Quantum Symmetries And Marginal Deformations

Konstantinos Zoubos

Niels Bohr Institute

15th European Workshop on String Theory

ETH, Zurich

10/09/09

Based on arXiv: 0811.3755 with T. Månsson

$\mathcal{N} = 4$ Super–Yang–Mills

- $\mathcal{N} = 4$ SYM has played a fundamental role in the study of gauge and string theory
- It is the unique four-dimensional gauge theory with maximal global supersymmetry (16 supercharges)
- Extremely interesting properties:
 - Perturbative Finiteness
 [Ferrara,Zumino],[Grisaru et al. '80],[West,Sohnius '81]
 [Stelle '81],[Brink et al. '83],[Mandelstam '83]
 - ► Nonperturbative Finiteness [ADS '84,NSVZ '86,Seiberg → Holomorphicity] ⇒ 4d Superconformal Field Theory
 - AdS/CFT Correspondence [Maldacena '97]
 - Planar Integrability [Minahan,Zarembo '02], many others
 - Planar Amplitudes [Anastasiou et al. '04], [Bern et al. '05], [Alday,Maldacena '07]
- But is it the unique theory with these features?
- Are there theories which share only *some* of these features?
- How does the knowledge accumulated for $\mathcal{N} = 4$ SYM help in understanding more realistic theories?

Marginal Deformations of $\mathcal{N} = 4$ SYM

- Look for theories as close as possible to $\mathcal{N}=4$ SYM
- Preserve conformal invariance ⇒ Marginal Deformations
- Focus on superpotential deformations $\Rightarrow \mathcal{N} = 1$ SUSY
- Write the $\mathcal{N} = 4$ SYM action in $\mathcal{N} = 1$ superspace

$$\mathcal{L} = \int d^4\theta \mathrm{Tr} e^{gV} \overline{\Phi}_i e^{-gV} \Phi^i + \left(\int d^2\theta \mathcal{W} + \int d^2\overline{\theta}\overline{\mathcal{W}} \right) + \cdots$$

- Chiral Superfields $\Phi^i = \phi^i + \theta^{\alpha} \psi^i_{\alpha} + \theta^2 F^i, \ i = 1, 2, 3$
- $\mathcal{N} = 4$ superpotential:

$$\mathcal{W} = g \mathrm{Tr} \Phi^{1}[\Phi^{2}, \Phi^{3}] = \frac{g}{3} \epsilon_{ijk} \mathrm{Tr} \Phi^{i} \Phi^{j} \Phi^{k}$$

• Most general classically marginal deformation:

$$\delta \mathcal{W} = h_{ijk} \mathrm{Tr} \Phi^{i} \Phi^{j} \Phi^{k},$$

where h_{ijk} is a symmetric tensor

Exactly Marginal Deformations

- Not all of these deformations are exactly marginal
- Perturbative approaches [Parkes, West '84],[Jones,Mezincescu '84]
- Leigh and Strassler ('95) provided a non–perturbative proof using the NSVZ β function
- The Leigh-Strassler theories are defined by:

$$\mathcal{W}_{LS} = \kappa \mathrm{Tr}\left(\Phi^{1}[\Phi^{2}, \Phi^{3}]_{q} + \frac{h}{3}\left((\Phi^{1})^{3} + (\Phi^{2})^{3} + (\Phi^{3})^{3}\right)\right)$$

- q-commutator $[X, Y]_q = XY qYX$
- Finite if $f(g, \kappa, q, h) = 0$, where f unknown in general
- 1–loop finiteness condition

$$2g^2 = \kappa \bar{\kappa} \left[\frac{2}{N^2}(1+q)(1+\bar{q}) + \left(1-\frac{4}{N^2}\right)\left(1+q\bar{q}+h\bar{h}\right)\right]$$

- Recover $\mathcal{N} = 4$ SYM for q = 1, h = 0
- An interesting case: $q = e^{i\beta}$, h = 0 ("Real β deformation")

$\mathcal{N} = 4$ SYM vs. Leigh–Strassler?

• How do the LS theories compare with $\mathcal{N} = 4$ SYM?

	$\mathcal{N} = 4 \text{ SYM}$	Leigh–Strassler
Conformally Invariant	\checkmark	√(*)
AdS/CFT dual		real eta [Lunin,Maldacena'05]
Planar Integrability	\checkmark	basically real β (†)
Planar Amplitudes	\checkmark	real eta [Khoze'05]

(*) Recent controversy over higher–loop finiteness [Elmetti et al. '06,'07], [Rossi et al. '05,'06] ([†]) Berenstein&Cherkis ('04) showed mismatch of LS deformation with integrable deformation of the spin chain for complex β . However one–loop integrability persists in a particular sector for complex β [Månsson '07]. A few other integrable choices are known.

- What makes the real β deformation so special?
- Take a closer look at the symmetries
- Work at the level of the classical lagrangian

Symmetries: $\mathcal{N} = 4$ SYM

- 4d Superconformal group: PSU(2,2|4)
- Focus on the R–symmetry subgroup ${
 m SU}(4)\sim {
 m SO}(6)$
- In $\mathcal{N} = 1$ superspace notation, the $\mathcal{N} = 4$ theory has manifest $SU(3) \times U(1)_R$ symmetry

$$\mathcal{W} = g \operatorname{Tr} \Phi^{1}[\Phi^{2}, \Phi^{3}] = \frac{g}{3} \epsilon_{ijk} \operatorname{Tr} \Phi^{i} \Phi^{j} \Phi^{k}$$

• ϵ_{ijk} is the invariant tensor of SU(3)

$$\epsilon_{ijk} U^{i}_{I} U^{j}_{m} U^{k}_{n} = (\det U) \epsilon_{Imn} = \epsilon_{Imn}$$

- Transforming $\Phi^i \rightarrow U^i_I \Phi^I$ leaves the superpotential invariant
- Note that SL(3) would be enough for the superpotential, SU(3) comes from the kinetic term $\sim \overline{\Phi}_i \Phi^i$

Symmetries: Leigh–Strassler

• The generic LS deformation breaks SU(3) to a discrete subgroup

$$\mathcal{W}_{LS} = \kappa \mathrm{Tr}\left(\Phi^{1}[\Phi^{2},\Phi^{3}]_{q} + \frac{h}{3}\left((\Phi^{1})^{3} + (\Phi^{2})^{3} + (\Phi^{3})^{3}\right)\right)$$

• This superpotential has the following \mathbb{Z}_3 symmetries:

$$\begin{split} \mathbb{Z}_3^A: \ \Phi^1 \to \Phi^2 \quad , \quad \Phi^2 \to \Phi^3 \quad , \quad \Phi^3 \to \Phi^1 \\ \mathbb{Z}_3^B: \ \Phi^1 \to \omega \Phi^1 \quad , \quad \Phi^2 \to \omega^2 \Phi^2 \quad , \quad \Phi^3 \to \Phi^3 \quad (\omega^3 = 1) \end{split}$$

- Together with a third \mathbb{Z}_3 within $U(1)_R (\Phi^i \to \omega \Phi^i)$, they form a trihedral group known as Δ_{27} [Aharony et al. '02]
- For real β the symmetry group is enhanced to U(1)³
- Is this all?

More symmetry?

• Let us naively rewrite \mathcal{W}_{LS} as

$$W_{LS} = \frac{1}{3} E_{ijk} \mathrm{Tr} \Phi^{i} \Phi^{j} \Phi^{k}$$

where

$$\begin{split} E_{123} &= E_{231} = E_{312} = \kappa , \\ E_{321} &= E_{213} = E_{132} = -\kappa q , \\ E_{111} &= E_{222} = E_{333} = \kappa h \end{split}$$

- Similarly $F^{ijk} = \overline{E}_{ijk}$ defines $\overline{W} = \frac{1}{3} F^{ijk} \operatorname{Tr} \overline{\Phi}_i \overline{\Phi}_j \overline{\Phi}_k$
- Would like to find some t_j^i such that $\Phi^i \to t_l^i \Phi^l$ is a symmetry, i.e.

$$E_{ijk} t^i_l t^j_m t^k_n = E_{lmn}$$

Clearly there exists no Lie group with this property...
 ⇒ Quantum Groups

An Example: The Manin Plane

- A simpler setting that illustrates the main ideas
- $x^1, x^2 \in V$, where V is a noncommutative space

$$x^1x^2 = \frac{1}{q}x^2x^1$$

- Coordinates of a 2-dimensional quantum plane
- These commutation relations can be obtained from a matrix *R* : *V* ⊗ *V* → *V* ⊗ *V*

$$R = q^{-rac{1}{2}} egin{pmatrix} q & 0 & 0 & 0 \ 0 & 1 & q - q^{-1} & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & q \end{pmatrix} \;,$$

via the relation $R_{kl}^{ij} x^k x^l = q^{\frac{1}{2}} x^j x^i$ (or $R_{12} x_1 x_2 = q^{\frac{1}{2}} x_2 x_1$)

• Think of *R* as acting on basis $\{|11\rangle, |12\rangle, |21\rangle, |22\rangle\}$ (e.g. $R_{2}^{1} = q^{\frac{1}{2}} - q^{-\frac{3}{2}}$)

Quantum Plane Symmetries

• The function $f(x^1, x^2) = x^1 x^2 - q^{-1} x^2 x^1$ is invariant under $x^i \rightarrow t^i_l x^l$

if the matrix t_i^i satisfies the FRT, or RTT relations:

$$R^{i\,k}_{a\,b}t^{a}_{j}t^{b}_{l} = t^{k}_{b}t^{i}_{a}R^{a\,b}_{j\,l} \qquad (R_{12}t_{1}t_{2} = t_{2}t_{1}R_{12})$$

• Writing
$$t = \begin{pmatrix} t_1^1 & t_2^1 \\ t_1^2 & t_2^2 \end{pmatrix}$$
, we find
 $t_1^1 t_2^1 = q^{-1} t_2^1 t_1^1 , t_1^1 t_1^2 = q^{-1} t_1^2 t_1^1 , t_2^1 t_2^2 = q^{-1} t_2^2 t_2^1 , t_2^1 t_2^2 = q^{-1} t_2^2 t_1^2 , t_2^1 t_2^2 = q^{-1} t_2^2 t_2^2 , t_2^2 t_2^2 = q^{-1} t_2^2 t_2^2 t_2^2 , t_2^2 t_2^2 = q^{-1} t_2^2 t_2^2 , t_2^2 t_2^2 t_2^2$

- The elements of *t* are noncommutative!
- These commutation relations define a quantum group

Quantum Groups

- What are quantum groups? Some definitions
- Recall an algebra (C, +, ·, η; k) is a vector space together with a product · : C ⊗ C → C and a unit map η : k → C
- A coalgebra (C, +, Δ, ε; k) is instead equipped with a coproduct Δ : C → C ⊗ C and a counit ε : C → k

A bialgebra (H, +, ·, η, Δ, ε; k) is both an algebra and a coalgebra in a compatible way

Hopf Algebras

- A Hopf Algebra is a bialgebra equipped with an antipode $S \ : \mathcal{C} \to \mathcal{C}$

 $\cdot (S \otimes \mathsf{id}) \circ \Delta = \cdot (\mathsf{id} \otimes S) \circ \Delta = \eta \circ \epsilon$.

• We are working in the Quantum Matrix Algebra picture, where the coproduct and counit are

$$\Delta g_n^m = \sum_k g_k^m \otimes g_n^k, \qquad \epsilon g_n^m = \delta_n^m$$

and the antipode *s* satisfies : $t_k^i s_j^k = \delta_j^i = s_k^i t_j^k$

- In this picture, it is the *product* whose noncommutativity is controlled by the matrix *R* through the RTT relations
- For R = I we are left with a Lie Algebra
- Dual picture \Rightarrow Universal Enveloping Algebra

Quasitriangular Hopf Algebras

• In a *quasitriangular* Hopf algebra, the matrix *R* controlling noncommutativity satisfies the Quantum Yang–Baxter Equation (QYBE) (but note without spectral parameter):

 $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$

(in index notation: $R_{sr}^{ij}R_{lp}^{sk}R_{m}^{r}R_{n}^{r} = R_{sp}^{jk}R_{rn}^{ip}R_{lm}^{rs}$)

- Among other things, this condition guarantees that the resulting algebra is not too trivial
- We call a quasitriangular Hopf algebra a quantum group
- The matrix *R* defining the Manin plane does satisfy QYBE!
- It corresponds to the quantum group $SU_q(2)$

Why $SU_q(2)$ and not $GL_q(2)$?

- We have constructed the quantum group $SU_q(2)$ as the invariance group of the Manin plane
- The quantum determinant $\mathbb{D} := t_1^1 t_2^2 q^{-1} t_1^2 t_2^1$ is central and we can set it equal to one \Longrightarrow SL_q(2)
- There is an analogous construction for the coplane u₁u₂ = qu₂u₁ (u_i ∈ V*) defined by

$$q^{rac{1}{2}}u_au_b=u_ju_iR^{jj}_{\ ba}$$

• Compatibility of the plane and coplane imposes a reality condition on the matrix *R*:

$$\overline{R_{kl}^{ij}} = R_{ji}^{lk}$$
 ($\hat{R} = PR$ hermitian)

• This lets us define $t_j^{i^*} = s_j^i \Longrightarrow SU_q(2)$

Three–Dimensional Quantum Planes

- Apply these ideas to the Leigh–Strassler theories!
- Note the F-term conditions: [Berenstein et al. '00]

$$\begin{split} \phi^{1}\phi^{2} &= q\phi^{2}\phi^{1} - h(\phi^{3})^{2} \\ \phi^{2}\phi^{3} &= q\phi^{3}\phi^{2} - h(\phi^{1})^{2} \\ \phi^{3}\phi^{1} &= q\phi^{1}\phi^{3} - h(\phi^{2})^{2} \end{split}$$

(non-commutative moduli space)

- The three scalars will play the role of the quantum plane coordinates: $\Phi^i \rightarrow x^i$
- Can think of the C³ tranverse to the D3–branes becoming noncommutative
- We need to examine the symmetries of three–dimensional quantum planes

Quantum deformations of GL(3)

- Ewen & Ogievetsky ('94) classified quantum deformations of GL(3), and the corresponding quantum planes
- Starting point were the *q*-epsilon tensors *E*_{ijk} and their duals *F*^{ijk}
- Given the following conditions

$$\delta^i_j = \frac{1}{2} E_{jmn} F^{mni}$$
 and $E_{ajm} F^{mib} E_{ebk} F^{kcj} = \delta^c_a \delta^i_e + \delta^i_a \delta^c_e$

they show that

$$\hat{\mathsf{R}}^{ij}_{\ kl} = \delta^i_k \delta^j_l - \mathsf{E}_{kln} \mathsf{F}^{nij}$$

satisfies QYBE and defines a quantum plane through

$$\hat{R}_{12}x_1x_2 = x_1x_2$$

LS as a quantum symmetry deformation

- Can the E&O approach be applied to LS?
- The desired *q*-epsilon tensors are: $E_{123} = \kappa, E_{132} = -\kappa q, E_{111} = \kappa h$ (+cyclic), $F^{ijk} = \overline{E}_{ijk}$
- Imposing the first E&O condition $(\delta_j^i = \frac{1}{2} E_{jmn} F^{mni})$ we find $\kappa \bar{\kappa} = 1/(1 + q\bar{q} + h\bar{h}) \Rightarrow$ planar 1–loop finiteness condition!
- $H_{kl}^{ij} = E_{kln}F^{nij}$ is the 1–loop spin chain Hamiltonian [Roiban '03]

$$H_{l,l+1} = \frac{1}{1 + q\bar{q} + h\bar{h}} \begin{pmatrix} h\bar{h} & 0 & 0 & 0 & 0 & \bar{h} & 0 & -\bar{h}q & 0 \\ 0 & 1 & 0 & -q & 0 & 0 & 0 & 0 & h \\ 0 & 0 & q\bar{q} & 0 & -h\bar{q} & 0 & -\bar{q} & 0 & 0 \\ 0 & -\bar{q} & 0 & q\bar{q} & 0 & 0 & 0 & 0 & -h\bar{q} \\ 0 & 0 & -\bar{h}q & 0 & h\bar{h} & 0 & \bar{h} & 0 & 0 \\ h & 0 & 0 & 0 & 0 & 1 & 0 & -q & 0 \\ h & 0 & 0 & 0 & 0 & 1 & 0 & -q & 0 \\ -h\bar{q} & 0 & 0 & 0 & 0 & -\bar{h}q & 0 & 0 & h\bar{h} \end{pmatrix}$$

- Hermitian, cyclic: $H_{k l}^{i j} = H_{(k+1)(l+1)}^{(i+1)(j+1)}$ etc.
- Define $\hat{R}^{ij}_{\ kl} = \delta^i_k \delta^j_l H^{ij}_{\ kl} \implies R^{i\ j}_{\ k\ l} = \hat{R}^{j\ i}_{\ k\ l}$

Does it work?

- Given *R*, the RTT relations will produce a bialgebra $\mathcal{A}(R)$
- But our R is not part of the E&O classification
- In particular, *R* does not satisfy QYBE! (apart from special cases, e.g. real β)
- Differences from E&O:
 - We have not imposed the second E&O condition
 - ► We are interested in a cyclic quantum plane structure (while E&O look at ordered planes, e.g. xⁱxⁱ = qx^jxⁱ, i < j)</p>
- We cannot have a quasitriangular Hopf Algebra, but is it still a Hopf Algebra?
- Need careful analysis of the RTT relations
- Two main new features:
 - Possibility of no (nontrivial) solutions
 - Associativity will imply higher relations

Solving the RTT relations

• When R satisfies QYBE, we are guaranteed that

 $R^{i\ k}_{a\ b}t^a_jt^b_l = t^k_{\ b}t^i_{\ a}R^{a\ b}_{\ j\ l}$

has nontrivial solutions for t_i^i

- In our case we need to explicitly show that out of the 81 equations, only 36 are independent
- This turns out to be the case!
- Quadratic commutation relations of $\mathcal{A}(R)$:

$$\begin{aligned} \text{(a)} \qquad t_{c}^{a}t_{c}^{a+1} - qt_{c}^{a+1}t_{c}^{a} + ht_{c}^{a-1}t_{c}^{a-1} &= h\left(t_{c+1}^{a}t_{c-1}^{a+1} - \bar{q}t_{c-1}^{a}t_{c+1}^{a+1} + \bar{h}t_{c}^{a}t_{c}^{a+1}\right) \\ \text{(b)} \qquad q[t_{c+1}^{a+1}, t_{c}^{a}] &= -q^{2}t_{c}^{a+1}t_{c}^{a}t_{c+1}^{a-1} + hqt_{c}^{a-1}t_{c+1}^{a-1} + ht_{c}^{a-1}t_{c}^{a-1} + ht_{c}^{a-1}t_{c}^{a+1}t_{c}^{a+1} \\ \text{(c)} \qquad -qt_{c}^{a+1}t_{c+1}^{a} + \bar{q}t_{c+1}^{a}t_{c}^{a+1} &= \bar{h}t_{c-1}^{a}t_{c-1}^{a+1} - ht_{c}^{a-1}t_{c+1}^{a-1} \\ \text{(d)} \qquad h(t_{c+1}^{a}t_{c-1}^{a} - \bar{q}t_{c-1}^{a}t_{c+1}^{a}) &= \bar{h}(t_{c}^{a+1}t_{c}^{a-1} - qt_{c}^{a-1}t_{c}^{a+1}) \end{aligned}$$

Associativity

- The QYBE also guarantees no new relations arise at higher levels
- In our case, associativity leads to new cubic relations

a) $R_{12}R_{13}R_{23}t_1t_2t_3 = R_{12}R_{13}t_1t_3t_2R_{23} = R_{12}t_3t_1t_2R_{13}R_{23} = t_3t_2t_1R_{12}R_{13}R_{23}$

b) $R_{23}R_{13}R_{12}t_1t_2t_3 = R_{23}R_{13}t_2t_1t_3R_{12} = R_{23}t_2t_3t_1R_{13}R_{12} = t_3t_2t_1R_{23}R_{13}R_{12}$

- These relations would be the same if QYBE were satisfied, but now they have to be imposed to guarantee associativity
- Danger is that they will trivialise the quantum determinant

$$\mathbb{D} = \frac{1}{6} E_{ijk} t_{l}^{i} t_{m}^{j} t_{m}^{k} F^{lmn}$$

= $t_{1}^{1} t_{2}^{2} t_{3}^{3} - q t_{1}^{2} t_{2}^{1} t_{3}^{3} + h t_{1}^{3} t_{2}^{3} t_{3}^{3} + t_{1}^{3} t_{2}^{1} t_{3}^{2} - q t_{1}^{1} t_{2}^{3} t_{3}^{2} + h t_{1}^{2} t_{2}^{2} t_{3}^{2}$
+ $t_{1}^{2} t_{2}^{3} t_{3}^{1} - q t_{1}^{3} t_{2}^{2} t_{3}^{1} + h t_{1}^{3} t_{2}^{1} t_{3}^{1}$

- We have checked that this is not the case
- \mathbb{D} is nontrivial and central \Rightarrow Can set $\mathbb{D} = 1$

The Quantum Symmetry Algebra

· We have also shown that there exists an antipode

 $s_{1+k}^{1+i} = t_{2+i}^{2+k} t_{3+i}^{3+k} - \bar{q} t_{3+i}^{2+k} t_{2+i}^{3+k} + \bar{h} t_{1+i}^{2+k} t_{1+i}^{3+k} = t_{2+i}^{2+k} t_{3+i}^{3+k} - q t_{2+i}^{3+k} t_{3+i}^{2+k} + h t_{2+i}^{1+k} t_{3+i}^{1+k} \,.$

- The bialgebra $\mathcal{A}(R)$ is thus a Hopf algebra
- We have found a Hopf algebra underlying the general Leigh–Strassler deformation
 - Transform $\Phi^i \rightarrow t^i_j \Phi^j$, $t \in \mathcal{A}(R)$
 - $\mathbb{D} = 1$ guarantees invariance of the superpotential:

$$\mathcal{W} = rac{1}{3} E_{ijk} \operatorname{Tr} \Phi^i \Phi^j \Phi^k \Longrightarrow E_{ijk} t^i_l t^j_m t^k_{\ n} = \mathbb{D} E_{lmn} \ .$$

The antipode guarantees invariance of the kinetic terms

$$\overline{\Phi}_{i}\Phi^{i} \to \overline{\Phi}_{j}t^{j}{}_{i}^{*}t^{i}_{k}\Phi^{k} = \overline{\Phi}_{j}\delta^{j}{}_{k}\Phi^{k}$$

- The full Leigh–Strassler lagrangian is invariant under $\mathcal{A}(R)$
- The \mathbb{Z}_3 's appear as automorphisms of $\mathcal{A}(R)$

Integrable Cases

- The Hopf algebra A(R) becomes quasitriangular for special choices of (q, h)
- All known integrable deformations of $\mathcal{N} = 4$ can be obtained in this way
- Can show that they arise as Hopf algebra twists of the real β case

(this is also a twist of the $\mathcal{N} = 4$ case [Beisert, Roiban '05]) • E.g. $q = 0, \bar{h} = 1/h$ can be obtained by

$$R' = \mathcal{F}_{21} R_{\beta} \mathcal{F}^{-1} , \quad \mathcal{F} = U \otimes U^2$$

where

$$U = \left(\begin{array}{rrrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right)$$

Relation to Noncommutativity

- It is known that the real β deformation can be described by a star product [Berenstein et al. '00], [Kulaxizi, Zoubos '04], [Lunin, Maldacena '05]
- Non(-anti)commutativity on open string side leads to NS (and RR) fields on closed string side [Schomerus '99], [Seiberg, Witten '99]
- Can try to apply these ideas to construct the dual gravity background to the Leigh–Strassler theories [Kulaxizi '06]
- Works fine for real β, but problems with associativity for general case. Still, a solution was found to third order
- The resulting noncommutativity relations

$$[z^i,z^j]_*=i\beta\Theta^{ij}_{\ kl}z^kz^l,\quad [z^i,\bar{z}^{\bar{i}}]_*=i\beta\Theta^{i\bar{j}}_{\ k\bar{l}}z^kz^{\bar{l}},\quad [\bar{z}^{\bar{i}},\bar{z}^{\bar{j}}]_*=i\beta\Theta^{\bar{i}j}_{\ \bar{k}\bar{l}}z^{\bar{k}}z^{\bar{l}}$$

can be mapped to our (extended) quantum plane relations

$$R_{kl}^{i\,j}x^{k}x^{l} = x^{j}x^{i} , \quad u_{k}u_{l}R_{ij}^{k} = u_{j}u_{i} , \quad u_{l}R_{kj}^{j}x^{k} = x^{j}u_{i} , \quad x^{k}\widetilde{R}_{kj}^{i\,l}u_{l} = u_{j}x^{i}$$

by expanding $R = I + \rho r + O(\rho^2)$, $(\rho = \beta, h)$

• r is the classical r-matrix

Summary

- We have exhibited a Hopf algebra structure underlying the general Leigh–Strassler deformation
- The SU(3) × U(1) R−symmetry of N = 4 is not broken, it is q−deformed to A(R) × U(1)
- This algebra appears to be a new deformation of SU(3)
- This quantum symmetry appears at the level of the classical Lagrangian
- It is also a symmetry of the 1-loop spin chain Hamiltonian

 $R_{12}t_1t_2 = t_2t_1R_{12} \Rightarrow \hat{R}_{12}t_1t_2 = t_1t_2\hat{R}_{12} \Rightarrow (t_2)^{-1}(t_1)^{-1}H_{12}t_1t_2 = H_{12}$

 It reduces to known structures: Quasitriangular Hopf for integrable cases, star products at first order

Still Lots To Do

- Mathematical side
 - ► Better understanding of the algebra A(R) (e.g. higher order relations)
 - Classification of such algebras?
 - ► Could A(R) be reformulated as a (non-associative) quasi-Hopf algebra? [Drinfel'd '89], [Mack, Schomerus '92]
 - Add spectral parameter dependence?
 - Are there other integrable deformations?
- Physics side
 - What happens at the quantum level?
 - Regularisation at higher loops
 - Construction of dual backgrounds
 - Is there a relation between perturbative finiteness and quantum symmetry?