The superstring in $A d S_{4} \times C P^{3}$

Linus Wulff
INFN, Padova

Based on:

- 0811.1566 with J. Gomis and D. Sorokin
- 0903.5407 with P.A. Grassi and D. Sorokin

15-th European Workshop on String Theory, Zürich September 7, 2009

Motivations

- Multiple M2-branes
- BLG,ABJM-models

ABJM:

- $D=3, \mathcal{N}=6$ CS matter theory w. gauge group $U(N)_{k} \times U(N)_{-k}$
- In 't Hooft-limit:

$$
N, k \rightarrow \infty \quad \text { with } \quad \lambda \sim \frac{N}{k} \quad \text { fixed }
$$

Dual to type IIA string theory on $A d S_{4} \times C P^{3}$

- Interesting realization of AdS4/CFT3-correspondence
- To investigate the string side an action for the string is needed

Superstring in $A d S_{5} \times S^{5}$

- Recall the $A d S_{5} \times S^{5}$ case
- $A d S_{5} \times S^{5}$ is maximally supersymmetric preserving 32 SUSYs
- Full (10|32) dim. supergeometry can be described as the supercoset:
[Kallosh Rahmfeld Rajaraman]
[Metsaev Tseytlin]

$$
\frac{P S U(2,2 \mid 4)}{S O(4,1) \times S O(5)}
$$

- Superstring action can be formulated as a sigma model on this supercoset
- Integrability follows from supercoset structure
- Can we repeat this story for $A d S_{4} \times C P^{3}$?
- Almost...

The $A d S_{4} \times C P^{3}$ supercoset model

- One major difference:
- $A d S_{4} \times C P^{3}$ not maximally supersymmetric preserving only 24 SUSYs \rightarrow Supergeometry cannot be realized as a supercoset
- We can come close however. Take

$$
\frac{O S p(6 \mid 4)}{S O(3,1) \times U(3)}
$$

Bosonic part $A d S_{4} \times C P^{3}$ but only 24 fermionic directions (unbroken SUSYs)

- The string has only 16 physical fermionic d.o.f. so this is okay
- String can be described as sigma model on this supercoset [Arutyunov Froov]
- Integrability follows from the supercoset structure just as in the $A d S_{5} \times S^{5}$ case

Shortcomings of the supercoset model

- Contains only 24 of the 32 fermions of the IIA background
- The eight fermions corresponding to broken SUSYs missing
- i.e. kappa-symmetry partially gauge fixed to remove 8 of 16 unphysical fermions
- More serious problem:

For string moving only in $A d S_{4}$ the model describes 12 physical fermions instead of 16!
\rightarrow Gauge-fixing is inconsistent for these configurations

- We would like an action that can describe any string configuration
\rightarrow Need the full (Green-Schwarz) superstring action w. all 32 fermions

The Green-Schwarz action in a general background

- The GS superstring action in a general background is given by
[Grisaru Howe Mezincescu Nilsson Townsend]

$$
S=-\int d^{2} \xi \sqrt{-\operatorname{det}\left(\mathcal{E}_{i}^{A} \mathcal{E}_{j}^{B} \eta_{A B}\right)}+\int B
$$

where $i, j=1,2, A, B=0, \ldots, 9$.

- Involves the (pull-back of) bosonic supervielbeins

$$
\mathcal{E}_{i}{ }^{A}=\partial_{i} z^{\mathcal{M}} E_{\mathcal{M}}{ }^{A}(x, \theta) \quad z=(x, \theta)
$$

and the NS-NS two-form field $B(x, \theta)$

- Need to know the full supergeometry, i.e. supervielbeins $\mathcal{E}^{A}(x, \theta)$ and $B(x, \theta)$ explicitly as functions of x and 32θ
- D-brane actions can then be written as well

$A d S_{4} \times C P^{3}$ supergeometry

- How to find the supergeometry?

1 Determine order by order in θ ? Very tedious!
2 Obtain it by dimensional reduction from $D=11$
The bosonic story:

- The 11 dim. geometry is the near horizon geometry of an M2: $A d S_{4} \times S^{7}\left(\bmod \mathbb{Z}_{k}\right)$
- S^{7} can be realized as an S^{1} bundle over $C P^{3}$
- Locally $S^{7} \sim C P^{3} \times S^{1}$
- Reducing $A d S_{4} \times S^{7}$ on the circle fiber gives precisely $A d S_{4} \times C P^{3}$
[Nilsson Pope]
[Sorokin Tkach Volkov]
- This is precisely what happens in the 't Hooft limit:

$$
k \rightarrow \infty \quad \Rightarrow \quad S^{7} / \mathbb{Z}_{k} \rightarrow C P^{3}
$$

The superspace story:

- $A d S_{4} \times S^{7}$ is maximally supersymmetric (32 SUSYs)
- Can be realized as the supercoset
[Kallosh Rahmfeld Rajaraman]

$$
\frac{O S p(8 \mid 4)}{S O(3,1) \times S O(7)}
$$

\rightarrow Supervielbeins and form fields explicitly known as functions of x and 32θ

- Idea:
- Mod out by \mathbb{Z}_{k}
- Perform Kaluza-Klein reduction in superspace
- Gives explicit expressions for the $A d S_{4} \times C P^{3}$ supervielbeins, NS-NS and RR fields
\rightarrow Green-Schwarz string and D-brane actions

Slightly more complicated...

- To perform KK-reduction the vielbeins should have the form

$$
E_{\widehat{M}}^{\widehat{A}}=\left(\begin{array}{cc}
E_{M}^{A} & A_{M} \\
0 & \Phi
\end{array}\right) \quad \widehat{A}=(A, 11)
$$

- Possible to find a realization of $A d S_{4} \times S^{7}$ supervielbeins where this is almost true
- Except $E_{11}{ }^{a} \neq 0$ with a an $A d S_{4}$ index
- Perform a Lorentz rotation in the 5-plane spanned by $A d S_{4}$ and the 11th $\left(S^{1}\right)$ direction to fix this
- Perform the KK-reduction
\rightarrow Explicit (slightly complicated) form of $A d S_{4} \times C P^{3}$ supervielbeins

Kappa-symmetry

- Fermions transform as

$$
\delta_{\kappa} z^{\mathcal{M}} E_{\mathcal{M}}{ }^{\alpha}=\frac{1}{2}(1+\Gamma)^{\alpha}{ }_{\beta} \kappa^{\beta}
$$

where $\frac{1}{2}(1+\Gamma)$ projects onto the 16 unphysical fermions

$$
\Gamma \propto \varepsilon^{i j} \mathcal{E}_{i}{ }^{A} \mathcal{E}_{j}{ }^{B} \Gamma_{A B} \Gamma_{11}
$$

- Split bosonic indices $A=\left(a, a^{\prime}\right)$ into $A d S_{4}: a=0, \ldots, 3$ and $C P^{3}$: $a^{\prime}=1, \ldots, 6$
- Projection matrix that projects onto the 8 broken SUSY directions:

$$
\mathcal{P}_{8}=\frac{1}{8}(2+J) \quad J=-i J_{a^{\prime} b^{\prime}} \Gamma^{a^{\prime} b^{\prime}} \Gamma^{7} \quad J_{a^{\prime} b^{\prime}} \quad \text { Kähler form on } C P^{3}
$$

Note: Involves only Γ-matrices corresponding to the $C P^{3}$-directions

Gauge fixing kappa-symmetry

- Making the (partial) gauge-fixing

$$
\mathcal{P}_{8} \theta=0
$$

Leaves only the 24 fermions corresponding to SUSYs $\rightarrow \operatorname{OSp}(6 \mid 4)$ supercoset model

- However: For string moving in $\operatorname{AdS} S_{4}$ only we have $\mathcal{E}_{i}{ }^{a^{\prime}}=0$ so

$$
\Gamma \sim \varepsilon^{i j} \mathcal{E}_{i}{ }^{a} \mathcal{E}_{j}{ }^{b} \Gamma_{a b} \Gamma_{11}
$$

But

$$
\left\{\Gamma_{a}, \Gamma_{a^{\prime}}\right\}=0 \quad \Rightarrow \quad\left[\Gamma, \mathcal{P}_{8}\right]=0
$$

\Rightarrow Only 4 of the 8 broken fermions can be gauged away!

- Explains why the supercoset model is missing 4 physical d.o.f. for these configurations

Other gauges

- Having the full GS action makes other gauge choices possible
- Can be used to simplify string/D-brane actions Example:

$$
\left(1+\Gamma^{0} \Gamma^{1} \Gamma^{2}\right) \theta=0
$$

- Consistent for string moving only on AdS_{4}
- Removes 4 broken and 12 unbroken fermions
\rightarrow Action with up to 8th order in fermions
- T-duality \rightarrow Action with terms up to 4 th order in fermions
- D-branes as well
- e.g. D2-brane on the boundary of $A d S_{4}$

Integrability?

- ABJM-model is integrable
- Great advantage of a supercoset description of the string:
- Generic construction of Lax connection \rightarrow (classical) integrability
- Supercoset description applies in $A d S_{4} \times C P^{3}$ except when the string moves only in $A d S_{4}$
- One would expect integrability also for these configurations
- How to prove it?
- No supercoset description available
\rightarrow New tools are needed

Conclusion

- $A d S_{4} \times C P^{3}$ supergeometry completely determined \rightarrow GS string and D-brane actions
- Useful for studying various aspects of the AdS4/CFT3-correspondence
- e.g. semiclassical quantization around classical string solutions
- String described by supercoset model except when it moves entirely in $A d S_{4}$
- Integrability for these configurations?

