SUSY and the brane: A σ-model story

Wieland Staessens
in collaboration with A. Sevrin and A. Wijns
based on: 0709.3733, 0809.3659, 0908.2756

Vrije Universiteit Brussel and The International Solvay Institutes

07 September 2009, Zürich

Outline

Prologue

Outline

Prologue

The story of the Closed String

Outline

Prologue

The story of the Closed String

The story of the Open String

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Introducing the leading characters

Type II Superstrings in general NSNS background (G, H)

Introducing the leading characters

Type II Superstrings in general NSNS background (G, H)
\rightarrow RNS Superstring formalism

Introducing the leading characters

Type II Superstrings in general NSNS background (G, H)
\rightarrow RNS Superstring formalism
$2 \operatorname{dim} \mathcal{N}=(2,2)$ SUSY non-linear σ-models

Introducing the leading characters

Type II Superstrings in general NSNS background (G, H)
\rightarrow RNS Superstring formalism
$2 \operatorname{dim} \mathcal{N}=(2,2)$ SUSY non-linear σ-models
\rightarrow encode local geometry of Generalized Kähler Target manifolds

Introducing the leading characters

Type II Superstrings in general NSNS background (G, H)
\rightarrow RNS Superstring formalism
$2 \operatorname{dim} \mathcal{N}=(2,2)$ SUSY non-linear σ-models
\rightarrow encode local geometry of Generalized Kähler Target manifolds
Why interesting?

- physics: Stringy description of flux compactifications without RR fluxes
- mathematics: playground for Generalized Kähler Geometry

Introducing the leading characters

Type II Superstrings in general NSNS background (G, H)
\rightarrow RNS Superstring formalism
$2 \operatorname{dim} \mathcal{N}=(2,2)$ SUSY non-linear σ-models
\rightarrow encode local geometry of Generalized Kähler Target manifolds
Why interesting?

- physics: Stringy description of flux compactifications without RR fluxes
- mathematics: playground for Generalized Kähler Geometry

Here: Include D-branes in general NSNS background preserving half of the (world-sheet) SUSY

- physics: D-branes \sim gauge d.o.f and chiral matter (intersecting)
- mathematics: D-branes \sim subspaces of Generalized Kähler Geometry

Introducing the leading characters

SUSY \rightarrow Superspace:

1. exhibits the relation between (extended) SUSY on world-sheet and (generalized) complex geometry on target space
2. facilitates the analysis
3. full off-shell $\mathcal{N}=(2,2)$ superspace description is known

Introducing the leading characters

SUSY \rightarrow Superspace:

1. exhibits the relation between (extended) SUSY on world-sheet and (generalized) complex geometry on target space
2. facilitates the analysis
3. full off-shell $\mathcal{N}=(2,2)$ superspace description is known

Boundary SUSY \rightarrow Boundary Superspace

1. fruitful for the local geometric description of a D-brane wrapping a subspace
2. appropriate setting for analysis of β-function
\Rightarrow Stability conditions for D-brane

Introducing the leading characters

SUSY \rightarrow Superspace:

1. exhibits the relation between (extended) SUSY on world-sheet and (generalized) complex geometry on target space
2. facilitates the analysis
3. full off-shell $\mathcal{N}=(2,2)$ superspace description is known

Boundary SUSY \rightarrow Boundary Superspace

1. fruitful for the local geometric description of a D-brane wrapping a subspace
2. appropriate setting for analysis of β-function
\Rightarrow Stability conditions for D-brane

Purpose of this talk

D-branes on Generalized Kähler Geometries using 2 dim SUSY σ-models in boundary superspace

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

The $\mathcal{N}=(1,1)$ SUSY non-linear σ-model

σ-model consists of mappings $X: \Sigma \rightarrow \mathcal{M}$

The $\mathcal{N}=(1,1)$ SUSY non-linear σ-model

σ-model consists of mappings $X: \Sigma \rightarrow \mathcal{M}$
Σ : (super)world-sheet with coordinates

- (bosonic) light-cone coordinates: $\sigma^{\neq} \equiv \tau+\sigma, \sigma^{=} \equiv \tau-\sigma$
- (fermionic) coordinates θ^{+}, θ^{-}with derivatives:

$$
D_{+}^{2}=-\frac{i}{2} \partial_{\neq}, \quad D_{-}^{2}=-\frac{i}{2} \partial_{=}, \quad\left\{D_{+}, D_{-}\right\}=0
$$

The $\mathcal{N}=(1,1)$ SUSY non-linear σ-model

σ-model consists of mappings $X: \Sigma \rightarrow \mathcal{M}$
Σ : (super)world-sheet with coordinates

- (bosonic) light-cone coordinates: $\sigma^{\neq} \equiv \tau+\sigma, \sigma^{=} \equiv \tau-\sigma$
- (fermionic) coordinates θ^{+}, θ^{-}with derivatives: $D_{+}^{2}=-\frac{i}{2} \partial_{\neq}, \quad D_{-}^{2}=-\frac{i}{2} \partial_{=}, \quad\left\{D_{+}, D_{-}\right\}=0$
\mathcal{M} : target manifold with local coordinates $X^{a}, a \in\{1, \ldots, d\}$
- metric $g_{a b}(X)$
- Closed 3-form (torsion) $H_{a b c}(X)$, locally: $H_{a b c}=-\frac{3}{2} \partial_{[a} B_{b c]}$ extra gauge symmetry $B \rightarrow B+d A$
- 2 connections $\Gamma_{(\pm) b c}^{a} \equiv\left\{\begin{array}{l}a \\ b c\end{array}\right\} \pm H^{a}{ }_{b c}$, but $\Gamma_{(+) b c}^{a}=\Gamma_{(-) c b}^{a}$

The action and extended SUSY

Using $\mathcal{N}=(1,1)$ superspace the action is simply

$$
\mathcal{S}_{\mathcal{N}=(1,1)}=\int d^{2} \sigma d^{2} \theta\left(G_{a b}+B_{a b}\right) D_{+} X^{a} D_{-} X^{b}
$$

The action and extended SUSY

Using $\mathcal{N}=(1,1)$ superspace the action is simply

$$
\mathcal{S}_{\mathcal{N}=(1,1)}=\int d^{2} \sigma d^{2} \theta\left(G_{a b}+B_{a b}\right) D_{+} X^{a} D_{-} X^{b}
$$

Additional world-sheet SUSY? [Alvarez-Gaumé - Freedman (1981); Gates-Hull-Roček (1984)]

$$
\delta X^{a}=\epsilon^{+} J_{(+) b}^{a}(X) D_{+} X^{b}+\epsilon^{-} J_{(-) b}^{a}(X) D_{-} X^{b}
$$

The action and extended SUSY

Using $\mathcal{N}=(1,1)$ superspace the action is simply

$$
\mathcal{S}_{\mathcal{N}=(1,1)}=\int d^{2} \sigma d^{2} \theta\left(G_{a b}+B_{a b}\right) D_{+} X^{a} D_{-} X^{b}
$$

Additional world-sheet SUSY? [Alvarez-Gaumé - Freedman (1981); Gates-Hull-Roček (1984)]

$$
\delta X^{a}=\epsilon^{+} J_{(+) b}^{a}(X) D_{+} X^{b}+\epsilon^{-} J_{(-) b}^{a}(X) D_{-} X^{b}
$$

\rightarrow requirement 1: SUSY algebra closes (off-shell) on-shell $\Rightarrow J_{+}$and J_{-}are two (commuting) complex structures

The action and extended SUSY

Using $\mathcal{N}=(1,1)$ superspace the action is simply

$$
\mathcal{S}_{\mathcal{N}=(1,1)}=\int d^{2} \sigma d^{2} \theta\left(G_{a b}+B_{a b}\right) D_{+} X^{a} D_{-} X^{b}
$$

Additional world-sheet SUSY? [Alvarez-Gaumé - Freedman (1981); Gates-Hull-Roček (1984)]

$$
\delta X^{a}=\epsilon^{+} J_{(+) b}^{a}(X) D_{+} X^{b}+\epsilon^{-} J_{(-) b}^{a}(X) D_{-} X^{b}
$$

\rightarrow requirement 1: SUSY algebra closes (off-shell) on-shell $\Rightarrow J_{+}$and J_{-}are two (commuting) complex structures \rightarrow requirement 2 : $\mathcal{N}=(1,1)$ action is invariant

$$
\begin{aligned}
J_{(\pm)}^{T} G J_{ \pm} & =G \\
\nabla_{a}^{(\pm)} J_{(\pm) c}^{b} & =0
\end{aligned}
$$

The action and extended SUSY

Using $\mathcal{N}=(1,1)$ superspace the action is simply

$$
\mathcal{S}_{\mathcal{N}=(1,1)}=\int d^{2} \sigma d^{2} \theta\left(G_{a b}+B_{a b}\right) D_{+} X^{a} D_{-} X^{b}
$$

Additional world-sheet SUSY? [Alvarez-Gaumé - Freedman (1981); Gates-Hull-Roček (1984)]

$$
\delta X^{a}=\epsilon^{+} J_{(+) b}^{a}(X) D_{+} X^{b}+\epsilon^{-} J_{(-) b}^{a}(X) D_{-} X^{b}
$$

\rightarrow requirement 1: SUSY algebra closes (off-shell) on-shell $\Rightarrow J_{+}$and J_{-}are two (commuting) complex structures \rightarrow requirement 2 : $\mathcal{N}=(1,1)$ action is invariant

$$
\begin{aligned}
J_{(\pm)}^{T} G J_{ \pm} & =G \\
\nabla_{a}^{(\pm)} J_{(\pm) c}^{b} & =0
\end{aligned}
$$

$\Rightarrow \mathcal{M}$ characterized by $\left(G_{a b}, H_{a b c}, J_{ \pm}\right)$: Bihermitian Geometry or Generalized Kähler Geometry [Gualtieri math/0401221]

$\mathcal{N}=(2,2)$ Superspace formulation

- $\mathcal{N}=(2,2)$ superspace coordinates: $\sigma^{\ddagger}, \sigma^{=}, \theta^{+}, \theta^{-}, \hat{\theta}^{+}, \hat{\theta}^{-}$ (+ corresponding derivatives) $\mathcal{N}=(2,2)$ action

$$
\mathcal{S}_{\mathcal{N}=(2,2)}=4 \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} V(X, \bar{X})
$$

$\mathcal{N}=(2,2)$ Superspace formulation

- $\mathcal{N}=(2,2)$ superspace coordinates: $\sigma^{\neq}, \sigma^{=}, \theta^{+}, \theta^{-}, \hat{\theta}^{+}, \hat{\theta}^{-}$ (+ corresponding derivatives)
$\mathcal{N}=(2,2)$ action

$$
\mathcal{S}_{\mathcal{N}=(2,2)}=4 \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} V(X, \bar{X})
$$

- $\mathcal{N}=(2,2) \mathbb{C}$ superfields $X \rightarrow$ Too many d.o.f. and no dynamics
\rightarrow impose constraints: $\hat{D}_{ \pm} X^{a}=J_{(\pm) b}^{a} D_{ \pm} X^{b}$

$\mathcal{N}=(2,2)$ Superspace formulation

- $\mathcal{N}=(2,2)$ superspace coordinates: $\sigma^{\neq}, \sigma^{=}, \theta^{+}, \theta^{-}, \hat{\theta}^{+}, \hat{\theta}^{-}$ (+ corresponding derivatives)
$\mathcal{N}=(2,2)$ action

$$
\mathcal{S}_{\mathcal{N}=(2,2)}=4 \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} V(X, \bar{X})
$$

- $\mathcal{N}=(2,2) \mathbb{C}$ superfields $X \rightarrow$ Too many d.o.f. and no dynamics
\rightarrow impose constraints: $\hat{D}_{ \pm} X^{a}=J_{(\pm) b}^{a} D_{ \pm} X^{b}$
- integrability conditions $\Rightarrow J_{(+)}, J_{(-)}$complex structures 3 types of superfield representation:

$\mathcal{N}=(2,2)$ Superspace formulation

- $\mathcal{N}=(2,2)$ superspace coordinates: $\sigma^{\ddagger}, \sigma^{=}, \theta^{+}, \theta^{-}, \hat{\theta}^{+}, \hat{\theta}^{-}$ (+ corresponding derivatives)
$\mathcal{N}=(2,2)$ action

$$
\mathcal{S}_{\mathcal{N}=(2,2)}=4 \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} V(X, \bar{X})
$$

- $\mathcal{N}=(2,2) \mathbb{C}$ superfields $X \rightarrow$ Too many d.o.f. and no dynamics
\rightarrow impose constraints: $\hat{D}_{ \pm} X^{a}=J_{(\pm) b}^{a} D_{ \pm} X^{b}$
- integrability conditions $\Rightarrow J_{(+)}, J_{(-)}$complex structures 3 types of superfield representation:

1. CHIRAL $J_{(+)}=J_{(-)}:(z, \bar{z})$

$\mathcal{N}=(2,2)$ Superspace formulation

- $\mathcal{N}=(2,2)$ superspace coordinates: $\sigma^{\ddagger}, \sigma^{=}, \theta^{+}, \theta^{-}, \hat{\theta}^{+}, \hat{\theta}^{-}$ (+ corresponding derivatives)
$\mathcal{N}=(2,2)$ action

$$
\mathcal{S}_{\mathcal{N}=(2,2)}=4 \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} V(X, \bar{X})
$$

- $\mathcal{N}=(2,2) \mathbb{C}$ superfields $X \rightarrow$ Too many d.o.f. and no dynamics
\rightarrow impose constraints: $\hat{D}_{ \pm} X^{a}=J_{(\pm) b}^{a} D_{ \pm} X^{b}$
- integrability conditions $\Rightarrow J_{(+)}, J_{(-)}$complex structures 3 types of superfield representation:

1. CHIRAL $J_{(+)}=J_{(-)}:(z, \bar{z})$
2. TWISTED CHIRAL $J_{(+)}=-J_{(-)}:(w, \bar{w})$

$\mathcal{N}=(2,2)$ Superspace formulation

- $\mathcal{N}=(2,2)$ superspace coordinates: $\sigma^{\ddagger}, \sigma^{=}, \theta^{+}, \theta^{-}, \hat{\theta}^{+}, \hat{\theta}^{-}$ (+ corresponding derivatives)
$\mathcal{N}=(2,2)$ action

$$
\mathcal{S}_{\mathcal{N}=(2,2)}=4 \int d^{2} \sigma d^{2} \theta d^{2} \hat{\theta} V(X, \bar{X})
$$

- $\mathcal{N}=(2,2) \mathbb{C}$ superfields $X \rightarrow$ Too many d.o.f. and no dynamics
\rightarrow impose constraints: $\hat{D}_{ \pm} X^{a}=J_{(\pm) b}^{a} D_{ \pm} X^{b}$
- integrability conditions $\Rightarrow J_{(+)}, J_{(-)}$complex structures 3 types of superfield representation:

1. CHIRAL $J_{(+)}=J_{(-)}:(z, \bar{z})$
2. TWISTED CHIRAL $J_{(+)}=-J_{(-)} \vdots(w, \bar{w})$
3. SEMI-CHIRAL $\left[J_{(+)}, J_{(-)}\right] \neq 0:(I, \bar{l}, r, \bar{r})$

- The most general model consists of chiral, twisted chiral and semi-chiral superfields: $V(z, \bar{z}, w, \bar{w}, l, \bar{l}, r, \bar{r})$
- The most general model consists of chiral, twisted chiral and semi-chiral superfields: $V(z, \bar{z}, w, \bar{w}, I, \bar{l}, r, \bar{r})$
- Reduction $\mathcal{N}=(2,2) \rightarrow \mathcal{N}=(1,1)$ superspace by integrating out $\hat{\theta}^{+}, \hat{\theta}^{-}+$elimination of auxiliary fields
$\Rightarrow G_{a b}, B_{a b}, J_{(\pm)}$as non-linear expressions of V
- The most general model consists of chiral, twisted chiral and semi-chiral superfields: $V(z, \bar{z}, w, \bar{w}, l, \bar{l}, r, \bar{r})$
- Reduction $\mathcal{N}=(2,2) \rightarrow \mathcal{N}=(1,1)$ superspace by integrating out $\hat{\theta}^{+}, \hat{\theta}^{-}+$elimination of auxiliary fields $\Rightarrow G_{a b}, B_{a b}, J_{(\pm)}$as non-linear expressions of V
- special case: chiral and/or twisted chiral \rightarrow linear expressions e.g. 4 dim with chiral and twisted chiral

$$
\begin{array}{cc}
g_{z \bar{z}}=+V_{z \bar{z}} & g_{w \bar{w}}=-V_{w \bar{w}} \\
b_{z \bar{w}}=-V_{z \bar{w}} & b_{w \bar{z}}=+V_{w \bar{z}}
\end{array}
$$

- The most general model consists of chiral, twisted chiral and semi-chiral superfields: $V(z, \bar{z}, w, \bar{w}, I, \bar{l}, r, \bar{r})$
- Reduction $\mathcal{N}=(2,2) \rightarrow \mathcal{N}=(1,1)$ superspace by integrating out $\hat{\theta}^{+}, \hat{\theta}^{-}+$elimination of auxiliary fields
$\Rightarrow G_{a b}, B_{a b}, J_{(\pm)}$as non-linear expressions of V
- special case: chiral and/or twisted chiral \rightarrow linear expressions e.g. 4 dim with chiral and twisted chiral

$$
\begin{array}{cc}
g_{z \bar{z}}=+V_{z \bar{z}} & g_{w \bar{w}}=-V_{w \bar{w}} \\
b_{z \bar{w}}=-V_{z \bar{w}} & b_{w \bar{z}}=+V_{w \bar{z}}
\end{array}
$$

- potential V is determined up to Generalized Kähler transformation:
$V \rightarrow V+F(z, w, l)+\bar{F}(\bar{z}, \bar{w}, \bar{l})+G(z, \bar{w}, r)+\bar{G}(\bar{z}, w, \bar{r})$
- The most general model consists of chiral, twisted chiral and semi-chiral superfields: $V(z, \bar{z}, w, \bar{w}, l, \bar{l}, r, \bar{r})$
- Reduction $\mathcal{N}=(2,2) \rightarrow \mathcal{N}=(1,1)$ superspace by integrating out $\hat{\theta}^{+}, \hat{\theta}^{-}+$elimination of auxiliary fields
$\Rightarrow G_{a b}, B_{a b}, J_{(\pm)}$as non-linear expressions of V
- special case: chiral and/or twisted chiral \rightarrow linear expressions e.g. 4 dim with chiral and twisted chiral

$$
\begin{array}{cc}
g_{z \bar{z}}=+V_{z \bar{z}} & g_{w \bar{w}}=-V_{w \bar{w}} \\
b_{z \bar{w}}=-V_{z \bar{w}} & b_{w \bar{z}}=+V_{w \bar{z}}
\end{array}
$$

- potential V is determined up to Generalized Kähler transformation:
$V \rightarrow V+F(z, w, l)+\bar{F}(\bar{z}, \bar{w}, \bar{l})+G(z, \bar{w}, r)+\bar{G}(\bar{z}, w, \bar{r})$
- toy examples: $T^{4}, S U(2) \times U(1)$

Toy Examples

- torus T^{4} with $H=0$
- 2 chiral
- 2 twisted chiral
- 1 chiral +1 twisted chiral
- 1 semi-chiral

Toy Examples

- torus T^{4} with $H=0$
- 2 chiral
- 2 twisted chiral
- 1 chiral +1 twisted chiral
- 1 semi-chiral
- WZW model $S U(2) \times U(1)$ with $H \neq 0$
- 1 chiral +1 twisted chiral [Roček, Schoutens,Sevrin '91]
- 1 Semi-chiral [Sevrin-Troost hep-th/9610102]

Conclusions for the closed string

- Extended SUSY on the world-sheet
\square
Complex structure(s) on the target space
\Rightarrow Target space geometry: $\left(G, H, J_{(\pm)}\right)$

Conclusions for the closed string

- Extended SUSY on the world-sheet
\square
Complex structure(s) on the target space \Rightarrow Target space geometry: $\left(G, H, J_{(\pm)}\right)$
- Conditions on target space geometry: solved in terms of a generalized Kähler potential V

Conclusions for the closed string

- Extended SUSY on the world-sheet
\square
Complex structure(s) on the target space
\Rightarrow Target space geometry: $\left(G, H, J_{(\pm)}\right)$
- Conditions on target space geometry: solved in terms of a generalized Kähler potential V
- V is a real function of chiral, twisted chiral and semi-chiral superfields

Conclusions for the closed string

- Extended SUSY on the world-sheet
\square
Complex structure(s) on the target space
\Rightarrow Target space geometry: $\left(G, H, J_{(\pm)}\right)$
- Conditions on target space geometry: solved in terms of a generalized Kähler potential V
- V is a real function of chiral, twisted chiral and semi-chiral superfields
- examples: $T^{2 n}, S U(2) \times U(1), D \times T^{2}, S U(2) \times S U(2), \ldots$

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Related and complementary work

- [Ooguri-Oz-Yin hep-th/9606112]

From $\mathcal{N}=(2,2)$ SCFT $\rightarrow \mathcal{N}=2$ Boundary SCFT
\Rightarrow Boundary conditions: lagrangian (A) and holomorphic (B) branes

Related and complementary work

- [Ooguri-Oz-Yin hep-th/9606112]

From $\mathcal{N}=(2,2)$ SCFT $\rightarrow \mathcal{N}=2$ Boundary SCFT
\Rightarrow Boundary conditions: lagrangian (A) and holomorphic (B) branes

- [Lindström-Zabzine hep-th/0209098]

SUSY variations in σ-models \Rightarrow more general boundary conditions also allowed coisotropic branes (A)

Related and complementary work

- [Ooguri-Oz-Yin hep-th/9606112]

From $\mathcal{N}=(2,2)$ SCFT $\rightarrow \mathcal{N}=2$ Boundary SCFT
\Rightarrow Boundary conditions: lagrangian (A) and holomorphic (B) branes

- [Lindström-Zabzine hep-th/0209098]

SUSY variations in σ-models \Rightarrow more general boundary conditions also allowed coisotropic branes (A)

- [Koerber-Nevens-Sevrin hep-th/0309229]
$\mathcal{N}=2$ boundary superspace for chiral superfields \rightarrow holomorphic branes

Related and complementary work

- [Ooguri-Oz-Yin hep-th/9606112]

From $\mathcal{N}=(2,2)$ SCFT $\rightarrow \mathcal{N}=2$ Boundary SCFT
\Rightarrow Boundary conditions: lagrangian (A) and holomorphic (B) branes

- [Lindström-Zabzine hep-th/0209098]

SUSY variations in σ-models \Rightarrow more general boundary conditions also allowed coisotropic branes (A)

- [Koerber-Nevens-Sevrin hep-th/0309229]
$\mathcal{N}=2$ boundary superspace for chiral superfields \rightarrow holomorphic branes
- [Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]
$\mathcal{N}=2$ boundary superspace for twisted chiral and semi-chiral superfields \rightarrow lagrangian and coisotropic branes

$\mathcal{N}=2$ boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

- boundary at $\sigma=0, \theta^{\prime}=0, \hat{\theta}^{\prime}=0: \mathcal{N}=(2,2) \rightarrow \mathcal{N}=2$ \star unbroken directions: $\partial_{\tau}, D \equiv D_{+}+D_{-}, \hat{D} \equiv \hat{D}_{+}+\hat{D}_{-}$ \star broken directions: $\partial_{\sigma}, D^{\prime} \equiv D_{+}-D_{-}, \hat{D}^{\prime} \equiv \hat{D}_{+}-\hat{D}_{-}$

$\mathcal{N}=2$ boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

- boundary at $\sigma=0, \theta^{\prime}=0, \hat{\theta}^{\prime}=0: \mathcal{N}=(2,2) \rightarrow \mathcal{N}=2$ \star unbroken directions: $\partial_{\tau}, D \equiv D_{+}+D_{-}, \hat{D} \equiv \hat{D}_{+}+\hat{D}_{-}$ \star broken directions: $\partial_{\sigma}, D^{\prime} \equiv D_{+}-D_{-}, \hat{D}^{\prime} \equiv \hat{D}_{+}-\hat{D}_{-}$
- $\mathcal{N}=2$ boundary superfields are 1 dim @ boundary: field properties @ boundary determine which boundary conditions

$\mathcal{N}=2$ boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

- boundary at $\sigma=0, \theta^{\prime}=0, \hat{\theta}^{\prime}=0: \mathcal{N}=(2,2) \rightarrow \mathcal{N}=2$ \star unbroken directions: $\partial_{\tau}, D \equiv D_{+}+D_{-}, \hat{D} \equiv \hat{D}_{+}+\hat{D}_{-}$ \star broken directions: $\partial_{\sigma}, D^{\prime} \equiv D_{+}-D_{-}, \hat{D}^{\prime} \equiv \hat{D}_{+}-\hat{D}_{-}$
- $\mathcal{N}=2$ boundary superfields are 1 dim @ boundary: field properties @ boundary determine which boundary conditions

1 chiral field (z): constrained chiral superfields ($\hat{D} z=i D z$)
$\rightarrow 2$ Dirichlet conditions
$\rightarrow 2$ Neumann conditions

$\mathcal{N}=2$ boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

- boundary at $\sigma=0, \theta^{\prime}=0, \hat{\theta}^{\prime}=0: \mathcal{N}=(2,2) \rightarrow \mathcal{N}=2$ \star unbroken directions: $\partial_{\tau}, D \equiv D_{+}+D_{-}, \hat{D} \equiv \hat{D}_{+}+\hat{D}_{-}$ \star broken directions: $\partial_{\sigma}, D^{\prime} \equiv D_{+}-D_{-}, \hat{D}^{\prime} \equiv \hat{D}_{+}-\hat{D}_{-}$
- $\mathcal{N}=2$ boundary superfields are 1 dim @ boundary: field properties @ boundary determine which boundary conditions

1 chiral field (z): constrained chiral superfields ($\hat{D} z=i D z$)
$\rightarrow 2$ Dirichlet conditions
$\rightarrow 2$ Neumann conditions
2 twisted chiral field (w) and semi-chiral fields ($1, r$): unconstrained superfields
\rightarrow Dirichlet and associated Neumann (lagrangian)
\rightarrow full Neumann conditions (coisotropic)

$\mathcal{N}=2$ boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

- boundary at $\sigma=0, \theta^{\prime}=0, \hat{\theta}^{\prime}=0: \mathcal{N}=(2,2) \rightarrow \mathcal{N}=2$ \star unbroken directions: $\partial_{\tau}, D \equiv D_{+}+D_{-}, \hat{D} \equiv \hat{D}_{+}+\hat{D}_{-}$ \star broken directions: $\partial_{\sigma}, D^{\prime} \equiv D_{+}-D_{-}, \hat{D}^{\prime} \equiv \hat{D}_{+}-\hat{D}_{-}$
- $\mathcal{N}=2$ boundary superfields are 1 dim @ boundary: field properties @ boundary determine which boundary conditions

1 chiral field (z): constrained chiral superfields ($\hat{D} z=i D z$)
$\rightarrow 2$ Dirichlet conditions
$\rightarrow 2$ Neumann conditions
2 twisted chiral field (w) and semi-chiral fields ($(, r)$: unconstrained superfields
\rightarrow Dirichlet and associated Neumann (lagrangian)
\rightarrow full Neumann conditions (coisotropic)

- \Rightarrow possible spectrum of D-branes depends on field content

D-brane spectrum

Example: 4 dim target spaces $T^{4}, S U(2) \times U(1), \ldots$

field content	Geometry	spectrum
C C	Kähler	D0, D2, D4
C T	$\left[J_{+}, J_{-}\right]=0$	D1,D3
T T	Kähler	D2, D4
S	$\left[J_{+}, J_{-}\right] \neq 0$	D2, D4

D-brane spectrum

Example: 4 dim target spaces $T^{4}, S U(2) \times U(1), \ldots$

field content	Geometry	spectrum
C C	Kähler	D0, D2, D4
C T	$\left[J_{+}, J_{-}\right]=0$	D1,D3
T T	Kähler	D2, D4
S	$\left[J_{+}, J_{-}\right] \neq 0$	D2, D4

D0 and D1 branes only possible for specific field content

D-brane spectrum

Example: $4 \operatorname{dim}$ target spaces $T^{4}, S U(2) \times U(1), \ldots$

field content	Geometry	spectrum
C C	Kähler	D0, D2, D4
C T	$\left[J_{+}, J_{-}\right]=0$	D1,D3
T T	Kähler	D2, D4
S	$\left[J_{+}, J_{-}\right] \neq 0$	D2, D4

D0 and D1 branes only possible for specific field content
Explicit examples:

- D1- and D3-branes on T^{4} and $S U(2) \times U(1)$ [Sevrin-Ws-Wijns: 0809.3659]
- D2- and D4-branes on T^{4} and $S U(2) \times U(1)$ [Sevrin-WS-Wijns: 0908.2756]

$\mathcal{N}=2$ boundary superspace action

- unbroken directions: $\partial_{\tau}, D, \hat{D}$; broken directions: $\partial_{\sigma}, D^{\prime}, \hat{D}^{\prime}$

$\mathcal{N}=2$ boundary superspace action

- unbroken directions: $\partial_{\tau}, D, \hat{D}$; broken directions: $\partial_{\sigma}, D^{\prime}, \hat{D}^{\prime}$
- most general $\mathcal{N}=2$ action

$$
\mathcal{S}=-\int d^{2} \sigma d \theta d \hat{\theta} D^{\prime} \hat{D}^{\prime} V(z, w, I, r)+i \int d \tau d \theta d \hat{\theta} W(z, w, I, r)
$$

$\mathcal{N}=2$ boundary superspace action

- unbroken directions: $\partial_{\tau}, D, \hat{D}$; broken directions: $\partial_{\sigma}, D^{\prime}, \hat{D}^{\prime}$
- most general $\mathcal{N}=2$ action

$$
\mathcal{S}=-\int d^{2} \sigma d \theta d \hat{\theta} D^{\prime} \hat{D}^{\prime} V(z, w, I, r)+i \int d \tau d \theta d \hat{\theta} W(z, w, I, r)
$$

- model is invariant under generalized Kähler transformation:

$$
\begin{aligned}
V & \rightarrow V+F(z, w, l)+\bar{F}(\bar{z}, \bar{w}, \bar{l})+G(z, \bar{w}, r)+\bar{G}(\bar{z}, w, \bar{r}) \\
W & \rightarrow W-i(F-\bar{F})+i(G-\bar{G})
\end{aligned}
$$

$\mathcal{N}=2$ boundary superspace action

- unbroken directions: $\partial_{\tau}, D, \hat{D}$; broken directions: $\partial_{\sigma}, D^{\prime}, \hat{D}^{\prime}$
- most general $\mathcal{N}=2$ action

$$
\mathcal{S}=-\int d^{2} \sigma d \theta d \hat{\theta} D^{\prime} \hat{D}^{\prime} V(z, w, I, r)+i \int d \tau d \theta d \hat{\theta} W(z, w, I, r)
$$

- model is invariant under generalized Kähler transformation:

$$
\begin{aligned}
V & \rightarrow V+F(z, w, l)+\bar{F}(\bar{z}, \bar{w}, \bar{l})+G(z, \bar{w}, r)+\bar{G}(\bar{z}, w, \bar{r}) \\
W & \rightarrow W-i(F-\bar{F})+i(G-\bar{G})
\end{aligned}
$$

- variation w.r.t. various superfields: $B_{A} \sim i \partial_{A} V$

$$
\delta \mathcal{S}_{\text {boundary }}=i \int d \tau d^{2} \theta\left\{\delta \Lambda^{\alpha} \overline{\mathbb{D}}^{\prime} B_{\alpha}+\delta \Lambda^{\bar{\alpha}} \mathbb{D}^{\prime} B_{\bar{\alpha}}+B_{a} \delta X^{a}+\delta W\right\}
$$

\rightarrow imposing appropiate boundary conditions: $\delta \mathcal{S}_{\text {boundary }}=0$
\Rightarrow Geometric properties of D-brane

Boundary analysis

Main message
Type of Boundary $\leftrightarrow----$ geometric properties Superfields
of D-brane

Boundary analysis

Main message

Type of Boundary
$\leftarrow---\rightarrow$
geometric properties Superfields of D-brane

- [Sevrin-WS-Wijns: 0709.3733]
- purely chiral \rightarrow holomorphic branes with $F_{\alpha \bar{\beta}}=-i W_{\alpha \bar{\beta}}$
- purely twisted chiral \rightarrow lagrangian and coisotropic branes w.r.t. $\omega \equiv-g J_{(+)}$

Boundary analysis

Main message

Type of Boundary
$\leftrightarrow----\quad$ geometric properties Superfields of D-brane

- [Sevrin-WS-Wijns: 0709.3733]
- purely chiral \rightarrow holomorphic branes with $F_{\alpha \bar{\beta}}=-i W_{\alpha \bar{\beta}}$
- purely twisted chiral \rightarrow lagrangian and coisotropic branes w.r.t.
$\omega \equiv-g J_{(+)}$
- [Sevrin-WS-Wijns: 0809.3659]
- chiral + twisted chiral \rightarrow "combination" of the previous two cases

Boundary analysis

Main message

Type of Boundary $\leftrightarrow----$ geometric properties Superfields of D-brane

- [Sevrin-WS-Wijns: 0709.3733]
- purely chiral \rightarrow holomorphic branes with $F_{\alpha \bar{\beta}}=-i W_{\alpha \bar{\beta}}$
- purely twisted chiral \rightarrow lagrangian and coisotropic branes w.r.t.
$\omega \equiv-g J_{(+)}$
- [Sevrin-WS-Wijns: 0809.3659]
- chiral + twisted chiral \rightarrow "combination" of the previous two cases
- [Sevrin-WS-Wijns: 0908.2756]
- twisted chiral + semi-chiral \rightarrow lagrangian and coisotropic branes w.r.t. $\Omega^{(-)} \equiv 2 G\left(J_{+}-J_{-}\right)^{-1}$
- general case \rightarrow not symplectic ?!

D3, D2 and D4 on T^{4}

- $d s^{2}=d z d \bar{z}+d w d \bar{w}, H=0 \rightarrow V=z \bar{z}-w \bar{w}$

D3, D2 and D4 on T^{4}

- $d s^{2}=d z d \bar{z}+d w d \bar{w}, H=0 \rightarrow V=z \bar{z}-w \bar{w}$
- D3-brane \rightarrow Dirichlet $w-\bar{w}=a(z-\bar{z}), a \in \mathbb{Q}$

D3, D2 and D4 on T^{4}

- $d s^{2}=d z d \bar{z}+d w d \bar{w}, H=0 \rightarrow V=z \bar{z}-w \bar{w}$
- D3-brane \rightarrow Dirichlet $w-\bar{w}=a(z-\bar{z}), a \in \mathbb{Q}$
- $\delta \mathcal{S}_{\text {boundary }}=0 \Rightarrow W=-\frac{i}{2}\left(w^{2}-\bar{w}^{2}\right)+$ Neumann for z

D3, D2 and D4 on T^{4}

- $d s^{2}=d z d \bar{z}+d w d \bar{w}, H=0 \rightarrow V=z \bar{z}-w \bar{w}$
- D3-brane \rightarrow Dirichlet $w-\bar{w}=a(z-\bar{z}), a \in \mathbb{Q}$
- $\delta \mathcal{S}_{\text {boundary }}=0 \Rightarrow W=-\frac{i}{2}\left(w^{2}-\bar{w}^{2}\right)+$ Neumann for z
- Generalized Kähler Transformation:

$$
\begin{aligned}
& V \rightarrow V=-\frac{1}{4}(z+\bar{z}-w-\bar{w})^{2}+\frac{1}{4}(z-\bar{z}-w+\bar{w})^{2}+(z+\bar{z})^{2} \\
& W \rightarrow W=\frac{i}{2}(z-\bar{z}-w+\bar{w})(w+\bar{w})
\end{aligned}
$$

D3, D2 and D4 on T^{4}

- $d s^{2}=d z d \bar{z}+d w d \bar{w}, H=0 \rightarrow V=z \bar{z}-w \bar{w}$
- D3-brane \rightarrow Dirichlet $w-\bar{w}=a(z-\bar{z}), a \in \mathbb{Q}$
- $\delta \mathcal{S}_{\text {boundary }}=0 \Rightarrow W=-\frac{i}{2}\left(w^{2}-\bar{w}^{2}\right)+$ Neumann for z
- Generalized Kähler Transformation:

$$
\begin{aligned}
& V \rightarrow V=-\frac{1}{4}(z+\bar{z}-w-\bar{w})^{2}+\frac{1}{4}(z-\bar{z}-w+\bar{w})^{2}+(z+\bar{z})^{2} \\
& W \rightarrow W=\frac{i}{2}(z-\bar{z}-w+\bar{w})(w+\bar{w})
\end{aligned}
$$

- T-dualization: $(z, w) \leftrightarrow---\rightarrow(I, r)$ $a=1 \rightarrow$ D2-brane (lagrangian) $a \neq 1 \rightarrow$ D4-brane (coisotropic)

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Conclusions for the Open String

- Using $\mathcal{N}=2$ Boundary Superspace \rightarrow D-brane geometry characterized by V, W, field content and boundary conditions

Conclusions for the Open String

- Using $\mathcal{N}=2$ Boundary Superspace \rightarrow D-brane geometry characterized by V, W, field content and boundary conditions
- Full geometric characterization for D-branes in terms of symplectic geometry (chiral or twisted + semi-chiral); for general case?

Conclusions for the Open String

- Using $\mathcal{N}=2$ Boundary Superspace \rightarrow D-brane geometry characterized by V, W, field content and boundary conditions
- Full geometric characterization for D-branes in terms of symplectic geometry (chiral or twisted + semi-chiral); for general case?
- Certain D-brane configurations are possible due to presence of worldvolume gauge field (can always be obtained in $\mathcal{N}=2$ Boundary Superspace)

Conclusions for the Open String

- Using $\mathcal{N}=2$ Boundary Superspace \rightarrow D-brane geometry characterized by V, W, field content and boundary conditions
- Full geometric characterization for D-branes in terms of symplectic geometry (chiral or twisted + semi-chiral); for general case?
- Certain D-brane configurations are possible due to presence of worldvolume gauge field (can always be obtained in $\mathcal{N}=2$ Boundary Superspace)
- T-Duality transformations \sim method to construct non-trivial examples of D-branes (e.g. D4c on $T^{4}, S U(2) \times U(1)$, $D \times T^{2}$)

Outlook

Outlook

- Geometric characterization for the general case, possibly in language of GCG

Outlook

Outlook

- Geometric characterization for the general case, possibly in language of GCG
- Extend analysis to 6 dim target spaces (e.g. T^{6})

Outlook

Outlook

- Geometric characterization for the general case, possibly in language of GCG
- Extend analysis to 6 dim target spaces (e.g. T^{6})
- β-function in $\mathcal{N}=2$ boundary superspace \rightarrow stability conditions for D-branes (in casu coisotropic branes)

To be continued...

To be continued... but THE END for now.

Intermezzo

- (M, Ω) is a symplectic $2 n$ dim vector space (i.e. $\Omega^{T}=-\Omega$ and $d \Omega=0$)

Intermezzo

- (M, Ω) is a symplectic $2 n$ dim vector space (i.e. $\Omega^{T}=-\Omega$ and $d \Omega=0$)
- $N \subseteq M \rightarrow$ symplectic complement N^{\perp}

$$
N^{\perp} \equiv\{Y \in M \mid \Omega(X, Y)=0, \forall X \in N\}
$$

Intermezzo

- (M, Ω) is a symplectic $2 n$ dim vector space (i.e. $\Omega^{T}=-\Omega$ and $d \Omega=0$)
- $N \subseteq M \rightarrow$ symplectic complement N^{\perp}

$$
N^{\perp} \equiv\{Y \in M \mid \Omega(X, Y)=0, \forall X \in N\}
$$

(1) Lagrangian subspace:

- $N=\left.N^{\perp} \Leftrightarrow \Omega\right|_{N}=0=\left.\Omega\right|_{N^{\perp}}$
- $\operatorname{dim} N=n$

Intermezzo

- (M, Ω) is a symplectic $2 n$ dim vector space (i.e. $\Omega^{T}=-\Omega$ and $d \Omega=0$)
- $N \subseteq M \rightarrow$ symplectic complement N^{\perp}

$$
N^{\perp} \equiv\{Y \in M \mid \Omega(X, Y)=0, \forall X \in N\}
$$

(1) Lagrangian subspace:

- $N=\left.N^{\perp} \Leftrightarrow \Omega\right|_{N}=0=\left.\Omega\right|_{N^{\perp}}$
- $\operatorname{dim} N=n$
(2) Coisotropic subspace:
- $\left.N^{\perp} \subset N \Leftrightarrow \Omega\right|_{N^{\perp}}=0$
- $\operatorname{dim} N \geq n$

Intermezzo

- (M, Ω) is a symplectic $2 n$ dim vector space phase space: $\left\{q_{1}, q_{2}, p_{1}, p_{2}\right\}$ with canonical Poisson brackets
- $N \subseteq M \longrightarrow$ symplectic complement N^{\perp}

$$
N^{\perp} \equiv\{Y \in M \mid \Omega(X, Y)=0, \forall X \in N\}
$$

(1) Lagrangian subspace:

- $N=\left.N^{\perp} \Leftrightarrow \Omega\right|_{N}=0=\left.\Omega\right|_{N^{\perp}}$
- $\operatorname{dim} N=n$
(2) Coisotropic subspace:
- $\left.N^{\perp} \subset N \Leftrightarrow \Omega\right|_{N^{\perp}}=0$
- $\operatorname{dim} N \geq n$

Intermezzo

- (M, Ω) is a symplectic $2 n$ dim vector space phase space: $\left\{q_{1}, q_{2}, p_{1}, p_{2}\right\}$ with canonical Poisson brackets
- $N \subseteq M \longrightarrow$ symplectic complement N^{\perp}

$$
N^{\perp} \equiv\{Y \in M \mid \Omega(X, Y)=0, \forall X \in N\}
$$

(1) Lagrangian subspace: $\left\{q_{1}, q_{2}\right\}$

- $N=\left.N^{\perp} \Leftrightarrow \Omega\right|_{N}=0=\left.\Omega\right|_{N^{\perp}}$
- $\operatorname{dim} N=n$
(2) Coisotropic subspace:
- $\left.N^{\perp} \subset N \Leftrightarrow \Omega\right|_{N^{\perp}}=0$
- $\operatorname{dim} N \geq n$

Intermezzo

- (M, Ω) is a symplectic $2 n$ dim vector space phase space: $\left\{q_{1}, q_{2}, p_{1}, p_{2}\right\}$ with canonical Poisson brackets
- $N \subseteq M \longrightarrow$ symplectic complement N^{\perp}

$$
N^{\perp} \equiv\{Y \in M \mid \Omega(X, Y)=0, \forall X \in N\}
$$

(1) Lagrangian subspace: $\left\{q_{1}, q_{2}\right\}$

- $N=\left.N^{\perp} \Leftrightarrow \Omega\right|_{N}=0=\left.\Omega\right|_{N^{\perp}}$
- $\operatorname{dim} N=n$
(2) Coisotropic subspace: $\left\{q_{1}, q_{2}, p_{1}\right\}$
- $\left.N^{\perp} \subset N \Leftrightarrow \Omega\right|_{N^{\perp}}=0$
- $\operatorname{dim} N \geq n$

Twisted chiral + Semi-chiral

- boundary variation w.r.t. $X^{a}:(I, \bar{l}, r, \bar{r}, w, \bar{w})$

$$
\begin{aligned}
& \left.\delta \mathcal{S}\right|_{\text {boundary }}=i \int d \tau d^{2} \theta\left\{B_{a}(X) \delta X^{a}+\delta W(X)\right\} \\
\Rightarrow & 2 \Omega_{a b}^{(-)}=\partial_{a} B_{b}-\partial_{b} B_{a}
\end{aligned}
$$

Twisted chiral + Semi-chiral

- boundary variation w.r.t. $X^{a}:(I, \bar{l}, r, \bar{r}, w, \bar{w})$

$$
\begin{aligned}
& \left.\delta \mathcal{S}\right|_{\text {boundary }}=i \int d \tau d^{2} \theta\left\{B_{a}(X) \delta X^{a}+\delta W(X)\right\} \\
\Rightarrow & 2 \Omega_{a b}^{(-)}=\partial_{a} B_{b}-\partial_{b} B_{a}
\end{aligned}
$$

- One can show: $\Omega^{(-)} \equiv 2 G\left(J_{+}-J_{-}\right)^{-1}$ is a symplectic form note: no semi-chiral fields, $\Omega^{(-)} \rightarrow \omega \equiv-g J_{+}$(Kähler)

Twisted chiral + Semi-chiral

- boundary variation w.r.t. $X^{a}:(I, \bar{l}, r, \bar{r}, w, \bar{w})$

$$
\begin{aligned}
& \left.\delta \mathcal{S}\right|_{\text {boundary }}=i \int d \tau d^{2} \theta\left\{B_{a}(X) \delta X^{a}+\delta W(X)\right\} \\
\Rightarrow & 2 \Omega_{a b}^{(-)}=\partial_{a} B_{b}-\partial_{b} B_{a}
\end{aligned}
$$

- One can show: $\Omega^{(-)} \equiv 2 G\left(J_{+}-J_{-}\right)^{-1}$ is a symplectic form note: no semi-chiral fields, $\Omega^{(-)} \rightarrow \omega \equiv-g J_{+}$(Kähler)
- impose appropiate boundary conditions $\rightarrow \delta \mathcal{S}_{\text {boundary }}=0$

Twisted chiral + Semi-chiral

- boundary variation w.r.t. $X^{a}:(I, \bar{l}, r, \bar{r}, w, \bar{w})$

$$
\begin{aligned}
& \left.\delta \mathcal{S}\right|_{\text {boundary }}=i \int d \tau d^{2} \theta\left\{B_{a}(X) \delta X^{a}+\delta W(X)\right\} \\
\Rightarrow & 2 \Omega_{a b}^{(-)}=\partial_{a} B_{b}-\partial_{b} B_{a}
\end{aligned}
$$

- One can show: $\Omega^{(-)} \equiv 2 G\left(J_{+}-J_{-}\right)^{-1}$ is a symplectic form note: no semi-chiral fields, $\Omega^{(-)} \rightarrow \omega \equiv-g J_{+}$(Kähler)
- impose appropiate boundary conditions $\rightarrow \delta \mathcal{S}_{\text {boundary }}=0$
- Dirichlet + associated Neumann $\left(\sigma^{A}\right): \frac{\partial W}{\partial \sigma^{A}}=-B_{b} \frac{\partial X^{b}}{\partial \sigma^{A}}$ $\left.\rightarrow \Omega^{(-)}\right|_{\text {brane }}=0$ and dim brane $=\frac{1}{2}$ dim target space

Twisted chiral + Semi-chiral

- boundary variation w.r.t. $X^{a}:(I, \bar{l}, r, \bar{r}, w, \bar{w})$

$$
\begin{aligned}
& \left.\delta \mathcal{S}\right|_{\text {boundary }}=i \int d \tau d^{2} \theta\left\{B_{a}(X) \delta X^{a}+\delta W(X)\right\} \\
\Rightarrow & 2 \Omega_{a b}^{(-)}=\partial_{a} B_{b}-\partial_{b} B_{a}
\end{aligned}
$$

- One can show: $\Omega^{(-)} \equiv 2 G\left(J_{+}-J_{-}\right)^{-1}$ is a symplectic form note: no semi-chiral fields, $\Omega^{(-)} \rightarrow \omega \equiv-g J_{+}$(Kähler)
- impose appropiate boundary conditions $\rightarrow \delta \mathcal{S}_{\text {boundary }}=0$
- Dirichlet + associated Neumann $\left(\sigma^{A}\right): \frac{\partial W}{\partial \sigma^{A}}=-B_{b} \frac{\partial X^{b}}{\partial \sigma^{A}}$ $\left.\rightarrow \Omega^{(-)}\right|_{\text {brane }}=0$ and dim brane $=\frac{1}{2}$ dim target space
- all Neumann: $\hat{D} X^{a}=K^{a}{ }_{b}(X) D X^{b}$
\rightarrow complex structure $K+U(1)$ flux $F_{a b}=\Omega_{a c}^{(-)} K^{c}{ }_{b}$, brane $^{\perp}=\{0\}$ dim brane $>\frac{1}{2}$ dim target space

T-Duality in $\mathcal{N}=(2,2)$ Superspace

based on: [Gates-Hull-Roček '84], [Buscher '87], [Grisaru-Massar-Sevrin-Troost hep-th/9801080], etc.

T-Duality in $\mathcal{N}=(2,2)$ Superspace

based on: [Gates-Hull-Roček '84], [Buscher '87], [Grisaru-Massar-Sevrin-Troost hep-th/9801080], etc.
T-Duality in $\mathcal{N}=(2,2)$ superspace $=$ Legendre-transformation interchanging different kinds of superfield

T-Duality in $\mathcal{N}=(2,2)$ Superspace

based on: [Gates-Hull-Roček '84], [Buscher '87], [Grisaru-Massar-Sevrin-Troost hep-th/9801080], etc.
T-Duality in $\mathcal{N}=(2,2)$ superspace $=$ Legendre-transformation interchanging different kinds of superfield

$$
\begin{array}{ccc}
\text { chiral }(z) & \nLeftarrow-\cdots & \text { twisted chiral }(w) \\
\text { chiral }(z)+\text { twisted chiral }(w) & \leftrightarrow \cdots & \text { semi-chiral }(I, r)
\end{array}
$$

T-Duality in $\mathcal{N}=(2,2)$ Superspace

based on: [Gates-Hull-Roček '84], [Buscher '87], [Grisaru-Massar-Sevrin-Troost hep-th/9801080], etc.
T-Duality in $\mathcal{N}=(2,2)$ superspace $=$ Legendre-transformation interchanging different kinds of superfield

$$
\begin{align*}
& \text { chiral (} z \text {) } \quad---\rightarrow \text { twisted chiral (w) } \\
& \text { chiral }(z)+\text { twisted chiral }(w) \leftrightarrow \cdots \text { semi-chiral }(I, r) \\
& T^{2} \times D \quad \leftrightarrow \cdots \quad S U(2) \times U(1) \quad \leftrightarrow---\rightarrow \quad T^{2} \times D \\
& \left(z_{1} z_{2}\right) \\
& \text { (zw) } \\
& \left(w_{1} w_{2}\right) \\
& D \times T^{2} \quad \leftrightarrow---\quad S U(2) \times U(1) \\
& \text { (zw) } \tag{Ir}
\end{align*}
$$

T-Duality in $\mathcal{N}=(2,2)$ Superspace

based on: [Gates-Hull-Roček '84], [Buscher '87], [Grisaru-Massar-Sevrin-Troost hep-th/9801080], etc.
T-Duality in $\mathcal{N}=(2,2)$ superspace $=$ Legendre-transformation interchanging different kinds of superfield

$$
\begin{align*}
& \text { chiral (} z \text {) } \quad---\rightarrow \text { twisted chiral (w) } \\
& \text { chiral }(z)+\text { twisted chiral }(w) \leftrightarrow \cdots \text { semi-chiral }(I, r) \\
& T^{2} \times D \quad \leftrightarrow \cdots \quad S U(2) \times U(1) \quad \leftrightarrow---\rightarrow \quad T^{2} \times D \\
& \left(z_{1} z_{2}\right) \\
& \text { (zw) } \\
& \left(w_{1} w_{2}\right) \\
& D \times T^{2} \quad \leftrightarrow---\rightarrow \quad S U(2) \times U(1) \\
& \text { (zw) } \tag{lr}
\end{align*}
$$

Boundaries: add appropiate boundary terms

T-Duality in $\mathcal{N}=(2,2)$ Superspace

based on: [Gates-Hull-Roček '84], [Buscher '87], [Grisaru-Massar-Sevrin-Troost hep-th/9801080], etc.
T-Duality in $\mathcal{N}=(2,2)$ superspace $=$ Legendre-transformation interchanging different kinds of superfield

$$
\begin{array}{ccccc}
\text { chiral }(z) & & \cdots \cdots & \text { twisted chiral }(w) \\
\text { chiral }(z)+\text { twisted chiral }(w) & \cdots \cdots & \text { semi-chiral }(I, r) \\
\\
T^{2} \times D & \cdots \cdots & S U(2) \times U(1) & \cdots \cdots & T^{2} \times D \\
\left(z_{1} z_{2}\right) & & (z w) & & \left(w_{1} w_{2}\right) \\
& & \\
& & \\
& (z w) & & & \tag{Ir}\\
& & & & (l r)
\end{array}
$$

Boundaries: add appropiate boundary terms
Tool to construct complicated (coisotropic) D-brane configurations

T-Duality in $\mathcal{N}=2$ Boundary Superspace

Examples where $z \leftrightarrow----\rightarrow w$
[Sevrin-WS-Wijns: 0709.3733, 0809.3659, 0908.2756]

dual model	original model	dual model
D0 on \tilde{X}_{4}		
$z_{1} z_{2}$		
	D1 on X_{4}	
$z w$	D 2_{ℓ} on \hat{X}_{4}	
D2 on \tilde{X}_{4}		$w_{1} w_{2}$
$z_{1} z_{2}$	D3 on X_{4}	
	$z w$	D4 c_{c} on \hat{X}_{4}
D4 on \tilde{X}_{4}		$w_{1} w_{2}$
$z_{1} z_{2}$		

T-Duality in $\mathcal{N}=2$ Boundary Superspace

Examples where $(z w) \leftrightarrow----\rightarrow$ (Ir)
[Sevrin-WS-Wijns: 0709.3733, 0809.3659, 0908.2756]

original model	dual model
D1 on X_{4} $z w$	
D3 on X_{4} $z w$	on \tilde{X}_{4}
	D4 4_{c} on \tilde{X}_{4} $I r$

D3 branes on T^{4}

- hyper-Kähler: $3 \mathbb{C}$ structures J_{i} satisfying $J_{i} J_{j}=-\delta_{i j} \mathbf{1}+\epsilon_{i j k} J_{k}$

D3 branes on T^{4}

- hyper-Kähler: $3 \mathbb{C}$ structures J_{i} satisfying $J_{i} J_{j}=-\delta_{i j} \mathbf{1}+\epsilon_{i j k} J_{k}$
- flat and assume without torsion

D3 branes on T^{4}

- hyper-Kähler: $3 \mathbb{C}$ structures J_{i} satisfying $J_{i} J_{j}=-\delta_{i j} \mathbf{1}+\epsilon_{i j k} J_{k}$
- flat and assume without torsion
- 1 chiral +1 twisted chiral: $V(z, \bar{z}, w, \bar{w})=z \bar{z}-w \bar{w}$

D3 branes on T^{4}

- hyper-Kähler: $3 \mathbb{C}$ structures J_{i} satisfying $J_{i} J_{j}=-\delta_{i j} \mathbf{1}+\epsilon_{i j k} J_{k}$
- flat and assume without torsion
- 1 chiral +1 twisted chiral: $V(z, \bar{z}, w, \bar{w})=z \bar{z}-w \bar{w}$
- D3-brane

D3 branes on T^{4}

- hyper-Kähler: $3 \mathbb{C}$ structures J_{i} satisfying $J_{i} J_{j}=-\delta_{i j} \mathbf{1}+\epsilon_{i j k} J_{k}$
- flat and assume without torsion
- 1 chiral +1 twisted chiral: $V(z, \bar{z}, w, \bar{w})=z \bar{z}-w \bar{w}$
- D3-brane
- 1 Dirichlet boundary condition

$$
\alpha w+\bar{\alpha} \bar{w}=\beta z+\bar{\beta} \bar{z}, \quad \alpha, \beta \in \mathbb{Z}+i \mathbb{Z}, \alpha \neq 0
$$

D3 branes on T^{4}

- hyper-Kähler: $3 \mathbb{C}$ structures J_{i} satisfying $J_{i} J_{j}=-\delta_{i j} \mathbf{1}+\epsilon_{i j k} J_{k}$
- flat and assume without torsion
- 1 chiral +1 twisted chiral: $V(z, \bar{z}, w, \bar{w})=z \bar{z}-w \bar{w}$
- D3-brane
- 1 Dirichlet boundary condition

$$
\alpha w+\bar{\alpha} \bar{w}=\beta z+\bar{\beta} \bar{z}, \quad \alpha, \beta \in \mathbb{Z}+i \mathbb{Z}, \alpha \neq 0
$$

- 3 Neumann boundary conditions

D3 branes on T^{4}

- hyper-Kähler: $3 \mathbb{C}$ structures J_{i} satisfying $J_{i} J_{j}=-\delta_{i j} \mathbf{1}+\epsilon_{i j k} J_{k}$
- flat and assume without torsion
- 1 chiral +1 twisted chiral: $V(z, \bar{z}, w, \bar{w})=z \bar{z}-w \bar{w}$
- D3-brane
- 1 Dirichlet boundary condition

$$
\alpha w+\bar{\alpha} \bar{w}=\beta z+\bar{\beta} \bar{z}, \quad \alpha, \beta \in \mathbb{Z}+i \mathbb{Z}, \alpha \neq 0
$$

- 3 Neumann boundary conditions
- $U(1)$ gauge field

D3 branes on T^{4}

- hyper-Kähler: $3 \mathbb{C}$ structures J_{i} satisfying $J_{i} J_{j}=-\delta_{i j} \mathbf{1}+\epsilon_{i j k} J_{k}$
- flat and assume without torsion
- 1 chiral +1 twisted chiral: $V(z, \bar{z}, w, \bar{w})=z \bar{z}-w \bar{w}$
- D3-brane
- 1 Dirichlet boundary condition

$$
\alpha w+\bar{\alpha} \bar{w}=\beta z+\bar{\beta} \bar{z}, \quad \alpha, \beta \in \mathbb{Z}+i \mathbb{Z}, \alpha \neq 0
$$

- 3 Neumann boundary conditions
- $U(1)$ gauge field
- boundary potential

$$
W=\frac{i}{2} \frac{\alpha}{\bar{\alpha}} w^{2}-\frac{i}{2} \frac{\bar{\alpha}}{\alpha} \bar{w}^{2}+f(z, \bar{z})
$$

D3 branes on $S^{3} \times S^{1}$

- WZW model on group manifold $S U(2) \times U(1)$ with torsion

D3 branes on $S^{3} \times S^{1}$

- WZW model on group manifold $S U(2) \times U(1)$ with torsion
- 1 chiral +1 twisted chiral [Roček, Schoutens, Sevrin '91]

$$
V=+\int^{z \bar{z} / w \bar{w}} \frac{d q}{q} \ln (1+q)-\frac{1}{2}(\ln w \bar{w})^{2}
$$

D3 branes on $S^{3} \times S^{1}$

- WZW model on group manifold $S U(2) \times U(1)$ with torsion
- 1 chiral +1 twisted chiral [Roček, Schoutens, Sevrin '91]

$$
V=+\int^{z \bar{z} / w \bar{w}} \frac{d q}{q} \ln (1+q)-\frac{1}{2}(\ln w \bar{w})^{2}
$$

- D3-brane

D3 branes on $S^{3} \times S^{1}$

- WZW model on group manifold $S U(2) \times U(1)$ with torsion
- 1 chiral +1 twisted chiral [Roček, Schoutens, Sevrin '91]

$$
V=+\int^{z \bar{z} / w \bar{w}} \frac{d q}{q} \ln (1+q)-\frac{1}{2}(\ln w \bar{w})^{2}
$$

- D3-brane
- 1 Dirichlet boundary condition

$$
-i \ln \frac{w}{\bar{w}}=m_{1} x+m_{2} y, \quad x \equiv \ln (z \bar{z}+w \bar{w}), y \equiv-i \ln \frac{z}{\bar{z}}
$$

D3 branes on $S^{3} \times S^{1}$

- WZW model on group manifold $S U(2) \times U(1)$ with torsion
- 1 chiral +1 twisted chiral [Roček, Schoutens, Sevrin '91]

$$
V=+\int^{z \bar{z} / w \bar{w}} \frac{d q}{q} \ln (1+q)-\frac{1}{2}(\ln w \bar{w})^{2}
$$

- D3-brane
- 1 Dirichlet boundary condition

$$
-i \ln \frac{w}{\bar{w}}=m_{1} x+m_{2} y, \quad x \equiv \ln (z \bar{z}+w \bar{w}), y \equiv-i \ln \frac{z}{\bar{z}}
$$

- 3 Neumann boundary conditions

D3 branes on $S^{3} \times S^{1}$

- WZW model on group manifold $S U(2) \times U(1)$ with torsion
- 1 chiral +1 twisted chiral [Roček, Schoutens, Sevrin '91]

$$
V=+\int^{z \bar{z} / w \bar{w}} \frac{d q}{q} \ln (1+q)-\frac{1}{2}(\ln w \bar{w})^{2}
$$

- D3-brane
- 1 Dirichlet boundary condition

$$
-i \ln \frac{w}{\bar{w}}=m_{1} x+m_{2} y, \quad x \equiv \ln (z \bar{z}+w \bar{w}), y \equiv-i \ln \frac{z}{\bar{z}}
$$

- 3 Neumann boundary conditions
- Hopf coordinates: $z=\cos \psi e^{\rho+i \phi_{1}}, w=\sin \psi e^{\rho+i \phi_{2}}$ with $\phi_{1}, \phi_{2}, \rho \in \mathbb{R} \bmod 2 \pi, \psi \in[0, \pi / 2]$
$\Rightarrow \phi_{2}=m_{1} \rho+m_{2} \phi_{1}, \quad m_{1}, m_{2} \in \mathbb{Z}$

D3 branes on $S^{3} \times S^{1}$

- WZW model on group manifold $S U(2) \times U(1)$ with torsion
- 1 chiral +1 twisted chiral [Roček, Schoutens, Sevrin '91]

$$
V=+\int^{z \bar{z} / w \bar{w}} \frac{d q}{q} \ln (1+q)-\frac{1}{2}(\ln w \bar{w})^{2}
$$

- D3-brane
- 1 Dirichlet boundary condition

$$
-i \ln \frac{w}{\bar{w}}=m_{1} x+m_{2} y, \quad x \equiv \ln (z \bar{z}+w \bar{w}), y \equiv-i \ln \frac{z}{\bar{z}}
$$

- 3 Neumann boundary conditions
- Hopf coordinates: $z=\cos \psi e^{\rho+i \phi_{1}}, w=\sin \psi e^{\rho+i \phi_{2}}$ with $\phi_{1}, \phi_{2}, \rho \in \mathbb{R} \bmod 2 \pi, \psi \in[0, \pi / 2]$
$\Rightarrow \phi_{2}=m_{1} \rho+m_{2} \phi_{1}, \quad m_{1}, m_{2} \in \mathbb{Z}$
- $U(1)$ gauge field

D3 branes on $S^{3} \times S^{1}$

- WZW model on group manifold $S U(2) \times U(1)$ with torsion
- 1 chiral +1 twisted chiral [Roček, Schoutens, Sevrin '91]

$$
V=+\int^{z \bar{z} / w \bar{w}} \frac{d q}{q} \ln (1+q)-\frac{1}{2}(\ln w \bar{w})^{2}
$$

- D3-brane
- 1 Dirichlet boundary condition

$$
-i \ln \frac{w}{\bar{w}}=m_{1} x+m_{2} y, \quad x \equiv \ln (z \bar{z}+w \bar{w}), y \equiv-i \ln \frac{z}{\bar{z}}
$$

- 3 Neumann boundary conditions
- Hopf coordinates: $z=\cos \psi e^{\rho+i \phi_{1}}, w=\sin \psi e^{\rho+i \phi_{2}}$ with $\phi_{1}, \phi_{2}, \rho \in \mathbb{R} \bmod 2 \pi, \psi \in[0, \pi / 2]$
$\Rightarrow \phi_{2}=m_{1} \rho+m_{2} \phi_{1}, \quad m_{1}, m_{2} \in \mathbb{Z}$
- $U(1)$ gauge field
- boundary potential

$$
W=-\frac{m_{1}}{2} x^{2}-m_{2} y \ln z \bar{z}
$$

T-duality on the level of the boundary conditions

General facts

- T-duality

$$
\begin{array}{lll}
\text { IIA String theory } \\
\text { on } S^{1}(R) & \leftrightarrow & \text { II B String theory } \\
\text { on } S^{1}(1 / R)
\end{array}
$$

T-duality on the level of the boundary conditions

General facts

- T-duality

$$
\begin{array}{lll}
\text { IIA String theory } \\
\text { on } S^{1}(R) & \leftrightarrow & \text { II B String theory } \\
\text { on } S^{1}(1 / R)
\end{array}
$$

- closed strings: momentum \leftrightarrow winding number

T-duality on the level of the boundary conditions

General facts

- T-duality

$$
\begin{array}{lll}
\text { IIA String theory } \\
\text { on } S^{1}(R) & \leftrightarrow & \text { II B String theory } \\
\text { on } S^{1}(1 / R)
\end{array}
$$

- closed strings: momentum \leftrightarrow winding number
- open strings: $\partial_{\tau}(\mathrm{D}) \leftrightarrow \partial_{\sigma}(\mathrm{N})$

T-duality on the level of the boundary conditions

General facts

- T-duality

$$
\begin{array}{lll}
\text { IIA String theory } & \leftrightarrow & \text { II B String theory } \\
\text { on } S^{1}(R) & \text { on } S^{1}(1 / R)
\end{array}
$$

- closed strings: momentum \leftrightarrow winding number
- open strings: $\partial_{\tau}(\mathrm{D}) \leftrightarrow \partial_{\sigma}(\mathrm{N})$
- T-duality along Dp-brane $\rightarrow \mathrm{D}(\mathrm{p}-1)$-brane T-duality \perp Dp-brane $\rightarrow \mathrm{D}(\mathrm{p}+1)$-brane

T-duality on the level of the boundary conditions

General facts

- T-duality

$$
\begin{array}{lll}
\text { IIA String theory } \\
\text { on } S^{1}(R) & \leftrightarrow & \text { II B String theory } \\
\text { on } S^{1}(1 / R)
\end{array}
$$

- closed strings: momentum \leftrightarrow winding number
- open strings: $\partial_{\tau}(\mathrm{D}) \leftrightarrow \partial_{\sigma}(\mathrm{N})$
- T-duality along Dp-brane $\rightarrow \mathrm{D}(\mathrm{p}-1)$-brane T-duality \perp Dp-brane $\rightarrow \mathrm{D}(\mathrm{p}+1)$-brane
- magnetized Dp-brane \leftrightarrow rotated $\mathrm{D}(\mathrm{p}-1)$-brane

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]
- Assumption: target space of the sigma model has isometries

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]
- Assumption: target space of the sigma model has isometries
- General philosophy

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]
- Assumption: target space of the sigma model has isometries
- General philosophy

1 Gauge an isometry and introduce a gauge field Y (on the world-sheet)

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]
- Assumption: target space of the sigma model has isometries
- General philosophy

1 Gauge an isometry and introduce a gauge field Y (on the world-sheet)
2 Impose that Y is purely gauge through Lagrange-multiplier in the action

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]
- Assumption: target space of the sigma model has isometries
- General philosophy

1 Gauge an isometry and introduce a gauge field Y (on the world-sheet)
2 Impose that Y is purely gauge through Lagrange-multiplier in the action
3 Integrating out the Lagrange-multiplier yields the original model

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]
- Assumption: target space of the sigma model has isometries
- General philosophy

1 Gauge an isometry and introduce a gauge field Y (on the world-sheet)
2 Impose that Y is purely gauge through Lagrange-multiplier in the action
3 Integrating out the Lagrange-multiplier yields the original model
4 Integrating out Y yields the dual model

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]
- Assumption: target space of the sigma model has isometries
- General philosophy

1 Gauge an isometry and introduce a gauge field Y (on the world-sheet)
2 Impose that Y is purely gauge through Lagrange-multiplier in the action
3 Integrating out the Lagrange-multiplier yields the original model
4 Integrating out Y yields the dual model
5 Boundaries: add appropiate boundary terms to preserve isometry at the boundary

T-duality on the level of the action: basic idea

- based on: [Gates-Hull-Roček '84], [Buscher '87], [Alvarez-Barbon-Borlaf hep-th/9603089], [Roček-Verlinde hep-th/9110053]
- Assumption: target space of the sigma model has isometries
- General philosophy

1 Gauge an isometry and introduce a gauge field Y (on the world-sheet)
2 Impose that Y is purely gauge through Lagrange-multiplier in the action
3 Integrating out the Lagrange-multiplier yields the original model
4 Integrating out Y yields the dual model
5 Boundaries: add appropiate boundary terms to preserve isometry at the boundary

- e.g. Bosonic Sigma Model, $\mathcal{N}=(2,2)$ Sigma Model

T-Duality on the level of the action

To preserve isometry at boundary \rightarrow add boundary terms

T-Duality on the level of the action

To preserve isometry at boundary \rightarrow add boundary terms

- original model on $S^{1}(R)$

$$
\mathcal{S}_{\text {original }}=-\frac{1}{2} \int d^{2} \sigma \partial_{\alpha} X \partial^{\alpha} X
$$

isometry: $X \rightarrow X+$ constant
gauging: $\nabla_{\alpha} X=\partial_{\alpha} X+Y_{\alpha}$
Neumann boundary condition: $\partial_{\sigma} X=0$

T-Duality on the level of the action

To preserve isometry at boundary \rightarrow add boundary terms

- original model on $S^{1}(R)$

$$
\mathcal{S}_{\text {original }}=-\frac{1}{2} \int d^{2} \sigma \partial_{\alpha} X \partial^{\alpha} X
$$

isometry: $X \rightarrow X+$ constant
gauging: $\nabla_{\alpha} X=\partial_{\alpha} X+Y_{\alpha}$
Neumann boundary condition: $\partial_{\sigma} X=0$

- first order action

$$
\mathcal{S}_{(1)}=\int d^{2} \sigma\left(-\frac{1}{2} \nabla_{\alpha} X \nabla^{\alpha} X+\tilde{X} \epsilon^{\alpha \beta} \partial_{\beta} Y_{\alpha}\right)-\int d \tau \tilde{X} Y_{\tau}
$$

gauge choice: $\partial_{\alpha} X=0 \rightarrow Y_{\sigma}=0$ Neumann boundary
condition: $\nabla_{\sigma} X=0$
Dirichlet boundary condition: $\delta \tilde{X}=0$
gauge choice: $\partial_{\alpha} X=0 \rightarrow Y_{\sigma}=0$

- Varying $\tilde{X} \rightarrow Y_{\alpha}=\partial_{\alpha} X$
and boundary condition $Y_{\sigma}=\partial_{\sigma} X=0$
- Varying $\tilde{X} \rightarrow Y_{\alpha}=\partial_{\alpha} X$ and boundary condition $Y_{\sigma}=\partial_{\sigma} X=0$
- Varying $Y_{\alpha} \rightarrow Y_{\alpha}=-\epsilon_{\alpha}^{\beta} \partial_{\beta} \tilde{X} \rightarrow$ dual model on $S^{1}(1 / R)$ and boundary condition $Y_{\sigma}=\partial_{\tau} \tilde{X}=0$ or $\delta \tilde{X}=0$

$$
\mathcal{S}_{\text {dual }}=-\frac{1}{2} \int d^{2} \sigma \partial_{\alpha} \tilde{X} \partial^{\alpha} \tilde{X}
$$

- Varying $\tilde{X} \rightarrow Y_{\alpha}=\partial_{\alpha} X$
and boundary condition $Y_{\sigma}=\partial_{\sigma} X=0$
- Varying $Y_{\alpha} \rightarrow Y_{\alpha}=-\epsilon_{\alpha}^{\beta} \partial_{\beta} \tilde{X} \rightarrow$ dual model on $S^{1}(1 / R)$ and boundary condition $Y_{\sigma}=\partial_{\tau} \tilde{X}=0$ or $\delta \tilde{X}=0$

$$
\mathcal{S}_{\text {dual }}=-\frac{1}{2} \int d^{2} \sigma \partial_{\alpha} \tilde{X} \partial^{\alpha} \tilde{X}
$$

- boundary term: $\int d \tau \tilde{X} \partial_{\tau} X$ introduced to preserve isometry $\tilde{X} \rightarrow \tilde{X}+$ constant $\rightarrow \partial_{\tau} \tilde{X}=0$ or $\partial_{\tau} X=0$
- Varying $\tilde{X} \rightarrow Y_{\alpha}=\partial_{\alpha} X$
and boundary condition $Y_{\sigma}=\partial_{\sigma} X=0$
- Varying $Y_{\alpha} \rightarrow Y_{\alpha}=-\epsilon_{\alpha}^{\beta} \partial_{\beta} \tilde{X} \rightarrow$ dual model on $S^{1}(1 / R)$ and boundary condition $Y_{\sigma}=\partial_{\tau} \tilde{X}=0$ or $\delta \tilde{X}=0$

$$
\mathcal{S}_{\text {dual }}=-\frac{1}{2} \int d^{2} \sigma \partial_{\alpha} \tilde{X} \partial^{\alpha} \tilde{X}
$$

- boundary term: $\int d \tau \tilde{X} \partial_{\tau} X$ introduced to preserve isometry $\tilde{X} \rightarrow \tilde{X}+$ constant $\rightarrow \partial_{\tau} \tilde{X}=0$ or $\partial_{\tau} X=0$
- Note: D2-brane on T^{2} with non-trivial magnetic flux F \rightarrow D1-brane on T^{2} at an angle $\theta=\arctan F$
- Varying $\tilde{X} \rightarrow Y_{\alpha}=\partial_{\alpha} X$ and boundary condition $Y_{\sigma}=\partial_{\sigma} X=0$
- Varying $Y_{\alpha} \rightarrow Y_{\alpha}=-\epsilon_{\alpha}^{\beta} \partial_{\beta} \tilde{X} \rightarrow$ dual model on $S^{1}(1 / R)$ and boundary condition $Y_{\sigma}=\partial_{\tau} \tilde{X}=0$ or $\delta \tilde{X}=0$

$$
\mathcal{S}_{\text {dual }}=-\frac{1}{2} \int d^{2} \sigma \partial_{\alpha} \tilde{X} \partial^{\alpha} \tilde{X}
$$

- boundary term: $\int d \tau \tilde{X} \partial_{\tau} X$ introduced to preserve isometry $\tilde{X} \rightarrow \tilde{X}+$ constant $\rightarrow \partial_{\tau} \tilde{X}=0$ or $\partial_{\tau} X=0$
- Note: D2-brane on T^{2} with non-trivial magnetic flux F \rightarrow D1-brane on T^{2} at an angle $\theta=\arctan F$
- Note: same procedure for general string background (including $B_{\mu \nu}$) with Killing-isometry \rightarrow Buscher rules

T-Duality in $\mathcal{N}=(2,2)$ Superspace: closed strings

chiral superfield: $\overline{\mathbb{D}}_{ \pm} z=0+$ c.c. twisted chiral superfield $\overline{\mathbb{D}}_{+} w=0=\mathbb{D}_{-} w+$ c.c.

T-Duality in $\mathcal{N}=(2,2)$ Superspace: closed strings

chiral superfield: $\overline{\mathbb{D}}_{ \pm} z=0+$ c.c.
twisted chiral superfield $\overline{\mathbb{D}}_{+} w=0=\mathbb{D}_{-} w+$ c.c.

	chiral (z)	twisted chiral (w)
isometry	$z \rightarrow z+i \epsilon$	$w \rightarrow w+i \epsilon$
\mathbb{R} gauge field fieldstrengths	$\begin{gathered} Y_{z} \\ \mathbb{D}_{-} \overline{\mathbb{D}}_{+} Y_{z}+\text { c.c. } \end{gathered}$	$\begin{gathered} Y_{w} \\ \overline{\mathbb{D}}_{-} \overline{\mathbb{D}}_{+} Y_{w}+c . c . \end{gathered}$
potential	$\begin{aligned} \tilde{V}= & V\left(Y_{z}\right)-(u+\bar{u}) Y_{z} \\ & u \equiv \overline{\mathbb{D}}_{+} \mathbb{D}_{-} \tilde{X} \end{aligned}$	$\begin{aligned} & \tilde{V}= V\left(Y_{w}\right)-(u+\bar{u}) Y_{w} \\ & u \equiv \overline{\mathbb{D}}_{+} \overline{\mathbb{D}}_{-} \tilde{X} \end{aligned}$
varying \tilde{X}	$Y_{z}=z+\bar{z}$	$Y_{w}=w+\bar{w}$
varying Y	dual model u, \bar{u}	dual model u, \bar{u}

T-Duality in $\mathcal{N}=(2,2)$ Superspace: closed strings

chiral superfield: $\overline{\mathbb{D}}_{ \pm} z=0+$ c.c.
twisted chiral superfield $\overline{\mathbb{D}}_{+} w=0=\mathbb{D}_{-} w+$ c.c.

	chiral (z)	twisted chiral (w)
isometry	$z \rightarrow z+i \epsilon$	$w \rightarrow w+i \epsilon$
\mathbb{R} gauge field fieldstrengths	$\begin{gathered} Y_{z} \\ \mathbb{D}_{-} \overline{\mathbb{D}}_{+} Y_{z}+c . c . \end{gathered}$	$\begin{gathered} Y_{w} \\ \overline{\mathbb{D}}_{-} \overline{\mathbb{D}}_{+} Y_{w}+\text { c.c. } \end{gathered}$
potential	$\begin{aligned} \tilde{V}= & V\left(Y_{z}\right)-(u+\bar{u}) Y_{z} \\ & u \equiv \overline{\mathbb{D}}_{+} \mathbb{D}_{-} \tilde{X} \end{aligned}$	$\begin{aligned} \tilde{V}= & V\left(Y_{w}\right)-(u+\bar{u}) Y_{w} \\ & u \equiv \overline{\mathbb{D}}_{+} \overline{\mathbb{D}}_{-} \tilde{X} \end{aligned}$
varying \tilde{X}	$Y_{z}=z+\bar{z}$	$Y_{w}=w+\bar{w}$
varying Y	dual model u, \bar{u}	dual model u, \bar{u}

T-Duality in $\mathcal{N}=(2,2)$ superspace $=$ Legendre-transformation interchanging chiral and twisted chiral superfields

T-Duality in $\mathcal{N}=(2,2)$ Superspace: closed strings

chiral superfield: $\overline{\mathbb{D}}_{ \pm} z=0+$ c.c.
twisted chiral superfield $\overline{\mathbb{D}}_{+} w=0=\mathbb{D}_{-} w+$ c.c.

	chiral (z)	twisted chiral (w)
isometry	$z \rightarrow z+i \epsilon$	$w \rightarrow w+i \epsilon$
\mathbb{R} gauge field	Y_{z}	Y_{w}
fieldstrengths	$\mathbb{D}_{-} \overline{\mathbb{D}}_{+} Y_{z}+c . c$.	$\overline{\mathbb{D}}_{-} \overline{\mathbb{D}}_{+} Y_{w}+c . c$.
potential	$\tilde{V}=V\left(Y_{z}\right)-(u+\bar{u}) Y_{z}$	
	$u \equiv \overline{\mathbb{D}}_{+} \mathbb{D}_{-} \tilde{X}$	$V\left(Y_{w}\right)-(u+\bar{u}) Y_{w}$
$u \equiv \overline{\mathbb{D}}_{+} \overline{\mathbb{D}}_{-} \tilde{X}$		
varying \tilde{X}	$Y_{z}=z+\bar{z}$	$Y_{w}=w+\bar{w}$
varying Y	dual model u, \bar{u}	dual model u, \bar{u}

T-Duality in $\mathcal{N}=(2,2)$ superspace $=$ Legendre-transformation interchanging different kinds of superfield

