Topologically massive gravity and the AdS/CFT correspondence

Balt van Rees

8 September 2009

Based on work with K. Skenderis and M. Taylor:
arXiv:0906.4926
Topologically massive gravity

Three-dimensional pure Einstein gravity is locally trivial

This changes when we add a gravitational Chern-Simons term to the action:

$$S = \frac{1}{16\pi G_N} \left(\int d^3 x \sqrt{-G} (R - 2\Lambda) + \frac{1}{2\mu} \int d^3 x (\Gamma d\Gamma + \frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma) \right)$$

This gives a third-order equation of motion:

$$R_{\mu\nu} - \frac{1}{2} RG_{\mu\nu} + \Lambda G_{\mu\nu} + \frac{1}{2\mu} (\epsilon_{\mu}^{\alpha\beta} \nabla_{\alpha} R_{\beta\nu} + \mu \leftrightarrow \nu) = 0$$

which does allow for local degrees of freedom in a three-dimensional theory of gravity

Problems with stability. For $\Lambda < 0$:

- perturbative solutions around AdS$_3$ have negative energy (in our conventions)
- BTZ black hole has positive energy

Deser, Jackiw, Templeton (1982)
Topologically massive gravity recently received more attention
Li, Song, Strominger (2008)

Inspired by renewed interest in three-dimensional Einstein gravity
Search for a possible dual CFT ($\Lambda < 0$)
Witten (2007)

What would be the dual CFT for topologically massive gravity with $\Lambda < 0$?
Is it consistent, unitary? Can we learn anything about higher-dimensional theories?

+ Dynamics might give a more realistic theory
- Problems with positivity of energy
Some properties of TMG

Action for $\Lambda = -1$:

$$S = \frac{1}{16\pi G_N} \int d^3 x \sqrt{-G} (R + 2)$$

$$+ \frac{1}{32\pi G_N \mu} \int d^3 x \sqrt{-G} \epsilon^{\lambda \mu \nu} \left(\Gamma^\rho_{\lambda \sigma} \partial_{\mu} \Gamma^\sigma_{\rho \nu} + \frac{2}{3} \Gamma^\rho_{\lambda \sigma} \Gamma^\sigma_{\mu \tau} \Gamma^\tau_{\nu \rho} \right)$$

Equations of motion:

$$R_{\mu \nu} - \frac{1}{2} RG_{\mu \nu} - G_{\mu \nu} + \frac{1}{\mu} C_{\mu \nu} = 0$$

$$C_{\mu \nu} = \frac{1}{2} \epsilon^\alpha_\mu \beta_\alpha \nabla_\alpha R_{\beta \nu} + \mu \leftrightarrow \nu$$

Properties of the Cotton tensor:

$$C^\mu_\mu = 0 \quad \nabla^\mu C_{\mu \nu} = 0$$

If $G_{\mu \nu}$ is Einstein, so $R_{\mu \nu} = -2G_{\mu \nu}$, then $C_{\mu \nu} = 0$ and $G_{\mu \nu}$ is also a solution of TMG

All solutions $G_{\mu \nu}$ of TMG have $R = -6$
We investigate the spectrum around an AdS$_3$ background:

\[G_{\mu\nu} dx^\mu dx^\nu = -(r^2 + 1) dt^2 + \frac{dr^2}{r^2 + 1} + r^2 d\phi^2 \]

Consider a small variation of the metric:

\[G_{\mu\nu} \rightarrow G_{\mu\nu} + H_{\mu\nu} \]

The equation of motion gives a third-order linear differential equation for $H_{\mu\nu}$

The solutions can be classified by the symmetry algebra $\sim SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$ with generators L_0, L_{-1}, L_1 and $\bar{L}_0, \bar{L}_{-1}, \bar{L}_1$

We search for primary perturbations that are:

- annihilated by L_1 and \bar{L}_1
- eigenfunctions of L_0 and \bar{L}_0:

\[L_0 H_{\mu\nu} = h H_{\mu\nu} \quad \bar{L}_0 H_{\mu\nu} = \bar{h} H_{\mu\nu} \]

where $L_0 = \frac{i}{2} (\partial_t + \partial_\phi)$ and $\bar{L}_0 = \frac{i}{2} (\partial_t - \partial_\phi)$
For generic μ, there exist three primary solutions $H_{\mu\nu}^L$, $H_{\mu\nu}^R$, $H_{\mu\nu}^M$ with:

\[
L_0 H^L = 2 H^L \quad \quarter
Setting up an AdS/CFT dictionary

Aim: compute CFT correlators from a bulk theory with action S using

$$Z_{\text{CFT}} \sim \exp(-S_{\text{on-shell}})$$

GKP, Witten (1998)

Procedure:

- Write down equations of motion from S
- Perform an asymptotic analysis near the conformal boundary of spacetime
 - Fix the leading behaviour of the fields (asymptotically AdS, sources $\phi(0)$)
 - Solve the equations of motion asymptotically
 - We find an asymptotic expansion of every possible bulk solution
 - In particular, the possible subleading behaviour of the fields is determined dynamically
- This asymptotic solution can be substituted into S and leads to divergences
- Holographically renormalize by adding a boundary counterterm action S_{ct} to S
- The renormalized action $S_{\text{ren}} = S + S_{\text{ct}}$ is finite on-shell
- Find the full solution to the equations of motion with sources $\phi(0)$ (perhaps perturbatively)
- Substitute this solution into S_{ren} which gives $S_{\text{on-shell,ren}}[\phi(0)]$
- Use $Z_{\text{CFT}}[\phi(0)] \sim \exp(-S_{\text{on-shell,ren}}[\phi(0)])$ to compute correlation functions

Skenderis (2002)
Asymptotic analysis

We will now work in Fefferman-Graham coordinates. The metric takes the form:

$$G_{\mu\nu} dx^\mu dx^\nu = \frac{d\rho^2}{4\rho^2} + \frac{1}{\rho} g_{ij}(x, \rho) dx^i dx^j$$

For an asymptotically AdS spacetime, the conformal boundary is at $\rho = 0$ and:

$$g_{ij}(x, \rho) = g_{(0)ij}(x) + \ldots$$

where $g_{(0)ij}$ is nondegenerate

For TMG, the equations of motion for $\mu = 1$ give the most general asymptotic solution:

$$g_{ij} = b_{(0)ij} \log(\rho) + g_{(0)ij} + b_{(2)ij} \rho \log(\rho) + \rho g_{(2)ij} + \ldots$$

Following the usual AdS/CFT dictionary, we interpret the leading terms as CFT sources

$$g_{(0)ij} \leftrightarrow T_{ij} \quad b_{(0)ij} \leftrightarrow t_{ij}$$

The subleading terms $b_{(2)ij}$ and $g_{(2)ij}$ are partially determined by the asymptotic analysis and these terms enter in the one-point functions
We substitute the asymptotic expansion in the action for TMG and find divergences (e.g. a volume divergence)

We need to *holographically renormalize* by adding a boundary counterterm action S_{ct}

However, the most general asymptotic solution is:

$$g_{ij} = b^{(0)}_{ij} \log(\rho) + b^{(2)}_{ij} \rho \log(\rho) + \rho g^{(2)}_{ij} + \ldots$$

For nonzero $b^{(0)}_{ij}$, this is no longer asymptotically AdS

- we cannot do an all-orders renormalization
- we treat $b^{(0)}_{ij}$ as infinitesimal and renormalize perturbatively
- in the dual theory $b^{(0)}_{ij}$ sources a (marginally) irrelevant operator and the boundary theory with finite $b^{(0)}_{ij}$ is only no longer completely renormalizable

We did a *linearized* analysis at the level of the equation of motion

→ This is equivalent to a *quadratic* analysis at the level of the action so we computed S_{ren} to second order in $b^{(0)}_{ij}$

→ This is sufficient to compute two-point functions
We begin with an AdS$_3$ background

$$ds^2 = \frac{d\rho^2}{4\rho^2} + \frac{1}{\rho} g_{ij} dx^i dx^j \quad g_{ij} dx^i dx^j = dz d\bar{z}$$

and study perturbations:

$$g_{ij} \rightarrow g_{ij} + h_{ij}$$

At the linearized level we find:

$$h_{z\bar{z}} = h_{(0)\bar{z}\bar{z}} - \frac{1}{2} \rho \log(\rho) \partial^2 b_{(0)\bar{z}\bar{z}} + \rho h_{(2)\bar{z}\bar{z}}[h_{(0)}, b_{(0)}] + \ldots$$

$$h_{\bar{z}\bar{z}} = b_{(0)\bar{z}\bar{z}} \log(\rho) + h_{(0)\bar{z}\bar{z}} - \frac{1}{2} \rho \log(\rho) \bar{\partial} \bar{\partial} b_{(0)\bar{z}\bar{z}} + \rho h_{(2)\bar{z}\bar{z}} + \ldots$$

$$h_{zz} = h_{(0)zz} + \frac{1}{2} \rho \log(\rho) b_{(2)\bar{z}\bar{z}} + \rho h_{(2)zz} + \ldots$$

with $h_{(2)\bar{z}\bar{z}}[h_{(0)}, b_{(0)}] = -\frac{1}{2} \partial^2 h_{(0)\bar{z}\bar{z}} - \frac{1}{2} \bar{\partial}^2 h_{(0)zz} + \bar{\partial} \partial h_{(0)\bar{z}\bar{z}} - \frac{1}{2} \partial^2 b_{(0)\bar{z}\bar{z}}$.

We search for regular solutions as $\rho \rightarrow \infty$ which constrains the subleading terms to be:

$$h_{(2)\bar{z}\bar{z}} = \frac{\bar{\partial}}{\partial} h_{(2)\bar{z}\bar{z}} + \frac{4\gamma - 3}{2} \bar{\partial} \partial b_{(0)\bar{z}\bar{z}}$$

$$b_{(2)\bar{z}\bar{z}} = \frac{1}{2} \frac{\partial^3}{\partial} b_{(0)\bar{z}\bar{z}}$$

$$h_{(2)zz} = \left(2\gamma - 1 + \log(-\partial \bar{\partial})\right) \frac{\partial^3}{\partial} b_{(0)\bar{z}\bar{z}} + \frac{\partial}{\partial} h_{(2)\bar{z}\bar{z}}$$
Correlation functions

After holographic renormalization we find the one-point functions from:

\[\langle T_{ij} \rangle = 4\pi \frac{\delta S_{\text{TMG, on-shell, ren}}}{\delta h_{ij}^{(0)}} \]
\[\langle t_{zz} \rangle = -4\pi \frac{\delta S_{\text{TMG, on-shell, ren}}}{\delta b_{zz}^{(0)}} \]

We for example find:

\[\langle T_{zz} \rangle = -\frac{1}{2G_N} b_{(2)zz} + \text{local} = -\frac{1}{4G_N} \left(\frac{\partial^3}{\partial} b_{(0)zz} + \text{local} \right) \]

which is a linear and nonlocal function of the sources.

Differentiating once more with respect to the sources we obtain the two-point functions:

\[\langle t(z, \bar{z})t(0) \rangle = \frac{3}{G_N} \frac{\log(m^2 |z|^2)}{z^4} \]
\[\langle t(z, \bar{z})T(0) \rangle = \frac{-3/G_N}{2z^4} \]
\[\langle T(z, \bar{z})T(0) \rangle = 0 \]
\[\langle \bar{T}(z, \bar{z})\bar{T}(0) \rangle = \frac{3/G_N}{2\bar{z}^4} \]

where \(t = t_{zz}, T = T_{zz} \) and \(\bar{T} = T_{\bar{z}\bar{z}} \)

We read off that:

\[c_L = 0 \quad c_R = 3/G_N \]

and we find logarithmic correlation functions.
We indeed find the structure of a logarithmic CFT (Gurarie 1993) for topologically massive gravity at $\mu = 1$

Such CFT’s have logarithms in correlation functions which are related to an indecomposable representation of the Virasoro algebra

$$L_0 \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \begin{pmatrix} h & 0 \\ 1 & h \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} \quad L_m \begin{pmatrix} \phi \\ \chi \end{pmatrix} = 0 \quad (m > 0)$$

One then finds logarithms in correlation functions:

$$\langle \phi(z)\phi(w) \rangle = 0 \quad \langle \phi(z)\chi(w) \rangle = \frac{1}{z^{2h}} \quad \langle \chi(z)\chi(w) \rangle = \frac{\log |z|^2}{z^{2h}}$$

A logarithmic CFT is not unitary. Maybe a restriction to the right-moving sector is consistent and results in a unitary theory? Maloney, Song, Strominger (2009)
It is instructive to compute the same correlation functions in the vicinity of $\mu = 1$

There are still four sources, three for T_{ij} and a fourth for a new operator X

The correlation functions become:

$$\langle \bar{T}(z, \bar{z})\bar{T}(0) \rangle = \frac{3}{2G_N} (1 + \frac{1}{\mu}) \frac{1}{2\bar{z}^4},$$

$$\langle T(z, \bar{z})T(0) \rangle = \frac{3}{2G_N} (1 - \frac{1}{\mu}) \frac{1}{2z^4},$$

$$\langle X(z, \bar{z})X(0) \rangle = \frac{-1}{8G_N} \frac{(\mu - 1)(\mu + 1)(\mu + 2)}{\mu} \frac{1}{z^{\mu+3}\bar{z}^{\mu-1}}$$

One finds negative norm states for $\mu > 1$ and negative conformal weights for $\mu < 1$

As $\mu \to 1$ we find that a new operator appears:

$$t = \lim_{\mu \to 1} \frac{-2}{\mu - 1} (T + X)$$

which is the logarithmic partner of T. This mimicks a construction in the LCFT literature (Kogan, Nichols 2002)
We may define conserved charges in the CFT in the usual way, for example:

\[M = - \int d\phi T^t_t \quad J = - \int d\phi T^t_\phi \]

Our asymptotic analysis was completely general → these are \textit{finite} charges for all bulk solutions

They are also the correct \textit{gravitational} charges (Papadimitriou, Skenderis 2005)

We in particular find:

\[\langle X | H | X \rangle < 0 \]

which is the CFT counterpart of the negative energy found in the bulk
The AdS/CFT techniques were applied to topologically massive gravity with $\Lambda < 0$

This allows for the computation of correlation functions and finite charges.

We found evidence for a logarithmic CFT at $\mu = 1$.

Away from $\mu = 1$ we find negative conformal dimensions or negative norm states.

Future directions:

- Three-point functions and chirality
- Condensed matter applications
- Adaptation to “new massive gravity”
 Bergshoeff, Hohm, Townsend (2009)
- ...