Moduli Stabilisation in N=4 00000000 Stable De Sitter in N=2 00000 Conclusions 00

# Moduli Stabilisation and De Sitter in Extended Supergravity<sup>1</sup>

Diederik Roest

University of Groningen

15-th European Workshop on String Theory Zürich, September 10, 2009

<sup>&</sup>lt;sup>1</sup> (D.R., arXiv:0902.0479), (Dibitetto, Linares, D.R., in progress), (D.R., Rosseel, in progress)

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions 00



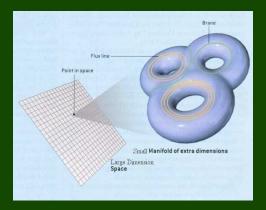
Introduction

Moduli Stabilisation in N=4

Stable De Sitter in N=2

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions 00




#### Introduction

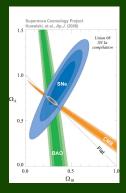
Moduli Stabilisation in N=4

Stable De Sitter in N=2

Moduli Stabilisation in N=4 00000000 Stable De Sitter in N=2 00000 Conclusions 00

# Compactifications




#### Need for moduli stabilisation!

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions 00

## Cosmology

Challenges for string theory:

- Inflation (1980's ...)
- A-CDM (1990's ...)



Where is De Sitter in the string theory landscape?

Stable De Sitter in N=2 00000 Conclusions 00

# De Sitter in string theory

Focus on extended  $N \ge 2$  supergravity: interesting playground with stronger constraints.

Scalar potentials are generated only by gaugings:

- N = 8: gauge groups SO(4, 4) or SO(5, 3) with unstable  $dS^1$
- N = 4: gauge groups with unstable dS<sup>2</sup>
- N = 2: stable dS<sup>3</sup>
- no-go theorems for stable dS in various theories<sup>4</sup>

#### Higher-dimensional origin? Relations between models?

<sup>1</sup> (Hull, Warner '85, Kallosh, Linde, Prokushkin, Shmakova '01 <sup>2</sup> (De Roo, Westra, Panda, (Trigiante) '02)

(De Roo, wesila, Panaa, (Inglanie) u

<sup>3</sup>(Fré, Trigiante, Van Proeyen '03)

<sup>4</sup>(De Wit, Van Proeyen, ... '84, '85, Gomez-Reino, Louis, Scrucca,... '07, '08)

Moduli Stabilisation in N=4

Stable De Sitter in N=2 00000 Conclusions 00



#### Introduction

Moduli Stabilisation in N=4

Stable De Sitter in N=2

Moduli Stabilisation in N=4 •••••• Stable De Sitter in N=2 00000 Conclusions 00

#### N=4 supergravity

Effective theory of type I / heterotic on T<sup>6</sup> or type II / M-theory on  $K3 \times T^2$  or with orientifolds.

Key ingredients:

- Supergravity plus *n* vector multiplets
- Global symmetry  $SL(2) \times SO(6, n)$
- Vectors in fundamental rep. of *SO*(6, *n*), and into e-m dual under *SL*(2)

gaugings

Stable De Sitter in N=2 00000 Conclusions 00

# N=4 gauged supergravity

Possible gaugings classified by parameters<sup>1</sup>  $f_{\alpha MNP}$  and  $\xi_{\alpha M}$  which are a doublet under *SL*(2).

Simple gauge group has structure constants and SL(2) angle.

Crucial for moduli stabilisation:

- Gauge group is product of factors  $G_1 \times G_2 \times \cdots$
- Factors have different SL(2) angle ("duality or De Roo-Wagemans angles<sup>2</sup>") ("electric and magnetic gauge factors<sup>3</sup>")

If not, the scalar potential has runaway directions.

#### One needs gaugings at angles.

dS

<sup>&</sup>lt;sup>1</sup>(Schon, Weidner '06)

<sup>&</sup>lt;sup>2</sup>(De Roo, Wagemans '85)

<sup>&</sup>lt;sup>3</sup>(De Wit, Samtleben, Trigiante '02)

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions 00

#### De Sitter vacua in N=4

Known De Sitter vacua in<sup>1</sup> N = 4:

$$G_1 \times G_2$$
, with  $G_i = SO(p_i, 4 - p_i)$ .

(Plus some exceptional cases.)

All unstable. No stable De Sitter vacua are expected for  $N \ge 4$  - proof<sup>2</sup>?

origin

<sup>&</sup>lt;sup>1</sup> (De Roo, Westra, Panda, (Trigiante) ′02) <u><sup>2</sup> (Gomez-Reino,</u> Scrucca, (Covi), (Gross), (Louis), (Palma) ′07, ′08)

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions 00

## Gaugings at angles

But where do gaugings at angles come from?

Introduced in supergravity in 1985, but string theory origin was unknown.

Higher-dimensional origin: orientifold reductions

Key ingredients<sup>1</sup> : massive IIA with NS-NS flux and O6-planes.

model

<sup>&</sup>lt;sup>1</sup>(D.R. '09, Dall'Agata, Villadoro, Zwirner '09)

Moduli Stabilisation in N=4 00000000 Stable De Sitter in N=2 00000 Conclusions 00

dS

## Gaugings at angles

Simple set-up gives rise to nilpotent gauge groups<sup>1</sup>:

 $G_1 \times G_2$ , with  $G_i = CSO(1, 0, 3)$ .

Triple group contracted versions of  $SO(p_i, 4 - p_i)$ .

Moduli stabilised in Minkowski vacuum.

No-go theorem: (massive) IIA compactifications with gauge fluxes and O6-planes cannot lead to dS<sup>2</sup>.

<sup>1</sup> (D.R., '09) <sup>2</sup> (Hertzberg, Kachru, Taylor, Tegmark '07) - cf. talk by Wrase

Moduli Stabilisation in N=4 00000000 Stable De Sitter in N=2 00000 Conclusions 00

#### Uplift to De Sitter?

In N = 4 flux compactifications one can also include geometric fluxes. Can these be used to 'undo' the group contraction?

 $CSO(1,0,3) \rightarrow CSO(p,2-p,2) \rightarrow ISO(p,3-p) \rightarrow SO(p,4-p)$ .

First N = 4 flux compactification to dS?

IIB duality frame

Stable De Sitter in N=2 00000 Conclusions 00

## IIB duality frame

Convenient to go to IIB duality frame with O3-plane: only gauge and non-geometric fluxes<sup>1</sup>.

Gauge groups spanned by<sup>2</sup>

- electric: R-R gauge flux F and NS-NS non-geometric flux Q
- magnetic: NS-NS gauge flux H and R-R non-geom. flux P

Gauge fluxes F and H give rise to product of nilpotent groups.

The non-geom. fluxes *P* and *Q* enhance this to  $SO(p_i, 4 - p_i)^3$ .

Only geometric fluxes: no duality frame with  $SO(p_i, 4 - p_i)$  gauge groups. The magnetic factor is always nilpotent.

<sup>&</sup>lt;sup>1</sup>(Shelton, Taylor, Wecht '05)

<sup>&</sup>lt;sup>2</sup>(Aldazabal, Cámara, Rosabal '08)

<sup>&</sup>lt;sup>3</sup>(De Carlos, Guarino, Moreno '09, Dibitetto, Linares, D.R., to appear)

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions 00

## Uplift to De Sitter?

None of the known N = 4 models with dS follow from compactifications with gauge and/or geometric fluxes. Need to include non-geometric fluxes!

Other models that also allow for dS<sup>1</sup>?

Connection with N = 1 compactification on  $SU(2) \times SU(2)$ group manifold<sup>2</sup>, leading to unstable De Sitter. Includes the same fluxes as N = 4, but has more O6-planes and hence weaker quadratic constraints.

<sup>&</sup>lt;sup>1</sup> (Dibitetto, Linares, D.R., to appear)

<sup>&</sup>lt;sup>2</sup>(Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann '08), cf talk by Wrase

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2

Conclusions 00



Introduction

Moduli Stabilisation in N=4

Stable De Sitter in N=2

Stable De Sitter in N=2 ●0000 Conclusions 00

## Stable De Sitter in N=2

In  $N \ge 4$  all known dS vacua are unstable.

In contrast, there are a few, mysterious examples known of stable  $dS^1$  in N = 2.

Additional complications in N = 2: hypermultiplets, more general scalar manifolds, ...

Crucial ingredients:

- Non-compact gaugings
- Gaugings at angles
- Fayet-Iliopoulos parameters / non-trivial hypersector

Higher-dimensional origin or relation to N > 2 unknown.

example

<sup>&</sup>lt;sup>1</sup>(Fre, Trigiante, Van Proeyen '02)

Stable De Sitter in N=2 ○●○○○ Conclusions 00



Five vector multiplets and two hyper multiplets.

Scalar manifold chosen to be G/H with



Gauge group chosen to be

 $SO(2,1) \times SO(3)$ ,

with different duality angles, and both factors acting on both SO(2, 4) and SO(4, 2) parts of scalar manifold.

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions 00

#### Relation to N = 4

There is a simple relation<sup>1</sup> between unstable dS in N = 4 and stable dS in N = 2: one can perform a  $\mathbb{Z}_2$  (or  $\mathbb{Z}_2^2$ ) truncation that projects out the unstable directions in N = 4 moduli space.

Requirement: structure constants be even w.r.t.  $\mathbb{Z}_2$ .

Leads to known models plus more.

truncations

<sup>1</sup>(D.R., Rosseel, work in progress)

 $\begin{array}{l} \mbox{Truncations from $N = 4 \rightarrow N = 2$} \\ \mbox{Truncation 1: global symmetry $SO(6,6) \rightarrow SO(2,4) \times SO(4,2)$:} \\ \mbox{$SO(3,1) \times SO(3,1) \rightarrow SO(2,1)_{\rm H} \times SO(3)_{\rm H}$,} \\ \mbox{$SO(3,1) \times SO(2,1) \rightarrow \begin{cases} SO(2,1)_{\rm H} \times SO(2)_{\rm H}$,} \\ SO(2,1) \times SO(2)_{\rm H}$,} \\ \mbox{$SO(2,2) \times SO(2,2) \rightarrow SO(2,1) \times SO(2)_{\rm H} \times SO(1,1)_{\rm H}^2$,} \end{cases} \end{array}$ 

Truncation 2: global symmetry  $SO(6,6) \rightarrow SO(2,2) \times SO(4,4)$ :

$$\begin{split} & SO(3,1) \times SO(2,1) \rightarrow SO(2,1)_{\rm H} \times SO(2)_{\rm H}, \\ & SO(2,1) \times SO(2,1) \rightarrow SO(2,1) \times SO(2)_{\rm H}, \\ & SU(2,1) \times SO(2,1) \rightarrow SO(2,1)_{\rm H} \times SO(1,1)_{\rm H}, \quad (\text{in the 5 rep!}), \end{split}$$

Subscript H indicates action on hypersector. Hypersector can be truncated in absence of  $SO(1, 1)_{\rm H}$  or  $SO(2, 1)_{\rm H}$  factors.

Stable De Sitter in N=2 0000● Conclusions 00

## Truncations from $N = 8 \rightarrow N = 4$

#### Global symmetry $E_7 \rightarrow SL(2) \times SO(6,6)$ :

$$\begin{split} SO(4,4) &\to \begin{cases} SO(4) \times SO(4)^1 \,, \\ SO(3,1) \times SO(3,1) \,, \\ SO(2,2) \times SO(2,2) \,, \end{cases} \\ SO(5,3) &\to \begin{cases} SO(4) \times SO(3,1) \,, \\ SO(3,1) \times SO(2,2) \,, \end{cases} \end{split}$$

Leads to a subset of unstable N = 4 models with dS<sup>2</sup>.

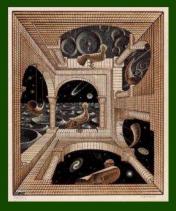
(almost) All N = 4 models with dS either come from N = 8 or can be truncated to N = 2.

<sup>1</sup> (Hull, Warner '86) <sup>1</sup> (Hull, Warner '86) <sup>2</sup> (D.R., Rosseel, to appear)

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions



Introduction


Moduli Stabilisation in N=4

Stable De Sitter in N=2

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions • 0

- Moduli stabilisation and De Sitter in extended supergravity
- Higher-dimensional origin for gaugings at angles.
- None of N = 4 models from (gauge and geometric) flux compactifications. Need for non-geometric fluxes.
- Web of truncations between dS models in N = 2, 4, 8. Higher-N origin of stable dS (and Fayet-Iliopoulos terms) in N = 2.
- String theory embedding of dS in extended supergravity?
- Inflation?

Moduli Stabilisation in N=4 0000000 Stable De Sitter in N=2 00000 Conclusions 00



Thanks for your attention!