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N = 4 Super–Yang–Mills
• N = 4 SYM has played a fundamental role in the study of

gauge and string theory

• It is the unique four–dimensional gauge theory with
maximal global supersymmetry (16 supercharges)

• Extremely interesting properties:
◮ Perturbative Finiteness [Ferrara,Zumino],[Grisaru et al. ’80],[West,Sohnius ’81]

[Stelle ’81],[Brink et al. ’83],[Mandelstam ’83]

◮ Nonperturbative Finiteness [ADS ’84,NSVZ ’86,Seiberg→ Holomorphicity]

⇒ 4d Superconformal Field Theory
◮ AdS/CFT Correspondence [Maldacena ’97]

◮ Planar Integrability [Minahan,Zarembo ’02], many others

◮ Planar Amplitudes [Anastasiou et al. ’04], [Bern et al. ’05], [Alday,Maldacena ’07]

• But is it the unique theory with these features?

• Are there theories which share only some of these
features?

• How does the knowledge accumulated for N = 4 SYM
help in understanding more realistic theories?



Marginal Deformations of N = 4 SYM

• Look for theories as close as possible to N = 4 SYM
• Preserve conformal invariance ⇒ Marginal Deformations
• Focus on superpotential deformations ⇒ N = 1 SUSY
• Write the N = 4 SYM action in N = 1 superspace

L =

∫

d4θTregV Φie−gV Φi +

(
∫

d2θW +

∫

d2θ̄W
)

+ · · ·

• Chiral Superfields Φi = φi + θαψi
α + θ2F i , i = 1,2,3

• N = 4 superpotential:

W = gTrΦ1[Φ2,Φ3] =
g
3
ǫijk TrΦiΦjΦk

• Most general classically marginal deformation:

δW = hijk TrΦiΦjΦk ,

where hijk is a symmetric tensor



Exactly Marginal Deformations

• Not all of these deformations are exactly marginal

• Perturbative approaches [Parkes, West ’84],[Jones,Mezincescu ’84]

• Leigh and Strassler (’95) provided a non–perturbative
proof using the NSVZ β function

• The Leigh–Strassler theories are defined by:

WLS = κTr

„

Φ1[Φ2, Φ3]q +
h
3

“

(Φ1)3 + (Φ2)3 + (Φ3)3
”

«

• q–commutator [X ,Y ]q = XY − qYX

• Finite if f (g, κ,q,h) = 0, where f unknown in general
• 1–loop finiteness condition

2g2 = κκ̄

»

2
N2

(1 + q)(1 + q̄) +

„

1 −
4

N2

«

`

1 + qq̄ + hh̄
´

–

• Recover N = 4 SYM for q = 1, h = 0

• An interesting case: q = e i β ,h = 0 (“Real β deformation”)



N = 4 SYM vs. Leigh–Strassler?

• How do the LS theories compare with N = 4 SYM?

N = 4 SYM Leigh–Strassler
Conformally Invariant

√ √
(*)

AdS/CFT dual
√

real β [Lunin,Maldacena’05]

Planar Integrability
√

basically real β (†)
Planar Amplitudes

√
real β [Khoze’05]

(*) Recent controversy over higher–loop finiteness [Elmetti et al. ’06,’07], [Rossi et al. ’05,’06]

(†) Berenstein&Cherkis (’04) showed mismatch of LS deformation with integrable

deformation of the spin chain for complex β. However one–loop integrability persists in

a particular sector for complex β [Månsson ’07]. A few other integrable choices are known.

• What makes the real β deformation so special?

• Take a closer look at the symmetries

• Work at the level of the classical lagrangian



Symmetries: N = 4 SYM

• 4d Superconformal group: PSU(2,2|4)

• Focus on the R–symmetry subgroup SU(4) ∼ SO(6)

• In N = 1 superspace notation, the N = 4 theory has
manifest SU(3) × U(1)R symmetry

W = gTrΦ1[Φ2,Φ3] =
g
3
ǫijk TrΦiΦjΦk

• ǫijk is the invariant tensor of SU(3)

ǫijk U i
lU

j
mUk

n = (detU)ǫlmn = ǫlmn

• Transforming Φi → U i
l Φ

l leaves the superpotential invariant

• Note that SL(3) would be enough for the superpotential,
SU(3) comes from the kinetic term ∼ ΦiΦ

i



Symmetries: Leigh–Strassler

• The generic LS deformation breaks SU(3) to a discrete
subgroup

WLS = κTr

(

Φ1[Φ2,Φ3]q +
h
3

(

(Φ1)3 + (Φ2)3 + (Φ3)3)
)

• This superpotential has the following Z3 symmetries:

Z
A
3 : Φ1 → Φ2 , Φ2 → Φ3 , Φ3 → Φ1

Z
B
3 : Φ1 → ωΦ1 , Φ2 → ω2Φ2 , Φ3 → Φ3 (ω3 = 1)

• Together with a third Z3 within U(1)R (Φi → ωΦi ), they form
a trihedral group known as ∆27 [Aharony et al. ’02]

• For real β the symmetry group is enhanced to U(1)3

• Is this all?



More symmetry?

• Let us naively rewrite WLS as

WLS =
1
3

Eijk TrΦiΦjΦk

where

E123 = E231 = E312 = κ ,

E321 = E213 = E132 = −κq ,

E111 = E222 = E333 = κh

• Similarly F ijk = E ijk defines W = 1
3 F ijk TrΦiΦjΦk

• Would like to find some tij such that Φi → tilΦ
l is a

symmetry, i.e.
Eijk til t

j
mtkn = Elmn

• Clearly there exists no Lie group with this property...
⇒ Quantum Groups



An Example: The Manin Plane

• A simpler setting that illustrates the main ideas

• x1, x2 ∈ V , where V is a noncommutative space

x1x2 =
1
q

x2x1

• Coordinates of a 2–dimensional quantum plane
• These commutation relations can be obtained from a

matrix R : V ⊗ V → V ⊗ V

R = q− 1
2

0

B

B

@

q 0 0 0
0 1 q − q−1 0
0 0 1 0
0 0 0 q

1

C

C

A

,

via the relation R i j
k lx

kx l = q
1
2 x jx i (or R12x1x2 = q

1
2 x2x1)

• Think of R as acting on basis {|11 〉, |12 〉, |21 〉, |22 〉}
(e.g. R1 2

2 1 = q
1
2 − q− 3

2 )



Quantum Plane Symmetries

• The function f (x1, x2) = x1x2 − q−1x2x1 is invariant under

x i → tilx
l

if the matrix tij satisfies the FRT, or RTT relations:

R i k
a bta

j t
b
l = tk

bt i
aRa b

j l (R12t1t2 = t2t1R12)

• Writing t =

(

t11 t12
t21 t22

)

, we find

t11t12 = q−1t12t11 , t11t21 = q−1t21t11 ,

t12t22 = q−1t22t12 , t21t22 = q−1t22t21 ,

t12t21 = t21t12 , t11t22 − t22t11 = (q−1
− q)t12t21 ,

• The elements of t are noncommutative!

• These commutation relations define a quantum group



Quantum Groups

• What are quantum groups? Some definitions

• Recall an algebra (C,+, ·, η; k) is a vector space together
with a product · : C ⊗ C → C and a unit map η : k → C

• A coalgebra (C,+,∆, ǫ; k) is instead equipped with a
coproduct ∆ : C → C ⊗ C and a counit ǫ : C → k

�
�
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@
@

@I

@
@

@I

�
�

��

C ⊗ C ⊗ C

C ⊗ CC ⊗ C

C

∆ ∆

∆ ⊗ Id Id ⊗ ∆

�
�

�
��

A
A
A
AU

6

C ⊗ C

k ⊗ C = C = C ⊗ k

ǫ⊗ Id Id ⊗ ǫ∆

• A bialgebra (H,+, ·, η,∆, ǫ; k) is both an algebra and a
coalgebra in a compatible way



Hopf Algebras

• A Hopf Algebra is a bialgebra equipped with an antipode
S : C → C

· (S ⊗ id) ◦ ∆ = · (id ⊗ S) ◦ ∆ = η ◦ ǫ .

• We are working in the Quantum Matrix Algebra picture,
where the coproduct and counit are

∆gm
n =

∑

k

gm
k ⊗ gk

n, ǫgm
n = δm

n

and the antipode s satisfies : t i
k sk

j = δi
j = si

k tk
j

• In this picture, it is the product whose noncommutativity is
controlled by the matrix R through the RTT relations

• For R = I we are left with a Lie Algebra

• Dual picture ⇒ Universal Enveloping Algebra



Quasitriangular Hopf Algebras

• In a quasitriangular Hopf algebra, the matrix R controlling
noncommutativity satisfies the Quantum Yang–Baxter
Equation (QYBE) (but note without spectral parameter):

R12R13R23 = R23R13R12

(

in index notation: R i j
s r R

s k
l pRr p

m n = R j k
s pR i p

r nRr s
l m

)

• Among other things, this condition guarantees that the
resulting algebra is not too trivial

• We call a quasitriangular Hopf algebra a quantum group

• The matrix R defining the Manin plane does satisfy QYBE!

• It corresponds to the quantum group SUq(2)



Why SUq(2) and not GLq(2)?

• We have constructed the quantum group SUq(2) as the
invariance group of the Manin plane

• The quantum determinant D := t11t22 − q−1t21t12 is central
and we can set it equal to one =⇒ SLq(2)

• There is an analogous construction for the coplane
u1u2 = qu2u1 (ui ∈ V ∗) defined by

q
1
2 uaub = ujuiR

ji
ba

• Compatibility of the plane and coplane imposes a reality
condition on the matrix R:

R i j
k l = R l k

j i (R̂ = PR hermitian)

• This lets us define tij
∗

= si
j =⇒ SUq(2)



Three–Dimensional Quantum Planes

• Apply these ideas to the Leigh–Strassler theories!
• Note the F–term conditions: [Berenstein et al. ’00]

φ1φ2 = qφ2φ1 − h(φ3)2

φ2φ3 = qφ3φ2 − h(φ1)2

φ3φ1 = qφ1φ3 − h(φ2)2

(non–commutative moduli space)

• The three scalars will play the role of the quantum plane
coordinates: Φi → x i

• Can think of the |||C3 tranverse to the D3–branes becoming
noncommutative

• We need to examine the symmetries of three–dimensional
quantum planes



Quantum deformations of GL(3)

• Ewen & Ogievetsky (’94) classified quantum deformations
of GL(3), and the corresponding quantum planes

• Starting point were the q–epsilon tensors Eijk and their
duals F ijk

• Given the following conditions

δi
j =

1
2

EjmnF mni and EajmF mibEebk F kcj = δc
aδ

i
e + δi

aδ
c
e

they show that
R̂ ij

kl = δi
kδ

j
l − EklnF nij

satisfies QYBE and defines a quantum plane through

R̂12x1x2 = x1x2



LS as a quantum symmetry deformation

• Can the E&O approach be applied to LS?

• The desired q–epsilon tensors are:
E123 = κ, E132 = −κq, E111 = κh (+cyclic), F ijk = E ijk

• Imposing the first E&O condition (δi
j = 1

2 EjmnF mni) we find
κκ̄ = 1/(1 + qq̄ + hh̄) ⇒ planar 1–loop finiteness condition!

• H i j
kl = EklnF nij is the 1–loop spin chain Hamiltonian [Roiban ’03]

Hl,l+1 =
1

1 + qq̄ + hh̄

0

B

B

B

B

B

B

B

B

B

B

B

@

h h̄ 0 0 0 0 h̄ 0 −h̄ q 0
0 1 0 −q 0 0 0 0 h
0 0 q q̄ 0 −h q̄ 0 −q̄ 0 0
0 −q̄ 0 q q̄ 0 0 0 0 −h q̄
0 0 −h̄ q 0 h h̄ 0 h̄ 0 0
h 0 0 0 0 1 0 −q 0
0 0 −q 0 h 0 1 0 0

−h q̄ 0 0 0 0 −q̄ 0 q q̄ 0
0 h̄ 0 −h̄ q 0 0 0 0 h h̄

1

C

C

C

C

C

C

C

C

C

C

C

A

• Hermitian, cyclic: H i j
k l = H(i+1) (j+1)

(k+1) (l+1) etc.

• Define R̂ ij
kl = δi

kδ
j
l − H i j

kl =⇒ R i j
k l = R̂ j i

k l



Does it work?

• Given R, the RTT relations will produce a bialgebra A(R)

• But our R is not part of the E&O classification

• In particular, R does not satisfy QYBE!
(apart from special cases, e.g. real β)

• Differences from E&O:
◮ We have not imposed the second E&O condition
◮ We are interested in a cyclic quantum plane structure (while

E&O look at ordered planes, e.g. x ix j = qx jx i , i < j)

• We cannot have a quasitriangular Hopf Algebra, but is it
still a Hopf Algebra?

• Need careful analysis of the RTT relations
• Two main new features:

• Possibility of no (nontrivial) solutions
• Associativity will imply higher relations



Solving the RTT relations

• When R satisfies QYBE, we are guaranteed that

R i k
a bta

j t
b
l = tk

bt i
aRa b

j l

has nontrivial solutions for tij
• In our case we need to explicitly show that out of the 81

equations, only 36 are independent
• This turns out to be the case!
• Quadratic commutation relations of A(R):

(a) tac ta+1
c − qta+1

c tac + hta−1
c ta−1

c = h
`

ta
c+1ta+1

c−1 − q̄ta
c−1ta+1

c+1 + h̄ta
c ta+1

c

´

(b) q[ta+1
c+1, tac ] = −q2ta+1

c tac+1 + hqta−1
c ta−1

c+1 + hta−1
c+1ta−1

c + tac+1ta+1
c

(c) −qta+1
c ta

c+1 + q̄ta
c+1ta+1

c = h̄ta
c−1ta+1

c−1 − hta−1
c ta−1

c+1

(d) h(ta
c+1ta

c−1 − q̄ta
c−1ta

c+1) = h̄(ta+1
c ta−1

c − qta−1
c ta+1

c )



Associativity

• The QYBE also guarantees no new relations arise at
higher levels

• In our case, associativity leads to new cubic relations

a) R12R13R23t1t2t3 = R12R13t1t3t2R23 = R12t3t1t2R13R23 = t3t2t1R12R13R23

b) R23R13R12t1t2t3 = R23R13t2t1t3R12 = R23t2t3t1R13R12 = t3t2t1R23R13R12

• These relations would be the same if QYBE were satisfied,
but now they have to be imposed to guarantee associativity

• Danger is that they will trivialise the quantum determinant

D =
1
6

Eijk til t
j
mtkmF lmn

=t11t22t33 − qt21t12t33 + ht31t32t33 + t31t12t23 − qt11t32t23 + ht21t22t23

+ t21t32t13 − qt31t22t13 + ht11t12t13

• We have checked that this is not the case

• D is nontrivial and central ⇒ Can set D = 1



The Quantum Symmetry Algebra

• We have also shown that there exists an antipode

s1+i
1+k = t2+k

2+i t
3+k
3+i−q̄t2+k

3+i t
3+k
2+i +h̄t2+k

1+i t
3+k
1+i = t2+k

2+i t
3+k
3+i−qt3+k

2+i t
2+k
3+i +ht1+k

2+i t
1+k
3+i .

• The bialgebra A(R) is thus a Hopf algebra
• We have found a Hopf algebra underlying the general

Leigh–Strassler deformation
◮ Transform Φi

→ tijΦ
j , t ∈ A(R)

◮ D = 1 guarantees invariance of the superpotential:

W =
1
3

Eijk TrΦiΦjΦk =⇒ Eijk til t
j
mtkn = DElmn .

◮ The antipode guarantees invariance of the kinetic terms

ΦiΦ
i
→ Φj t

j
i

∗
tikΦ

k = Φjδ
j
kΦ

k

• The full Leigh–Strassler lagrangian is invariant under A(R)

• The Z3’s appear as automorphisms of A(R)



Integrable Cases

• The Hopf algebra A(R) becomes quasitriangular for
special choices of (q,h)

• All known integrable deformations of N = 4 can be
obtained in this way

• Can show that they arise as Hopf algebra twists of the real
β case

Rβ =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0
0 q−1 0 0 0 0 0 0 0
0 0 q 0 0 0 0 0 0
0 0 0 q 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 q−1 0 0 0
0 0 0 0 0 0 q−1 0 0
0 0 0 0 0 0 0 q 0
0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(this is also a twist of the N = 4 case [Beisert, Roiban ’05])
• E.g. q = 0, h̄ = 1/h can be obtained by

R′ = F21RβF
−1 , F = U ⊗ U2

where
U =

0

@

0 1 0
0 0 1
1 0 0

1

A



Relation to Noncommutativity

• It is known that the real β deformation can be described by
a star product [Berenstein et al. ’00], [Kulaxizi, Zoubos ’04], [Lunin, Maldacena ’05]

• Non(–anti)commutativity on open string side leads to NS
(and RR) fields on closed string side [Schomerus ’99], [Seiberg, Witten ’99]

• Can try to apply these ideas to construct the dual gravity
background to the Leigh–Strassler theories [Kulaxizi ’06]

• Works fine for real β, but problems with associativity for
general case. Still, a solution was found to third order

• The resulting noncommutativity relations

[z i , z j ]∗ = iβΘij
klz

k z l , [z i , z̄ j̄ ]∗ = iβΘi j̄
k l̄

zk z l̄ , [z̄ ī , z̄ j̄ ]∗ = iβΘī j̄
k̄ l̄

z k̄ z l̄

can be mapped to our (extended) quantum plane relations

R i j
k lx

k x l = x jx i , uk ulR
k l
i j = ujui , ulR

j l
k ix

k = x jui , xk
eR i l

k jul = ujx
i

by expanding R = I + ρr + O(ρ2) , (ρ = β, h)

• r is the classical r–matrix



Summary

• We have exhibited a Hopf algebra structure underlying the
general Leigh–Strassler deformation

• The SU(3) × U(1) R–symmetry of N = 4 is not broken, it is
q–deformed to A(R) × U(1)

• This algebra appears to be a new deformation of SU(3)

• This quantum symmetry appears at the level of the
classical Lagrangian

• It is also a symmetry of the 1–loop spin chain Hamiltonian

R12t1t2 = t2t1R12 ⇒ R̂12t1t2 = t1t2R̂12 ⇒ (t2)−1(t1)−1H12t1t2 = H12

• It reduces to known structures: Quasitriangular Hopf for
integrable cases, star products at first order



Still Lots To Do

• Mathematical side
◮ Better understanding of the algebra A(R)

(e.g. higher order relations)
◮ Classification of such algebras?
◮ Could A(R) be reformulated as a (non-associative)

quasi-Hopf algebra? [Drinfel’d ’89], [Mack, Schomerus ’92]

◮ Add spectral parameter dependence?
◮ Are there other integrable deformations?

• Physics side
◮ What happens at the quantum level?
◮ Regularisation at higher loops
◮ Construction of dual backgrounds
◮ Is there a relation between perturbative finiteness and

quantum symmetry?


