Quantum Symmetries And Marginal Deformations

Konstantinos Zoubos

Niels Bohr Institute
$15^{\text {th }}$ European Workshop on String Theory
ETH, Zurich
10/09/09

Based on arXiv: 0811.3755 with T. Månsson

$\mathcal{N}=4$ Super-Yang-Mills

- $\mathcal{N}=4$ SYM has played a fundamental role in the study of gauge and string theory
- It is the unique four-dimensional gauge theory with maximal global supersymmetry (16 supercharges)
- Extremely interesting properties:
- Perturbative Finiteness [Ferrara,Zumino],[Grisaru et al. '80],[West,Sohnius '81]
- Nonperturbative Finiteness [ADS '84,NSVZ '86,Seiberg \rightarrow Holomorphicity] \Rightarrow 4d Superconformal Field Theory
- AdS/CFT Correspondence [Maldacena '97]
- Planar Integrability [Minahan,Zarembo '02], many others
- Planar Amplitudes [Anastasiou et al. '04], [Bern et al. '05], [Alday,Maldacena '07]
- But is it the unique theory with these features?
- Are there theories which share only some of these features?
- How does the knowledge accumulated for $\mathcal{N}=4$ SYM help in understanding more realistic theories?

Marginal Deformations of $\mathcal{N}=4$ SYM

- Look for theories as close as possible to $\mathcal{N}=4$ SYM
- Preserve conformal invariance \Rightarrow Marginal Deformations
- Focus on superpotential deformations $\Rightarrow \mathcal{N}=1$ SUSY
- Write the $\mathcal{N}=4$ SYM action in $\mathcal{N}=1$ superspace

$$
\mathcal{L}=\int d^{4} \theta \operatorname{Tr} e^{g V} \bar{\Phi}_{i} e^{-g V} \Phi^{i}+\left(\int d^{2} \theta \mathcal{W}+\int d^{2} \overline{\theta \mathcal{W}}\right)+\cdots
$$

- Chiral Superfields $\Phi^{i}=\phi^{i}+\theta^{\alpha} \psi_{\alpha}^{i}+\theta^{2} F^{i}, i=1,2,3$
- $\mathcal{N}=4$ superpotential:

$$
\mathcal{W}=g \operatorname{Tr} \Phi^{1}\left[\Phi^{2}, \Phi^{3}\right]=\frac{g}{3} \epsilon_{i j k} \operatorname{Tr} \Phi^{i} \Phi^{j} \Phi^{k}
$$

- Most general classically marginal deformation:

$$
\delta \mathcal{W}=h_{i j k} \operatorname{Tr} \Phi^{i} \Phi^{j} \Phi^{k}
$$

where $h_{i j k}$ is a symmetric tensor

Exactly Marginal Deformations

- Not all of these deformations are exactly marginal
- Perturbative approaches [Parkes, West '84],JJones, Mezincescu '84]
- Leigh and Strassler ('95) provided a non-perturbative proof using the NSVZ β function
- The Leigh-Strassler theories are defined by:

$$
\mathcal{W}_{L S}=\kappa \operatorname{Tr}\left(\Phi^{1}\left[\Phi^{2}, \Phi^{3}\right]_{q}+\frac{h}{3}\left(\left(\Phi^{1}\right)^{3}+\left(\Phi^{2}\right)^{3}+\left(\Phi^{3}\right)^{3}\right)\right)
$$

- q-commutator $[X, Y]_{q}=X Y-q Y X$
- Finite if $f(g, \kappa, q, h)=0$, where f unknown in general
- 1-loop finiteness condition

$$
2 g^{2}=\kappa \bar{\kappa}\left[\frac{2}{N^{2}}(1+q)(1+\bar{q})+\left(1-\frac{4}{N^{2}}\right)(1+q \bar{q}+h \bar{h})\right]
$$

- Recover $\mathcal{N}=4$ SYM for $q=1, h=0$
- An interesting case: $q=e^{i \beta}, h=0$ ("Real β deformation")

$\mathcal{N}=4$ SYM vs. Leigh-Strassler?

- How do the LS theories compare with $\mathcal{N}=4$ SYM?

	$\mathcal{N}=4$ SYM	Leigh-Strassler
Conformally Invariant	$\sqrt{ }$	$\left.\sqrt{ }{ }^{*}\right)$
AdS/CFT dual	$\sqrt{ }$	real β [Lunin,Maldacena'05]
Planar Integrability	$\sqrt{ }$	basically real $\beta\left(^{\dagger}\right)$
Planar Amplitudes	$\sqrt{ }$	real β [Khoze'05]

(*) Recent controversy over higher-loop finiteness [Elmetti et al. '06,'07], [Rossi et al. '05,'06]
$\left({ }^{\dagger}\right)$ Berenstein\&Cherkis ('04) showed mismatch of LS deformation with integrable deformation of the spin chain for complex β. However one-loop integrability persists in a particular sector for complex β [Månsson '07]. A few other integrable choices are known.

- What makes the real β deformation so special?
- Take a closer look at the symmetries
- Work at the level of the classical lagrangian

Symmetries: $\mathcal{N}=4$ SYM

- 4d Superconformal group: $\operatorname{PSU}(2,2 \mid 4)$
- Focus on the R-symmetry subgroup $\mathrm{SU}(4) \sim \mathrm{SO}(6)$
- In $\mathcal{N}=1$ superspace notation, the $\mathcal{N}=4$ theory has manifest $\mathrm{SU}(3) \times \mathrm{U}(1)_{R}$ symmetry

$$
\mathcal{W}=g \operatorname{Tr} \Phi^{1}\left[\Phi^{2}, \Phi^{3}\right]=\frac{g}{3} \epsilon_{i j k} \operatorname{Tr} \Phi^{i} \Phi^{j} \Phi^{k}
$$

- $\epsilon_{i j k}$ is the invariant tensor of $\mathrm{SU}(3)$

$$
\epsilon_{i j k} U_{l}^{i} U_{m}^{j} U_{n}^{k}=(\operatorname{det} U) \epsilon_{l m n}=\epsilon_{l m n}
$$

- Transforming $\Phi^{i} \rightarrow U_{j}^{i} \Phi^{\prime}$ leaves the superpotential invariant
- Note that SL(3) would be enough for the superpotential, $\mathrm{SU}(3)$ comes from the kinetic term $\sim \bar{\Phi}_{i} \Phi^{i}$

Symmetries: Leigh-Strassler

- The generic LS deformation breaks $\mathrm{SU}(3)$ to a discrete subgroup

$$
\mathcal{W}_{L S}=\kappa \operatorname{Tr}\left(\Phi^{1}\left[\Phi^{2}, \Phi^{3}\right]_{q}+\frac{h}{3}\left(\left(\Phi^{1}\right)^{3}+\left(\Phi^{2}\right)^{3}+\left(\Phi^{3}\right)^{3}\right)\right)
$$

- This superpotential has the following \mathbb{Z}_{3} symmetries:

$$
\begin{gathered}
\mathbb{Z}_{3}^{A}: \Phi^{1} \rightarrow \Phi^{2} \quad, \quad \phi^{2} \rightarrow \Phi^{3} \quad, \quad \Phi^{3} \rightarrow \Phi^{1} \\
\mathbb{Z}_{3}^{B}: \Phi^{1} \rightarrow \omega \Phi^{1} \quad, \quad \Phi^{2} \rightarrow \omega^{2} \Phi^{2} \quad, \quad \Phi^{3} \rightarrow \Phi^{3} \quad\left(\omega^{3}=1\right)
\end{gathered}
$$

- Together with a third \mathbb{Z}_{3} within $\mathrm{U}(1)_{R}\left(\Phi^{i} \rightarrow \omega \Phi^{i}\right)$, they form a trihedral group known as Δ_{27} [Aharony et al. '02]
- For real β the symmetry group is enhanced to $\mathrm{U}(1)^{3}$
- Is this all?

More symmetry?

- Let us naively rewrite $\mathcal{W}_{L S}$ as

$$
W_{L S}=\frac{1}{3} E_{i j k} \operatorname{Tr} \Phi^{i} \Phi^{j} \Phi^{k}
$$

where

$$
\begin{aligned}
& E_{123}=E_{231}=E_{312}=\kappa, \\
& E_{321}=E_{213}=E_{132}=-\kappa q, \\
& E_{111}=E_{222}=E_{333}=\kappa h
\end{aligned}
$$

- Similarly $F^{i j k}=\bar{E}_{i j k}$ defines $\overline{\mathcal{W}}=\frac{1}{3} F^{i j k} \operatorname{Tr} \bar{\Phi}_{i} \bar{\Phi}_{j} \bar{\Phi}_{k}$
- Would like to find some t_{j}^{i} such that $\Phi^{i} \rightarrow \mathrm{t}^{i} \Phi^{\prime}$ is a symmetry, i.e.

$$
E_{i j k} t_{l} t_{m}^{j}{ }_{m} t^{k}=E_{l m n}
$$

- Clearly there exists no Lie group with this property... \Rightarrow Quantum Groups

An Example: The Manin Plane

- A simpler setting that illustrates the main ideas
- $x^{1}, x^{2} \in V$, where V is a noncommutative space

$$
x^{1} x^{2}=\frac{1}{q} x^{2} x^{1}
$$

- Coordinates of a 2-dimensional quantum plane
- These commutation relations can be obtained from a matrix $R: V \otimes V \rightarrow V \otimes V$

$$
R=q^{-\frac{1}{2}}\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

via the relation $R^{i}{ }_{k}{ }^{j} x^{k} x^{\prime}=q^{\frac{1}{2}} x^{j} x^{i}\left(\right.$ or $\left.R_{12} x_{1} x_{2}=q^{\frac{1}{2}} x_{2} x_{1}\right)$

- Think of R as acting on basis $\{|11\rangle,|12\rangle,|21\rangle,|22\rangle\}$ (e.g. $R_{2}^{1}{ }_{1}^{2}=q^{\frac{1}{2}}-q^{-\frac{3}{2}}$)

Quantum Plane Symmetries

- The function $f\left(x^{1}, x^{2}\right)=x^{1} x^{2}-q^{-1} x^{2} x^{1}$ is invariant under

$$
x^{i} \rightarrow \mathrm{t}_{l}^{i} x^{\prime}
$$

if the matrix t_{j}^{i} satisfies the FRT, or RTT relations:

$$
R_{a b}^{i k} t_{j}^{a} t_{1}^{b}=t_{b}^{k} t_{a}^{i} R_{j}^{a b}, \quad\left(R_{12} t_{1} t_{2}=t_{2} t_{1} R_{12}\right)
$$

- Writing $t=\left(\begin{array}{cc}\mathrm{t}^{1} 1 & \mathrm{t}^{1}{ }_{2} \\ \mathrm{t}^{2} & \mathrm{t}^{2}{ }_{2}\end{array}\right)$, we find

$$
\begin{aligned}
& t_{1}^{1} t^{1}{ }_{2}=q^{-1} t^{1}{ }_{2} t^{1}{ }_{1}, t_{1}^{1}{ }_{1}{ }^{2}{ }_{1}=q^{-1} t^{2}{ }_{1} t^{1}{ }_{1} \text {, } \\
& t_{2}^{1} t^{2}{ }_{2}=q^{-1} t^{2}{ }_{2} t^{1}{ }_{2}, t_{1}^{2} t^{2}{ }_{2}=q^{-1} t^{2}{ }_{2} t^{2}{ }_{1} \text {, } \\
& t_{2}^{1} t^{2}{ }_{1}=t_{1}^{2} t^{1}{ }_{2}, t_{1}^{1} t^{2}{ }_{2}-t^{2}{ }_{2} t_{1}^{1}=\left(q^{-1}-q\right) t^{1}{ }_{2} t^{2}{ }_{1},
\end{aligned}
$$

- The elements of t are noncommutative!
- These commutation relations define a quantum group

Quantum Groups

- What are quantum groups? Some definitions
- Recall an algebra $(\mathcal{C},+, \cdot, \eta ; k)$ is a vector space together with a product $\cdot: \mathcal{C} \otimes \mathcal{C} \rightarrow \mathcal{C}$ and a unit map $\eta: k \rightarrow \mathcal{C}$
- A coalgebra $(\mathcal{C},+, \Delta, \epsilon ; k)$ is instead equipped with a coproduct $\Delta: \mathcal{C} \rightarrow \mathcal{C} \otimes \mathcal{C}$ and a counit $\epsilon: \mathcal{C} \rightarrow k$

- A bialgebra $(H,+, \cdot, \eta, \Delta, \epsilon ; k)$ is both an algebra and a coalgebra in a compatible way

Hopf Algebras

- A Hopf Algebra is a bialgebra equipped with an antipode $S: \mathcal{C} \rightarrow \mathcal{C}$

$$
\cdot(S \otimes \mathrm{id}) \circ \Delta=\cdot(\mathrm{id} \otimes S) \circ \Delta=\eta \circ \epsilon .
$$

- We are working in the Quantum Matrix Algebra picture, where the coproduct and counit are

$$
\Delta g_{n}^{m}=\sum_{k} g_{k}^{m} \otimes g_{n}^{k}, \quad \epsilon g_{n}^{m}=\delta_{n}^{m}
$$

and the antipode s satisfies : $t_{k}^{i} s_{j}^{k}=\delta_{j}^{i}=s_{k}^{i} t_{j}^{k}$

- In this picture, it is the product whose noncommutativity is controlled by the matrix R through the RTT relations
- For $R=I$ we are left with a Lie Algebra
- Dual picture \Rightarrow Universal Enveloping Algebra

Quasitriangular Hopf Algebras

- In a quasitriangular Hopf algebra, the matrix R controlling noncommutativity satisfies the Quantum Yang-Baxter Equation (QYBE) (but note without spectral parameter):

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}
$$

(in index notation: $R_{s}^{i}{ }_{r} R^{s}{ }_{I}{ }_{1}{ }_{p} R^{r}{ }_{m}{ }^{p}{ }_{n}=R_{s}^{j}{ }_{s}{ }_{p} R_{r}^{i}{ }_{n} R^{r}{ }_{I}{ }^{s}{ }_{m}$)

- Among other things, this condition guarantees that the resulting algebra is not too trivial
- We call a quasitriangular Hopf algebra a quantum group
- The matrix R defining the Manin plane does satisfy QYBE!
- It corresponds to the quantum group $\mathrm{SU}_{q}(2)$

Why $\mathrm{SU}_{q}(2)$ and not $\mathrm{GL}_{q}(2)$?

- We have constructed the quantum group $\mathrm{SU}_{q}(2)$ as the invariance group of the Manin plane
- The quantum determinant $\mathbb{D}:=\mathrm{t}^{1}{ }_{1} \mathrm{t}^{2}{ }_{2}-q^{-1} \mathrm{t}^{2}{ }_{1} \mathrm{t}_{2}$ is central and we can set it equal to one $\Longrightarrow \mathrm{SL}_{q}(2)$
- There is an analogous construction for the coplane $u_{1} u_{2}=q u_{2} u_{1}\left(u_{i} \in V^{*}\right)$ defined by

$$
q^{\frac{1}{2}} u_{a} u_{b}=u_{j} u_{i} R_{b a}^{j i}
$$

- Compatibility of the plane and coplane imposes a reality condition on the matrix R :

$$
\overline{R_{k l}^{i j}}=R_{j i}^{l k} \quad(\hat{R}=P R \text { hermitian })
$$

- This lets us define $\mathrm{t}_{j}^{i^{*}}=\mathrm{s}_{j}^{i} \Longrightarrow \mathrm{SU}_{q}(2)$

Three-Dimensional Quantum Planes

- Apply these ideas to the Leigh-Strassler theories!
- Note the F-term conditions: [Berenstein etal. '00]

$$
\begin{aligned}
\phi^{1} \phi^{2} & =q \phi^{2} \phi^{1}-h\left(\phi^{3}\right)^{2} \\
\phi^{2} \phi^{3} & =q \phi^{3} \phi^{2}-h\left(\phi^{1}\right)^{2} \\
\phi^{3} \phi^{1} & =q \phi^{1} \phi^{3}-h\left(\phi^{2}\right)^{2}
\end{aligned}
$$

(non-commutative moduli space)

- The three scalars will play the role of the quantum plane coordinates: $\Phi^{i} \rightarrow x^{i}$
- Can think of the \mathbb{C}^{3} tranverse to the D3-branes becoming noncommutative
- We need to examine the symmetries of three-dimensional quantum planes

Quantum deformations of GL(3)

- Ewen \& Ogievetsky ('94) classified quantum deformations of GL(3), and the corresponding quantum planes
- Starting point were the q-epsilon tensors $E_{i j k}$ and their duals $F^{i j k}$
- Given the following conditions

$$
\delta_{j}^{i}=\frac{1}{2} E_{j m n} F^{m n i} \quad \text { and } \quad E_{a j m} F^{m i b} E_{e b k} F^{k c j}=\delta_{a}^{c} \delta_{e}^{i}+\delta_{a}^{i} \delta_{e}^{c}
$$

they show that

$$
\hat{R}_{k l}^{i j}=\delta_{k}^{i} \delta_{l}^{j}-E_{k l n} F^{n i j}
$$

satisfies QYBE and defines a quantum plane through

$$
\hat{R}_{12} x_{1} x_{2}=x_{1} x_{2}
$$

LS as a quantum symmetry deformation

- Can the E\&O approach be applied to LS?
- The desired q-epsilon tensors are:

$$
E_{123}=\kappa, E_{132}=-\kappa q, E_{111}=\kappa h \quad(+ \text { cyclic }), F^{i j k}=\bar{E}_{i j k}
$$

- Imposing the first E\&O condition ($\delta_{j}^{j}=\frac{1}{2} E_{j m n} F^{m n i}$) we find $\kappa \bar{\kappa}=1 /(1+q \bar{q}+h \bar{h}) \Rightarrow$ planar 1-loop finiteness condition!
- $H_{k l}^{i j}=E_{k l n} F^{n i j}$ is the 1-loop spin chain Hamiltonian [Roiban '03]

$$
H_{l, l+1}=\frac{1}{1+q \bar{q}+h \bar{h}}\left(\begin{array}{ccccccccc}
h \bar{h} & 0 & 0 & 0 & 0 & \bar{h} & 0 & -\bar{h} q & 0 \\
0 & 1 & 0 & -q & 0 & 0 & 0 & 0 & h \\
0 & 0 & q \bar{q} & 0 & -h \bar{q} & 0 & -\bar{q} & 0 & 0 \\
0 & -\bar{q} & 0 & q \bar{q} & 0 & 0 & 0 & 0 & -h \bar{q} \\
0 & 0 & -\bar{h} q & 0 & h \bar{h} & 0 & \bar{h} & 0 & 0 \\
h & 0 & 0 & 0 & 0 & 1 & 0 & -q & 0 \\
0 & 0 & -q & 0 & h & 0 & 1 & 0 & 0 \\
-h \bar{q} & 0 & 0 & 0 & 0 & -\bar{q} & 0 & q \bar{q} & 0 \\
0 & \bar{h} & 0 & -\bar{h} q & 0 & 0 & 0 & 0 & h \bar{h}
\end{array}\right)
$$

- Hermitian, cyclic: $H_{k l}^{i j}=H_{(k+1)(I+1)}^{(i+1)(j+1)}$ etc.
- Define $\hat{R}_{k l}{ }^{j}=\delta_{k}^{i} \delta_{l}^{j}-H_{k l}^{i j} \Longrightarrow R_{k l}^{i}{ }^{j}=\hat{R}^{j}{ }_{k}{ }^{i}$

Does it work?

- Given R, the RTT relations will produce a bialgebra $\mathcal{A}(R)$
- But our R is not part of the E\&O classification
- In particular, R does not satisfy QYBE!
(apart from special cases, e.g. real β)
- Differences from E\&O:
- We have not imposed the second E\&O condition
- We are interested in a cyclic quantum plane structure (while E\&O look at ordered planes, e.g. $x^{i} x^{j}=q x^{j} x^{i}, \quad i<j$)
- We cannot have a quasitriangular Hopf Algebra, but is it still a Hopf Algebra?
- Need careful analysis of the RTT relations
- Two main new features:
- Possibility of no (nontrivial) solutions
- Associativity will imply higher relations

Solving the RTT relations

- When R satisfies QYBE, we are guaranteed that

$$
R_{a b}^{i}{ }_{a}^{k} t_{j}^{a} t_{l}^{b}=t_{b}^{k} t^{i} R_{j}^{a} b_{l}
$$

has nontrivial solutions for t_{j}^{i}

- In our case we need to explicitly show that out of the 81 equations, only 36 are independent
- This turns out to be the case!
- Quadratic commutation relations of $\mathcal{A}(R)$:

$$
\begin{align*}
& \text { (a) } \mathrm{t}_{c}^{a} t_{c}^{a+1}-q t_{c}^{a+1} \mathrm{t}_{c}^{a}+h t_{c}^{a-1} t_{c}^{a-1}=h\left(t_{c+1}^{a} t_{c-1}^{a+1}-\bar{q} t_{c-1}^{a} t_{c+1}^{a+1}+\bar{h} t_{c}^{a}{ }_{c}^{a+1}\right) \tag{a}\\
& \text { (b) } q\left[\mathrm{t}^{a+1}{ }_{c+1}, \mathrm{t}_{c}^{a}\right]=-q^{2} \mathrm{t}^{a+1}{ }_{c} \mathrm{t}^{a}{ }_{c+1}+h q \mathrm{t}^{a-1}{ }_{c} \mathrm{t}^{\mathrm{a}-1}{ }_{c+1}+h \mathrm{t}^{a-1}{ }_{c+1} \mathrm{t}^{a-1}{ }_{c}+\mathrm{t}_{c+1}^{a} \mathrm{t}^{a+1}{ }_{c} \\
& \text { (c) }-q t_{c}^{a+1} t_{c+1}^{a}+\bar{q} t^{a+1} t_{c}^{a+1}=\bar{h} t_{c-1}^{a} t_{c-1}^{a+1}-h t_{c}^{a-1} t_{c+1}^{a-1} \tag{c}\\
& \text { (d) } \tag{d}\\
& h\left(t_{c+1}^{a} t_{c-1}^{a}-\bar{q} t_{c-1}^{a} t_{c+1}^{a}\right)=\bar{h}\left(t_{c}^{a+1} t_{c}^{a-1}-q t_{c}^{a-1} t_{c}^{a+1}\right)
\end{align*}
$$

Associativity

- The QYBE also guarantees no new relations arise at higher levels
- In our case, associativity leads to new cubic relations
a) $R_{12} R_{13} R_{23} \mathbf{t}_{1} \mathbf{t}_{2} \mathbf{t}_{3}=R_{12} R_{13} \mathbf{t}_{1} \mathbf{t}_{3} \mathbf{t}_{2} R_{23}=R_{12} \mathbf{t}_{3} \mathbf{t}_{1} \mathbf{t}_{2} R_{13} R_{23}=\mathbf{t}_{3} \mathbf{t}_{2} \mathbf{t}_{1} R_{12} R_{13} R_{23}$
b) $R_{23} R_{13} R_{12} \mathbf{t}_{1} \mathbf{t}_{2} \mathbf{t}_{3}=R_{23} R_{13} \mathbf{t}_{2} \mathbf{t}_{1} \mathbf{t}_{3} R_{12}=R_{23} \mathbf{t}_{2} \mathbf{t}_{3} \mathbf{t}_{1} R_{13} R_{12}=\mathbf{t}_{3} \mathbf{t}_{2} \mathbf{t}_{1} R_{23} R_{13} R_{12}$
- These relations would be the same if QYBE were satisfied, but now they have to be imposed to guarantee associativity
- Danger is that they will trivialise the quantum determinant

$$
\begin{aligned}
& \mathbb{D}=\frac{1}{6} E_{j k} t^{i} t^{j}{ }_{m}{ }^{k} t_{m}^{k} F^{l m n} \\
& =t_{1}^{1} t_{2}^{2} t^{3}{ }_{3}-q t_{1}^{2} t^{1}{ }_{2} t_{3}^{3}+h t_{1}^{3} t^{3}{ }_{2} t_{3}^{3}+t_{1}^{3} t_{2}^{1} t^{2}{ }_{3}-q t_{1}^{1} t^{3} t^{2} t_{3}+h t_{1}^{2} t^{2}{ }_{2} t^{2}{ }_{3} \\
& +\mathrm{t}_{1}^{2} \mathrm{t}_{2}{ }_{2} \mathrm{t}^{1}{ }_{3}-q t^{3}{ }_{1} \mathrm{t}_{2}^{2} \mathrm{t}^{1}{ }_{3}+h \mathrm{t}_{1}{ }_{1} \mathrm{t}^{1}{ }_{2} \mathrm{t}_{3}^{1}
\end{aligned}
$$

- We have checked that this is not the case
- \mathbb{D} is nontrivial and central \Rightarrow Can set $\mathbb{D}=1$

The Quantum Symmetry Algebra

- We have also shown that there exists an antipode

$$
s_{1+k}^{1+i}=t_{2+i}^{2+k} t_{3+i}^{3+k}-\bar{q} t_{3+i}^{2+k} t_{2+i}^{3+k}+\bar{h} t_{1+i}^{2+k} t_{1+i}^{3+k}=t_{2+i}^{2+k} t_{3+i}^{3+k}-q t_{2+i}^{3+k} t_{3+i}^{2+k}+h t_{2+i}^{1+k} t_{3+i}^{1+k} .
$$

- The bialgebra $\mathcal{A}(R)$ is thus a Hopf algebra
- We have found a Hopf algebra underlying the general Leigh-Strassler deformation
- Transform $\Phi^{i} \rightarrow \mathrm{t}_{j}^{i} \Phi^{j}, t \in \mathcal{A}(R)$
- $\mathbb{D}=1$ guarantees invariance of the superpotential:

$$
\mathcal{W}=\frac{1}{3} E_{j j k} \operatorname{Tr} \Phi^{i} \Phi^{j} \Phi^{k} \Longrightarrow E_{j j k} t_{l}^{i} t_{m}^{j} t^{k}=\mathbb{D} E_{l m n} .
$$

- The antipode guarantees invariance of the kinetic terms

$$
\bar{\Phi}_{i} \Phi^{i} \rightarrow \bar{\Phi}_{j} t^{j}{ }_{i}^{*} \mathrm{t}_{k}^{i} \phi^{k}=\bar{\Phi}_{j} \delta^{j}{ }_{k} \Phi^{k}
$$

- The full Leigh-Strassler lagrangian is invariant under $\mathcal{A}(R)$
- The \mathbb{Z}_{3} 's appear as automorphisms of $\mathcal{A}(R)$

Integrable Cases

- The Hopf algebra $\mathcal{A}(R)$ becomes quasitriangular for special choices of (q, h)
- All known integrable deformations of $\mathcal{N}=4$ can be obtained in this way
- Can show that they arise as Hopf algebra twists of the real β case

$$
R_{\beta}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & q^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & q & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & q & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & q^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & q^{-1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & q & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(this is also a twist of the $\mathcal{N}=4$ case [Beisert, Roiban $\left.{ }^{\circ} 55\right]$)

- E.g. $q=0, \bar{h}=1 / h$ can be obtained by

$$
R^{\prime}=\mathcal{F}_{21} R_{\beta} \mathcal{F}^{-1}, \quad \mathcal{F}=U \otimes U^{2}
$$

where

$$
U=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Relation to Noncommutativity

- It is known that the real β deformation can be described by a star product [Berenstein et al. '00], [Kulaxizi, Zoubos '04], [Lunin, Maldacena '05]
- Non(-anti)commutativity on open string side leads to NS (and RR) fields on closed string side [schomerus' '99], [Seiberg, Witten '99]
- Can try to apply these ideas to construct the dual gravity background to the Leigh-Strassler theories [kulaxizi ${ }^{\circ} \mathbf{0 6]}$
- Works fine for real β, but problems with associativity for general case. Still, a solution was found to third order
- The resulting noncommutativity relations

$$
\left[z^{i}, z^{j}\right]_{*}=i \beta \Theta_{k l}^{i j} z^{k} z^{\prime}, \quad\left[z^{i}, \bar{z}^{\bar{j}}\right]_{*}=i \beta \Theta_{k l}^{\bar{j}} z^{k} z^{\bar{i}}, \quad\left[\bar{z}^{\bar{i}}, \bar{z}^{\bar{j}}\right]_{*}=i \beta \Theta_{\bar{k} I^{\bar{j}}}^{\bar{k}} z^{\bar{i}}
$$

can be mapped to our (extended) quantum plane relations

$$
R_{k}^{i}{ }^{j} x^{k} x^{\prime}=x^{j} x^{i}, \quad u_{k} u_{l} R^{k}{ }_{i j}=u_{j} u_{i}, \quad u_{l} R_{k}^{j}{ }_{i} x^{k}=x^{j} u_{i}, \quad x^{k} \widetilde{R}_{k j}^{i}{ }_{j} u_{l}=u_{j} x^{i}
$$

by expanding $R=I+\rho r+O\left(\rho^{2}\right),(\rho=\beta, h)$

- r is the classical r-matrix

Summary

- We have exhibited a Hopf algebra structure underlying the general Leigh-Strassler deformation
- The $\operatorname{SU}(3) \times \mathrm{U}(1)$ R-symmetry of $\mathcal{N}=4$ is not broken, it is q-deformed to $\mathcal{A}(R) \times \mathrm{U}(1)$
- This algebra appears to be a new deformation of $\mathrm{SU}(3)$
- This quantum symmetry appears at the level of the classical Lagrangian
- It is also a symmetry of the 1-loop spin chain Hamiltonian

$$
R_{12} t_{1} t_{2}=t_{2} t_{1} R_{12} \Rightarrow \hat{R}_{12} t_{1} t_{2}=t_{1} t_{2} \hat{R}_{12} \Rightarrow\left(t_{2}\right)^{-1}\left(t_{1}\right)^{-1} H_{12} t_{1} t_{2}=H_{12}
$$

- It reduces to known structures: Quasitriangular Hopf for integrable cases, star products at first order

Still Lots To Do

- Mathematical side
- Better understanding of the algebra $\mathcal{A}(R)$ (e.g. higher order relations)
- Classification of such algebras?
- Could $\mathcal{A}(R)$ be reformulated as a (non-associative) quasi-Hopf algebra? [Drinfel'd '89], [Mack, Schomerus '92]
- Add spectral parameter dependence?
- Are there other integrable deformations?
- Physics side
- What happens at the quantum level?
- Regularisation at higher loops
- Construction of dual backgrounds
- Is there a relation between perturbative finiteness and quantum symmetry?

