conclusions

- merger of Denef's and superpotential approach
- limitations compared to the original formulation
- constraints on charges rather than positions

〉 solutions static and marginally bound

- natural questions:
- can the restrictions be relaxed?
- what is the relationship between methods?
- can they yield all possible solutions?

