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Single-center vs multicenter solutions

» superposition holds for linear systems

» typically not possible for black holes in GR

e put: (Weyl)-Majumdar—Papapetrou solutions

IN EiINnstein—Maxw

—arbitrary distrio

ell theory

Jtion

of extremally charged dust

—static (as in Newtonian approximation)

—described by harmonic functions
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» extremal multi-BRN solutions are susy [aibbons, Hull

» susy (hence extremal) multicenter solutions In
Ad N = 2 supergravity with vector multiplets

o with identical charges senrndt, Lust, Sabra]
o with arbitrary charges peref
—relative positions of centers constrained

—single-center solution may not exist,
where a multicenter can
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® generate solutions (both susy and non-susy)
as geodesics on augmented scalar manifold

[Breitenlohner, Maison, Gibbons]

) almOSt-SUSY [Goldstein, Katmadas]

® reverse orientation of base space
IN 5D susy solutions

» here: superpotential approach
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N = 2 superqravity in 4 dimensions

» pbosonic action with ny, vector multiplets I = (0,0)

I4D X /(R*l —Zgalj)(z)dza /\*dZE a=1,..., 1y

+Im/\/1](z).7:1 A * F/ +Re/\/1](z)fl /\f])

» target space geometry: (very) special
1 Xexbxe X*
F — _ngﬁle XO Za — ﬁ

Sab = 0z azEK
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Black holes in 4d N' = 2 supergravity

» bosonic action with n, vector multiplets
Iip /(R*l —2g 7(z)dz" A xdz?
—|—Im./\/1](Z).7'—I A Fl 4+ Re/\fl](z)fl A f])

» static, spherically symmetric ansatz (1 center)
ds? = —e?(Vdp? + e U5 dx'dy) 1=

» charged solution
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Black hole potential (single-center)

» action with effective potential [rerrara, Gibbons, Kalloshi
To¢f X /dT (U2 + ga,;Z”ZE -+ equBH) =1
Ven = | Z]% + 4% 9.|Z19;| 2
> rewriting Not UuNIque [Ceresole, Dall’Agatal
Ve = Q' MQ = Q's' MsQ S'MS =M
» ‘superpotential’” W not necessarily equal to | Z)
Ve = W2 + 4¢° 9,Wo, W
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Flow equations

» effective Lagrangian as a sum of squares
Logr & U2 + g 272" + 24 (W2 4 4¢%9,W0; W)
s U aby 17|
o (U + W)+ |20+ 2eHg oy W
» first-order gradient flow, equivalent to EOM
U= —e"W
— —Ze gabab

» when W #£ |Z]: non-supersymmetric
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Geometrical perspective

» |IA string theory compactified on a CY 3-fold X
D, : basis of H*(X, Z)

atess / D, A Dy A D,
X

» scalars: In the normalized period vector
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>

) = ek/2 (—1 —ZD,

» central charge
Z(I') = (T, Q)

2
» charges: branes wrapping even cycles of X

I'=p'+p"D, + g,D* 4+ qodV € H** (X, Z)
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Integration of flow equations

» yet another rewriting (SUSy Case) [penef

: 2
£ o e [2Tm ((aT +iTm(9,K27) + id) (e_ue_l“Q)) 4T

» equations can be directly integrated v = argZ

20 Im(e Ye Q) = —T
?_Im(e_ue_i“ﬂ) — —H
H=T71t—2Imle Q|-
» solutions for scalars implicit, but can be

inverted explicitly, also for multiple centers
[Bates & Denef]
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Multicenter generalization peen

» metric ds? = —ezu(dt + widxi)z = e_zudijdxidxf
) multicgnter harmonic function
H — ernTn — ZIm[e—laﬂ]T:O Tn — ‘X—1Xn|
1N—=
» constraints on positions
Al <r7’l/ rm> - —1x

m=1 |x” i Xm‘
» angular momentum

1 m — Xn
JZE Z<rmzrn> . .

m<n

‘xm — Xn
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Extension to non-susy solutions

» Denef’s formalism involves a change of basis
[ =2Im[Z(T)Q - ¢"D,Z(T)D,Q]
» analogously, in our generalization:
[ =2Im[Z(1)Q - ¢"D:Z(T)D,Q]
= |Z(D)| = (T, )| = {T(5Q), )
> non—susy solutions
ZIm( N _15‘(2) .y i = arg Z(T)
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Properties of solutions

» formalism works unchanged for constant S
(a subclass of superpotentials)

e mutually local ((I'y;,I';;) = 0)
electric or magnetic configurations

) Constraints on charges (rather than positions)
Q = Z Qn 5Q = ): S1Qn
. stat|c margmally olelVale

» Stu: solution agrees with known/conjectured

[Kallosh, Sivanandam, Soroush]
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BPS constituent model of non-susy bh

» ADM mass formula for a non-susy stu bh:

Mnon-BPS X PO + (41 T+ 42 T+ 43

suggests 4 primitive susy constituents

[Gimon, Larsen, SImon]

» INn our context: supersymmetry of each center
Unaftected by the nontrivial matrices S;
(nontrivial S; necessary for consistency with
nontrivial S of a non-supersymmetric single-
center black hole)
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Conclusions

» merger of Denet’s and superpotential approach
» limitations compared to the original formulation
» constraints on charges rather than positions
» solutions static and marginally bound
» natural questions:

* can the restrictions be relaxed?

* what Is the relationship between methods”

* can they vield all possible solutions”?



